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Advancements Imitation Learning

Challenge of Sparse Rewarding
In many RL problems, we deal with sparse rewards

‚ In Frozen Lake game, we only get the reward at the end!
Can this be tolerated in many practical problems?

Waiting for those sparse rewards could be very dangerous!
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Advancements Imitation Learning

A Solution: Reward Shaping
If we could formulate what we want: maybe, we could shape the reward

‚ In Assignment 1, we did it for simple Frozen Lake game
ë Just need to add some negative rewards in between

‚ By this approach, we make much denser reward

+ Can we always do it?
– Not really!

In practice, we cannot necessarily formulate the types of rewards we want
‚ We often have access only to a human expert

ë a professional driver or an expert surgeon
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Advancements Imitation Learning

Imitation Learning: Learning by Expert

In practice, we want to employ an expert to learn safely and efficiently
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Advancements Behavior Cloning

Behavior Cloning
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We are looking for mimicking the expert
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L pπθ, π
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and of course, we do it by sampling!
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Advancements Behavior Cloning

Behavior Cloning: Not Always Efficient

DAgger: famous efficient
algorithm for behavior cloning

But, we are always limited in collecting expert samples
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Advancements Inverse RL

Inverse Reinforcement Learning
At

St`1, Rt`1

control loop

π‹

In classical RL setting

we collect rewards ù we try to learn optimal policy
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Advancements Inverse RL

Inverse Reinforcement Learning: Learning Reward Function
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inverse control loop

p prt`1|st`1, st, atq

In inverse RL setting

a teacher plays ù we try to learn rewarding system
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Advancements Inverse RL

Inverse Reinforcement Learning: Some Notes
This problem can be cast using same formulation: we can write the optimal
value function again

v‹ psq “ Eπ‹ tGt|St “ su

“ Eπ‹

#

8
ÿ

i“0

γiRt`i`1|St “ s

+

In RL, we knowRt`i`1 and look for π‹

‚ We use function approximation, e.g., π‹ p¨q ” fw p¨q

In inverse RL, we know π‹ and look forRt`i`1

‚ We can again use function approximation, e.g., p prt`1|¨q ” fw p¨q

Pieter Abbeel has a nice lecture on inverse RL: take a look at this link

Also, you may find this imitation learning lecture-note useful to learn a bit more!
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https://people.eecs.berkeley.edu/~pabbeel/cs287-fa12/slides/inverseRL.pdf
https://web.stanford.edu/class/cs237b/pdfs/lecture/lecture_10111213.pdf


Advancements RL from Human Feedback

Using Expert Demonstration
Not all experts can formulate their policy

‚ It might be not really easy to formulate it
ë A board-game player my act based on experience and intuition

‚ It might be much easier to demonstrate the policy
ë A professional driver could explain what they do in various conditions

In this case learning the rewarding system is not really feasible
‚ We don’t exactly know optimal policy
‚ We can only describe it using expert demonstrations
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Advancements RL from Human Feedback

RL via Expert Demonstration
We could include expert demonstrations into our control loop

State Agent Action

EnvironmentReward

Expert
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Advancements RL from Human Feedback

RLHF: RL from Human Feedback
This can be further extended to the use of human feedback: that human does
not need to play optimal!

State Agent Action

EnvironmentReward

Human Feedback

ChatGPT also extensively uses RLHF: see this lecture
Reinforcement Learning Chapter 7: Applications and Advancements © A. Bereyhi 2024 - 2025 12 / 14

https://www.cs.cmu.edu/~mgormley/courses/10423//slides/lecture12-rlhf-ink.pdf


Advancements Multi-Agent RL

Multi-Agent RL

Up to now, we considered other agents as a part of environment
‚ But, they can have their own policies

ë They could collaborate to play jointly optimal
ë There might be adversary agents trying to impact negatively

Take a look at this manuscript to learn about multi-agent RL

Reinforcement Learning Chapter 7: Applications and Advancements © A. Bereyhi 2024 - 2025 13 / 14

https://arxiv.org/pdf/1911.10635


Advancements The End

The End
Many thanks for attending the lectures . . .

‚ Be confident and trust on what you have learned�
ë You are now experts in Deep RL!

‚ Feel free to reach out
ë Would be more than happy to help!
ë I would appreciate your feedback on Quercus7

‚ Always track the progress in the field
ë It’s fast growing, so you should keep yourself posted�
ë You are ready to follow any advanced topics in RL�

Next Summer, there will be a Generative AI course
ë We may use some Deep RL there as well⌣
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