Reinforcement Learning

Chapter 6: Actor Critic Methods
Ali Bereyhi
ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Fall 2025

Reinforcement Learning Chapter 6: Actor Critic Methods

mailto:ali.bereyhi@utoronto.ca

Learning Deterministic Policy

From model-based RL we know that: the optimal policy can be deterministic

Why don’t we train a policy network that learns a deterministic policy?

+ You are contradicting yourself! You said that stochastic policy is a general
case that includes deterministic policies as well! Now you want to get back
to a deterministic policy?!

- Well! You're right! But there will be no harm in learning a deterministic
policy! It might only be less effective!
+ Why we should do it then?

- It could give us some benefits, especially when we have continuous
action-space

Reinforcement Learning Chapter 6: Actor Critic Methods © A. Bereyhi 2024 - 2025 2/32

Learning Deterministic Policy

With continuous action-space, policy is a density function

e With discrete action-space, we can show policy by a finite vector!

g (a*]s)
<t —{_oth_|—[7L,)

e Unlike discrete action-space, we cannot do this with continuous actions
L, We should learn a function from state feature, e.g.,

_ 1 _(a—DNN (x(s)10))
e (a|s) - Wexp{ 202 }

L, We then sample from this learned density function, e.g.,

L, Draw a sample from Gaussian distribution with mean DNN (x (s) |@) and
variance o

1We have seen this in Assignment 3

Reinforcement Learning Chapter 6: Actor Critic Methods © A. Bereyhi 2024 - 2025 3/32

Learning Deterministic Policy

There are several things that could go wrong
* What if the generated sample is out of accepted range?

L, Our sample from Gaussian distribution is extremely large
L, In sensitive control settings, this could harm the system

e What if we only try a few samples?

L, We don't see the probabilities as opposed to continuous actions
L, We then cannot really reject too many samples

With continuous actions, we usually prefer to learn a deterministic policy: its
main feature is that it can be represented by a single action a*

7o (als) = {1 a=a*

0 a#a"

Reinforcement Learning Chapter 6: Actor Critic Methods © A. Bereyhi 2024 - 2025 4/32

Learnable Deterministic Policy
Deterministic Policy Network

Considering a deterministic policy, we only need to learn an estimate of optimal
action in each state: we can revise our policy network into a deterministic policy
network

x(s) po () a* (s)

Deterministic Policy Network

Deterministic policy network maps a state-features into a single action and can
be realized by a DNN with input being the state feature representation and a
single output

Reinforcement Learning Chapter 6: Actor Critic Methods © A. Bereyhi 2024 - 2025 5/32

Deterministic Policy Gradient Learnable Deterministic Policy

Deterministic Policy Network: Training

+ How should we train these networks? Similar to other policy networks?

- We can look at them as a special form of policy networks and do the same
thing, yes! However, it turns out that in this special case, there are better
ways to do it! Especially as we always implement them actor-critic

+ So, we should start all over again?!

- Not really! We should basically use what we learned for DQL

Reinforcement Learning Chapter 6: Actor Critic Methods © A. Bereyhi 2024 - 2025 6/32

Deterministic Policy Network: Training

Recall the property of optimal policy: it gives maximum value and action-value

If we have a Q-network that estimates optimal action-value, we can say

a* = argmax gw (s,a)

xc((ssmn@m«ssm»

The output satisfies

A

g (s,0%) = max s (s, 0)

Reinforcement Learning Chapter 6: Actor Critic Methods © A. Bereyhi 2024 - 2025 7/32

Learnable Deterministic Policy
Deterministic Policy Network: Training

So, in actor-critic form with a Q-network, we could train the deterministic policy
network as

0 = arg‘rgnax Qw (s, 1o (s))
which we can solve using gradient ascent by updating as
6 — 0+ aVeQw (s, ke (5))
<—0+aa—aaQw (8, @) la=pug (s) w

—
Backprop over Q-Net

J

Backprop over policy

Moral of Story

As long as we have an estimator of optimal action-value function, we can train
deterministic policy network very easily!

Reinforcement Learning Chapter 6: Actor Critic Methods © A. Bereyhi 2024 - 2025 8/32

Deterministic Policy Gradient Learnable Deterministic Policy

Deterministic Policy Gradient

+ But how can we can find such an estimator?
Well! We have done this before!
+ You mean in DQL?!

Exactly! In Q-learning we use Bellman’s optimality equation to estimate
optimal action-value function: we can do the same here

Recall that Bellman'’s optimality equation indicate that
Gx (Sts At) = Res1 +YEs, ~p(5,,41) {mngQ* (Sit1, a)}
and if we know the action a* = argmax,, g. (S:+1, a), we could write

qx (St, At) = Re1 +VEs, ~p(|5.,40) (@5 (St+1,07)}

Reinforcement Learning Chapter 6: Actor Critic Methods © A. Bereyhi 2024 - 2025 9/32

Deterministic Policy Gradient

If we use our deterministic policy network in one time step we sample

R
Sty g (Sp41) — Spiq
We can then sample an estimator of optimal action-value at a = g (Si+1)

Qi = Riv1 +vQw (Sts1, 16 (Si11))

Once we are over with sample trajectory: we update Q-network to minimize loss

1 T-1 N2
Lw) =2 3, (Qu (Stoi0 (5) = Qi)
t=0

And the life is much easier as compared to TRPO and PPO ©

Reinforcement Learning Chapter 6: Actor Critic Methods © A. Bereyhi 2024 - 2025 10/32

Deterministic Policy Gradient
We do very well know how to do this
w—w— VL (w)
— w+ Bmean [(Q1 — Qu (1,110 (51))) V@ (S, 10 (5)]
«— w + fmean [A;VQw (St, g (S1))]

where A, = Q; — Quw (St, 1o (S¢)) is the TD error

Alternating between the two update rules, we end up with a
Deterministic Policy Gradient = DPG

algorithm: there are various DPG algorithms; we take a look into the famous one

Reinforcement Learning Chapter 6: Actor Critic Methods © A. Bereyhi 2024 - 2025 11/32

A Basic DPG Algorithm

We can use these updates to write a simple online DPG algorithm

9.

O N DA

10:
11:
12:
13: end while

DPG_v1():

1: Initiate with @ and w, as well as factor o < 1 and learning rate 3
2: Initiate some initial state So and draw action Ay as Ao «— pe (So)
3: while interacting do

Sample a time step S;, A+ plicary St
Draw the next optimal action as A1 «— pe (Si+1)
Compute A = Rt+1 + ’VQW (St+1, At+1) — Qw (St, At)
Update value network as w «— w + BAVQw (St, A¢)
Update policy network as @ < 6 + a2 Qw (St,a) |a=a, Ve (St)
Go for next state S; «— Si+1
if Sy is terminal then
Draw a new random state Sy and Ay < e (So)
end if

Reinforcement Learning Chapter 6: Actor Critic Methods © A. Bereyhi 2024 - 2025

12/32

Basic DPG: Practical Challenges

Using our knowledge, we can easily detect challenges of this basic algorithm
® Lack of exploration — e-greedy improvement
L, We follow blindly the deterministic policy network
L, We do not give any chance for exploration
L, This can quickly stick us to a bad locally-optimal deterministic policy
® High-variance gradient estimators — experience replay
L, It’s online and hence update the networks with single time step samples
L, We need more samples to compute better estimators
L, We would like to have independent samples
e Variation of training labels — target network

L, Each time we update, we change the label in the training batch
L, This can severely deteriorate the convergence of algorithm

Reinforcement Learning Chapter 6: Actor Critic Methods © A. Bereyhi 2024 - 2025

13/32

DPG: e¢-Greedy Improvement

To have sufficient exploration of environment: we can follow e-greedy approach
+ But how does it work here? You said we have continuous actions!

- Well! We can add continuous randomness to our policy

Say we get A, < g (S;) at time t: then we replace our action with
Ay — A + \/EZt

where Z; is random noise with mean zero and variance one

Classical choice of Z, is zero-mean unit-variance Gaussian variable, i.e.,

Zy ~ N (0,1)

Note that the noise term /e Z, is then zero-mean with variance ¢

Reinforcement Learning Chapter 6: Actor Critic Methods © A. Bereyhi 2024 - 2025 14/32

DPG: e¢-Greedy Improvement

+ But what if after adding +/eZ,, the action gets out of its allowed range?
For instance, we get A, = 5 and \/eZ; = 3, but we should have all actions
between 2 and 6

- That's a valid question! We usually clip the action in this case

To avoid out-of-range actions, we replace apply e-greedy approach as
A; < Clip (,ug (St) + \/EZty Qmin, amax)
where iy, and a,.x are minimum and maximum allowed actions and

Gmin T < Gmin
Chp (JJ, Amin, amax) = X Umin € T < Gmax

Qmax L > Gmax

Reinforcement Learning Chapter 6: Actor Critic Methods © A. Bereyhi 2024 - 2025 15/32

DPG: Replay Buffer
To reduce estimator’s variance and enhance sample-efficiency, we can use
experience replay as in DQL

+ Wait a moment! But we talked about the fact that experience replay can
increase estimator’s variance in PGMs due to importance sampling
argument! Now, we just ignore all those discussions?!

- With stochastic policy yes! But here we have a deterministic policy

Deterministic policy returns only one action
® for each choice of 8, our policy chooses only one action
L, If we change 6 we only change this action
e Policy update does not change the probability of all actions
L, This is in fact why Q-learning does not suffer from high estimate variance

Reinforcement Learning Chapter 6: Actor Critic Methods © A. Bereyhi 2024 - 2025 16/32

Recall: Experience Replay in DQL

l«’ Qo At

Y

(St; At Sp41, Rer)

1

Stt1, R

—> S a
(Sby Abs Sp+1, Rp41) Quw (Shi1,2)

We update DQN by randomly sampled mini-batches using TD error

Ap — Rpy1 + Y max Qw (Spr1,0™) = Qw (Sy, Ap)

Reinforcement Learning Chapter 6: Actor Critic Methods © A. Bereyhi 2024 - 2025 17/32

DPG: Experience Replay

oo At = po (S)

Y

(St; At Sp41, Rer)

1

Stt1, R

(S, Ay, Shr o) —> Qw (Spr1, 1o (Sp+1))

We now use the deterministic policy network to compute TD error

Ap — Ryp1 +7Qw (Spi1, 119 (Sp41)) — Qw (Spy Ap)

Reinforcement Learning Chapter 6: Actor Critic Methods © A. Bereyhi 2024 - 2025 18/32

DPG: Target Network

The last thing to handle is to keep training dataset fixed for a while
e After each mini-batch, we change both policy and Q-network
L, We update w and 6

¢ |[f we use the same networks to compute the estimate

Qb = Rys1 +7Qw (Sp1, 110 (Spi1))

then our next iteration runs over a different dataset
L, This can cause or training loop to diverge

We have dealt with this in DQL using target network
Target Network in DPG

Copy DQN and policy network into the exactly same target networks
e Use these target networks to compute the estimates

e Update them every multiple iterations by new copies of online networks

Reinforcement Learning Chapter 6: Actor Critic Methods © A. Bereyhi 2024 - 2025 19/32

Recall: Target Network in DQL

' O_O Af o
(St, At, Sti1, Rey1)
-, Str1, Ry
N —> Sy, a
(St Ap, Sp11, Rps1) Qw(b)
copy w — w every I rounds
Y Yo = Rp+1 +ymax Qw (Sb+17a)‘

—> Qw (Sp11,3)

(Sb, Ap, Spi1, Rys1)

Reinforcement Learning Chapter 6: Actor Critic Methods © A. Bereyhi 2024 - 2025 20/32

DPG: Target Networks

O
O
4

(St, At Sea1, Reyr)

—
-

— -
-
L

A

Str1, Rig1

—> Sn SJ
oA ST Qw (S, 110 (Sh))

96 = Rov1 +1Qw (Shr1, 116 (Sh41)) |
—> Qw (Sv+1, 119 (Sh41))

(Sb, Ap, Spi1, Rys1)

Reinforcement Learning Chapter 6: Actor Critic Methods © A. Bereyhi 2024 - 2025 21/32

DDPG: Deep DPG Algorithm

DDPG() :

1: Initiate with @ = 8 and w = W, as well as factor o. < 1 and learning rate 3
2: Initiate state Sy and draw Ao < Clip (pe (So) + +/eN (0,1))
3: while interacting do

Sample a time step S;, A, Bty St+1 and save in replay buffer

for multiple iterations do

4

5

6: Sample S;, Ay Rb—+>1 Sy+1 from replay buffer

7: Draw A1 < Clip (/Lé (Sb+1) + \/EN (0, 1))

8 Compute A = Ry1 + vQw (Sv+1, Avt1) — Qw (Sb, Ap)

9: Update value network as w «— w + BAV Qw (S, A¢)
10: Update policy network as 6 « 6 + a2 Quw (St, a) [a=a, Ve (St)
11: if H iterations passed then
12: Copy @ — O and w — w
13: end if
14: end for

15: end while

Reinforcement Learning Chapter 6: Actor Critic Methods © A. Bereyhi 2024 - 2025 22/32

Deterministic Policy Gradient Other DPG Algorithms

DDPG: Overestimate Issue
DDPG has been the key DPG algorithm and widely used for

¢ Dealing with continuous action spaces

® Enabling off-policy learning with a deterministic version of PGM
DDPG has shown a key issue; namely, overestimate of values
Value Overestimate of DDPG

Action-values estimated by DDPG can have significant biases

+

We had it also in DQL and you said “it’s not a big deal in general”! So, do
we care about it here?!

Well! Here is more important! Because, we use those estimates to update
the policy and large biases would explode TD error!

So, shall we do double DQL then?!

—+

Pretty much yes!

Reinforcement Learning Chapter 6: Actor Critic Methods © A. Bereyhi 2024 - 2025 23/32

TD3: Twin Delayed DDPG

Value overestimate has been addressed in the extended version of DDPG

Twin Delayed DDPG = TD3

In TD3, we add three extra tricks to DDPG
@ We use double DQN to suppress undesired bias
L, Remember that bias was mainly coming out of max operator
L, We came with a remedy called double Q-learning
@® We delay the policy update, i.e., update the policy less frequent

L, We update DQN after each mini-batch, but
L, We update policy network once every couple of mini-batches

® We add extra noise to actions when we use them in target networks

L, This way we make the estimation error somehow independent
L, This leads to less bias

Reinforcement Learning Chapter 6: Actor Critic Methods © A. Bereyhi 2024 - 2025

24/32

From DPG to PGM

Both ideas of learning deterministic or stochastic policy have pros and cons

e For deterministic policy we could say

L, We can efficiently use off-policy learning
L, We can get better sample efficiency
L, But we get less chance of being optimal

L, We do not search among possible random optimal policies
® for stochastic policy we could say

L, We search among much larger set of policies
L, We can converge to a better policy
L, But we have troubles with sample efficiency

L, We cannot easily learn off-policy due to limits of importance sampling

+ Is there any way to get good things of both worlds?

- Soft actor-critic approaches actually do this

Reinforcement Learning Chapter 6: Actor Critic Methods © A. Bereyhi 2024 - 2025

25/32

Deterministic Policy Gradient Connecting PGM to DPG

Recall: Information Content and Entropy

To understand the idea behind soft actor-critic, let’s recap some definitions

Information Content

The information content of random variable X ~ p (z) is

The information contents have some interesting properties
* [t's always non-negative, since 0 < p (z) < 1

e The less likely outcome X = x is, the more will be its information content
L, Think about it! You will find it very intuitive

Reinforcement Learning

Chapter 6: Actor Critic Methods © A. Bereyhi 2024 - 2025 26/32

Recall: Information Content and Entropy

Entropy

For random variable X ~ p (x), entropy is its average information content, i.e.,

H,(X)=E,{i(X)} =E, {loglﬁ} = Jp(m)loglﬁ

T

Entropy quantifies how much confusion we have about X
e |f X is highly random, e.g., uniformly or Gaussian distributed,
L, Then H,, (X) is very large
® [f X is deterministic
L, ThenH,(X)=0

Reinforcement Learning Chapter 6: Actor Critic Methods © A. Bereyhi 2024 - 2025 27/32

Redefining Value Function
After dealing with both deterministic and stochastic policies we might formulate
the best policy as follows

e |t’s globally deterministic

L, If one action gives better reward, it should go for it
® |t's locally stochastic

L, Among actions with same rewards, it chooses one at random

We could capture both these behaviors by looking into a new metric

Say we play with policy : at time t, we are interested in

Rt+1 = Ry 1 + EHy (A4]S)

for some &, where H. (A;|S;) is entropy of action Ay ~ 7 (+|S;)

Reinforcement Learning

Chapter 6: Actor Critic Methods

© A. Bereyhi 2024 - 2025 28/32

Deterministic Policy Gradient Connecting PGM to DPG

Redefining Value Function

Say we play with policy m: at time t, we are interested in

Riv1 = Riy1 + EHy (A4]S))

for some &, where H. (A;|S,) is entropy of action Ay ~ 7 (+|S;)

This new modified reward incorporates both desires
® Being globally deterministic
L, For actions with larger R 1, the modified Rt+1 is also larger
® Being locally stochastic
L, For actions with same R;_ 1, policy with higher randomness has larger f{tﬂ

Well! This might be a better reward!

Reinforcement Learning Chapter 6: Actor Critic Methods © A. Bereyhi 2024 - 2025 29/32

SAC: Soft Actor-Critic

We can use either DPG or PGM to develop an actor-critic method for this new
reward, i.e., we could define

o0
U (S) =Ex {Z ’)’iRt+i+1|St = 8}
{Z [Ririt1 + EHy (ArilSevi)] 1S: = S}

Interestingly, we end up in both cases with the same policy and value gradients!

The derived actor critic method is referred to as

Soft Actor-Critic = SAC

Reinforcement Learning Chapter 6: Actor Critic Methods © A. Bereyhi 2024 - 2025 30/32

DRL Algorithms

Most DRL algorithms used in practice are actor-critic

We already discussed all main classes of actor-critic approaches

To each class, there are various extensions
® You are able now to follow all those extensions

® |f necessary, you could come up with your own particular extension!

A rule-of-thumb is
* [f you deal with discrete actions and have no concern on sample efficiency
L, Use stochastic-policy actor-critic approaches

* |f you deal with continuous actions and/or need sample efficiency
L, Use DPG-like actor-critic approaches

Reinforcement Learning

Chapter 6: Actor Critic Methods © A. Bereyhi 2024 - 2025 31/32

OpenAl: Spinning Up in DRL

Congratulations! You are now Deep RL experts!

Looking for some mini-projects for further practices? Take a look at OpenAl page

Reinforcement Learning Chapter 6: Actor Critic Methods © A. Bereyhi 2024 - 2025 32/32

https://spinningup.openai.com/en/latest/index.html

	Deterministic Policy Gradient
	Learnable Deterministic Policy
	DDPG Algorithm
	Other DPG Algorithms
	Connecting PGM to DPG

	Final Remarks

