Reinforcement Learning

Chapter 6: Actor Critic Methods
Ali Bereyhi
ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Fall 2025

Reinforcement Learning Chapter 6: Actor Critic Methods


mailto:ali.bereyhi@utoronto.ca

Extension to Other PGMs

In practice, all PGMs we studies in Chapter 5 can be implemented via the
actor-critic idea through the following general framework

Loop over the following three steps
@ Specify policy and value networks
L, They could be either separate DNNs or DNNs with shared layers
@ Set the policy and sample a batch of trajectories
® Go over the batch for multiple epochs

L, After each mini-batch estimate the policy and value gradient
L, Update both policy and value networks after each mini-batch

Let’s now look at the TRPO and PPO algorithms in actor-critic framework
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TRPO: Actor-Critic

TRPOQ) :
1: Initiate with @ and w, as well as factor o < 1 and learning rate (3
2: while interacting do
3:  Sample a batch of trajectories Sy, Ao L T ST by policy me
4: for multiple epochs do
5: for samples in each mini-batch do
6: Compute sample advantage using vw )
7: Update policy gradient V¢ and value gradient V-,
8: end for
9: Compute a Hessian estimator H and solve ﬂy =Vfory
10: Backtrack on a line to find minimum i satisfying Dxr, (7e/ | 7o) < dmax
0 0+l | 2dme
y'Hy
11: Update @ «— 0" and w — w + BV
12:  end for
13: end while
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TRPO and PPO Revisited Actor-Critic TRPO

Recall: Use Importance Sampling

Attention: Importance Sampling

It is important to remember that in each iteration of PGM

we estimate the policy gradient via importance sampling

Let’s denote the policy of current mini-batch with mg: in next mini-batch
we compute the policy gradient as

Vrx (At|5t) ’x 0
o (At|St)

V9<—V3+2Ut

with U, being the sample advantage of policy mg
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TRPO and PPO Revisited Actor-Critic TRPO

Recall: Use Importance Sampling

+ You mentioned this before! What is new about this?!
- Well! We should also consider it in our value estimation!

Denote the policy that we sampled with in line 3 with wg_ ,: after multiple
mini-batches we have an updated policy gradient g

A To update the value network in this mini-batch, we consider the Bellman
equation which says

Urg (Sf) = Eﬂ'g {Rt+1 + YVUrg (St+1)}
and set the labels for value network training as
@7"9 (St) = Rip1 + YVrg (St-i-l)

But this is only valid if we had sampled the trajectory by ¢!
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TRPO and PPO Revisited Actor-Critic TRPO

Recall: Use Importance Sampling

+ Shall we use importance sampling here as well?!
- Sure!

By importance sampling we could say
Vg (5¢) = Eng {Rt+1 + YUrg (Si41)}

AlS
= Eﬂeom {(Rtﬂ + YUrg (St11)) ™ (4:151) }

77001d (Atlst)
and now we can compute value estimators from our sample trajectories as

7o (A¢]Sh)

Vg (S1) = (Rt+1 + Vme_ (&fﬂ))m
old
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Recall: Use Importance Sampling

This means that the advantage should be computed as

Uy = (Rtﬂ +VVrg_ (St+1)>

“ > nld
Y

samples in Batch

A (Rt+1 + Yme_ (St+1) — U014 (St))

Uold 7o (A¢]S)
0,10 (At]St)

This is the correct way of estimating advantage: other implementations that

ignore this will have bias especially with too much epochs
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e (At|St)
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—Uw (St)
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Recall: Use Importance Sampling

Consequently, the value gradient is updated as

- Ai|St)
— Vw + U ldLva S
0,14 (At’St) ( t)

at the end of each trajectory

+ Shall we also consider this when we update the policy?
- Of course!
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Recall: Use Importance Sampling

In a given mini-batch we update the policy gradient as

v7Tx (At|St) |x ]
;) (At|Sf)

V9<—V9+2Ut

A ‘St) Vﬂ'x (At|5t) ’x=0
PR VR rold mo (A
0 Z 0,14 (At’St) e (At’St)

v7"-x At|St) |x 0
- V + Old
¢ Z (A¢|St)

old

which is now consistent with importance sampling
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TRPO: Actor-Critic

TRPO_ACQ) :

1: Initiate with @ = 0,14 and w, as well as factor o < 1 and learning rate (3
2: while interacting do

3: Sample a batch of trajectories Sy, Ao T St by policy e,
4:  Compute sample advantage Uy using vy (-)

5 for multiple epochs in each mini-batch do

6: Compute gradient estimators (@9, @w) from UP' via importance sampling
7 Compute a Hessian estimator H and solve Hy = Vg for y

8

Backtrack on a line to find minimum i satisfying Dk1, (7e/ |Te) < dmax

2dmax

y' Hy

0 —0+a

9: Update 8 « 6" and w — w + BV
10:  end for

11: Update mg < mo_,,
12: end while
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PPO: Actor-Critic

In PPO, we maximize in each iteration the restricted surrogate

L (mx) = Eng {min {Ut%,& (Ut)}}

Similar to TRPO, we can estimate restricted surrogate via importance sampling

5 . Tx (At\St)
L (mx) = mean [Zt: min {Utm, e (Ut)}]

. old Tx (Ae|St)
- — ¥
o [Z . {Ut ro (A5 < )

where the mean is computed over the sample trajectories of a mini-batch
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PPO Algorithm: Actor-Critic

PPO_AC():

2: while interacting do

10: Update mg < g
11: end while

3: Sample a batch of trajectories Sy, Ao i N

Compute value gradient estimator Vw from Ui
Compute the restricted surrogate

1: Initiate with @ = 0,14 and w, as well as learning rates « and 3

old

4:  Compute sample advantage U using v (-)
5:  for multiple epochs in each mini-batch do
6:
7:

old

old

27,6 by policy e

old

via importance sampling

~ _ . old Tx (At|St)

L (7x) = mean [; min {Ut oy (ASD 0 (Uy)
8: Update 8 «— 0 + aV L () |x=6 and w «— w + BV
9: end for
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Distributed Actor-Ciritic
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Distributed Setting: Asynchronous vs Synchronous

We can implement actor-critic approaches in a distributed fashion
e Multiple actors few samples with local policy and value network
L, Each actor focuses on a specific part of environment
® They share their gradient estimators with the server
e Server treats the collected estimators as of a large mini-batch
L, It updates its networks on this large mini-batch

e All actors update their local networks every time server shares its networks

We can implement this setting
® Synchronous
L, This is basically the same as what we do in A2C, TRPO or PPO
® Asynchronous

L, Server does not wait for all actors to send their estimators
L, It uses what it has every couple of rounds and remaining in next rounds
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A3C: Asynchronous A2C
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TRPO and PPO Revisited Asynchronous Actor-Critic

Some Final Remarks

It turns out that asynchronous update can negatively impact convergence

A3C is hence not really extended to other PGMs

In practice we usually implement actor-critic approaches in synchronous
distributed form

Is that it? Are we free to go now?!

Pretty much Yes! Just we may further take a look at deterministic policy
gradient approaches as well

Is it a new set of approaches?!

Nol! It’s a specific form of actor-critic methods that are better compatible
with continuous actions
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