Reinforcement Learning Chapter 5: RL via Policy Gradient

Ali Bereyhi

ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Fall 2025

Natural Policy Gradient: Main Challenges

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \sqrt{\frac{2d_{\max}}{\nabla_k^\mathsf{T} \mathbf{H}_k^{-1} \nabla_k}} \mathbf{H}_k^{-1} \nabla_k$$

If we update with this rule: we could see

- 1 the new point θ_{k+1} does not fulfill what we expect, i.e.,
 - it might do no improvement

$$\mathcal{J}\left(\pi_{\boldsymbol{\theta}_{k+1}}\right) \leqslant \mathcal{J}\left(\pi_{\boldsymbol{\theta}_{k}}\right)$$

it might violate the constraint

$$\bar{D}_{\mathrm{KL}}\left(\pi_{\boldsymbol{\theta}_{k+1}} \| \pi_{\boldsymbol{\theta}_k}\right) > d_{\mathrm{max}}$$

- + But, didn't we solve the optimization problem?!
- Well! We did it approximately not exactly

Natural Policy Gradient: Main Challenges

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \sqrt{\frac{2d_{\max}}{\nabla_k^\mathsf{T} \mathbf{H}_k^{-1} \nabla_k}} \mathbf{H}_k^{-1} \nabla_k$$

If we update with this rule: we need to

- 2 compute Hessian of $\bar{D}_{\mathrm{KL}}\left(\pi_{m{ heta}} \| \pi_{m{ heta}_k}
 ight)$

$$\frac{\partial^2}{\partial \theta_i \partial \theta_j} \bar{D}_{\mathrm{KL}} \left(\pi_{\boldsymbol{\theta}} \| \pi_{\boldsymbol{\theta}_k} \right)$$

- ightharpoonup say we use ResNet-50 with $2.6 imes 10^7$ trainable parameters
 - \downarrow we need to compute about 6.6×10^{14} derivatives

Natural Policy Gradient: Main Challenges

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \sqrt{\frac{2d_{\max}}{\nabla_k^\mathsf{T} \mathbf{H}_k^{-1} \nabla_k}} \mathbf{H}_k^{-1} \nabla_k$$

Say we computed the Hessian: we need to

- **3** invert the Hessian of $\mathbf{H}_k \in \mathbb{R}^{D \times D}$
 - \downarrow the complexity scales as $\mathcal{O}\left(D^{\xi}\right)$
 - \downarrow $\xi = 3$ for classical Gauss-Jordan algorithm
 - □ at the end, this is computationally very expensive

TRPO: Backtracking Line

The first algorithmic approach proposed by Schulman et. al was

Trust Region Policy Optimization \equiv TRPO

It uses two simple ideas to overcome the mentioned issues

- Backtracking line challenge to get rid of the first issue
- Conjugate gradient to overcome the other two

Let's take a look

TRPO: Backtracking Line

$$oldsymbol{ heta}_{k+1} = oldsymbol{ heta}_k + \sqrt{rac{2d_{ ext{max}}}{
abla_k^{ ext{T}} \mathbf{H}_k^{-1}
abla_k}} \mathbf{H}_k^{-1}
abla_k$$

Through analysis it turns out that: the direction of natural policy gradient is effective; however, the step size might be overshooting

- + Why don't we scale it back?
- Sure! We can do this efficiently via backtracking line

TRPO: Backtracking Line

BacktrackLine():

- 1: Choose some $\alpha < 1$, set i = 0 and start with some $\delta > d_{\max}$
- 2: while $\delta > d_{\max}$ do
- 3: Replace θ_{k+1} with

$$\boldsymbol{\theta}_{k+1} \leftarrow \boldsymbol{\theta}_k + \alpha^i \sqrt{\frac{2d_{\max}}{\nabla_k^{\mathsf{T}} \mathbf{H}_k^{-1} \nabla_k}} \mathbf{H}_k^{-1} \nabla_k$$

- 4: Set $\delta \leftarrow \bar{D}_{\mathrm{KL}} \left(\pi_{\theta_{k+1}} \| \pi_{\theta_k} \right)$
- 5: Update $i \leftarrow i + 1$
- 6: end while
- + But we are only checking the constraint?!
- It turns out that this could also guarantee policy improvement

TRPO: Conjugate Gradient

The next trick in TRPO is to write down the update in a form that can be computed via conjugate gradient: let's take a look at the update rule

$$\boldsymbol{\theta}_{k+1} \leftarrow \boldsymbol{\theta}_k + \alpha^i \sqrt{\frac{2d_{\max}}{\nabla_k^\mathsf{T} \mathbf{H}_k^{-1} \nabla_k}} \mathbf{H}_k^{-1} \nabla_k$$

We can define the vector

$$\mathbf{y}_k = \mathbf{H}_k^{-1} \nabla_k$$

It is then easy to say that

$$\begin{split} \nabla_k^\mathsf{T} \mathbf{H}_k^{-1} \nabla_k &= \nabla_k^\mathsf{T} \mathbf{H}_k^{-1} \mathbf{I} \nabla_k = \nabla_k^\mathsf{T} \mathbf{H}_k^{-1} \underbrace{\mathbf{H}_k \mathbf{H}_k^{-1}}_{\mathbf{I}} \nabla_k \\ &= \underbrace{\nabla_k^\mathsf{T} \mathbf{H}_k^{-1}}_{\mathbf{y}_k^\mathsf{T}} \mathbf{H}_k \underbrace{\mathbf{H}_k^{-1}}_{\mathbf{y}_k} \nabla_k = \mathbf{y}_k^\mathsf{T} \mathbf{H}_k \mathbf{y}_k \end{split}$$

TRPO: Conjugate Gradient

If we have \mathbf{y}_k , we could update more easily

$$\boldsymbol{\theta}_{k+1} \leftarrow \boldsymbol{\theta}_k + \alpha^i \sqrt{\frac{2d_{\max}}{\mathbf{y}_k^\mathsf{T} \mathbf{H}_k \mathbf{y}_k}} \mathbf{y}_k$$

Let's see if there is any efficient way to find \mathbf{y}_k at least approximately

$$\mathbf{y}_k = \mathbf{H}_k^{-1} \nabla_k \leadsto \mathbf{H}_k \mathbf{y}_k = \nabla_k$$

Now, let's define $\mathbf{g}\left(\boldsymbol{\theta}\right) = \nabla \mathcal{L}_{k}\left(\boldsymbol{\theta}\right)$: obviously, we have

$$\nabla_k = \mathbf{g}(\boldsymbol{\theta}_k)$$
$$\mathbf{H}_k = \nabla \mathbf{g}(\boldsymbol{\theta}) |_{\boldsymbol{\theta} = \boldsymbol{\theta}_k}$$

TRPO: Conjugate Gradient

Let's use these facts to expand our equation

$$\mathbf{y}_{k} = \mathbf{H}_{k}^{-1} \nabla_{k} \leadsto \mathbf{H}_{k} \mathbf{y}_{k} = \nabla_{k}$$

$$\nabla \mathbf{g} (\boldsymbol{\theta}_{k}) \mathbf{y}_{k} = \mathbf{g} (\boldsymbol{\theta}_{k})$$

$$\nabla (\mathbf{g} (\boldsymbol{\theta}) \mathbf{y}_{k}) |_{\boldsymbol{\theta} = \boldsymbol{\theta}_{k}} = \mathbf{g} (\boldsymbol{\theta}_{k})$$

The above functional equation can be solved for \mathbf{y}_k via conjugate gradient algorithm¹, even without knowing the complete $\mathbf{H}_k = \nabla \mathbf{g}\left(\boldsymbol{\theta}_k\right)$!

In practice, we do the following

- ullet Compute the gradient estimator $\hat{
 abla}_k$
- ullet Compute a sample Hessian $\hat{f H}_k$
- Solve $\hat{\mathbf{H}}_k \mathbf{y}_k = \hat{\nabla}_k$ via conjugate gradient

¹You could check this tutorial if you are interested to know more about that

TRPO: Comments on Estimating Hessian

As long as we need only an estimate, we can estimate Hessian by sampling: if we extend our derivative in Assignment 3, we will see

$$\begin{split} \mathbf{H}_k &= \nabla^2 \bar{D}_{\mathrm{KL}} \left(\pi_{\pmb{\theta}} \| \pi_{\pmb{\theta}_k} \right) |_{\pmb{\theta}_k} \\ &= \iint_s d_{\pmb{\theta}_k} \left(s \right) \nabla \pi_{\pmb{\theta}_k} \left(\underline{a} | s \right) \nabla \log \pi_{\pmb{\theta}_k} \left(\underline{a} | s \right)^\mathsf{T} \\ &= \iint_s d_{\pmb{\theta}_k} \left(s \right) \pi_{\pmb{\theta}_k} \left(\underline{a} | s \right) \underbrace{\nabla \log \pi_{\pmb{\theta}_k} \left(\underline{a} | s \right) \nabla \log \pi_{\pmb{\theta}_k} \left(\underline{a} | s \right)^\mathsf{T}}_{\text{sample outer product}} \\ &= \mathbb{E}_{\pi_{\pmb{\theta}_k}} \left\{ \nabla \log \pi_{\pmb{\theta}_k} \left(\underline{A} | S \right) \nabla \log \pi_{\pmb{\theta}_k} \left(\underline{A} | S \right)^\mathsf{T} \right\} \end{split}$$

This is the Fisher information matrix and can be estimated by sampling

TRPO

```
TRPO():
 1: Initiate with \theta and dampening factor \alpha < 1
 2: while interacting do
 3:
           for mini-batch b = 1 : B do
                Sample S_0, A_0 \xrightarrow{R_1} \cdots \xrightarrow{R_{T-1}} S_{T-1}, A_{T-1} \xrightarrow{R_T} S_T by policy \pi_{\theta}
 4:
 5:
                Compute sample U_t = R_{t+1} + \gamma v_{\pi_{\alpha}}(S_{t+1}) - v_{\pi_{\alpha}}(S_t) for t = 0: T-1
                Compute sample gradient as \hat{\nabla}_b = \sum_t U_t \nabla \log \pi_{\theta} (A_t | S_t)
 6:
 7:
           end for
           Compute estimator as \hat{\nabla} = \text{mean}(\hat{\nabla}_1, \dots, \hat{\nabla}_B) and a Hessian estimator \hat{\mathbf{H}}
 8:
           Solve \hat{\mathbf{H}}\mathbf{y} = \hat{\nabla} for \mathbf{y} via conjugate gradient with multiple iterations
 9:
10:
            Backtrack on a line: find minimum integer i such that
                                                        \boldsymbol{\theta}' \leftarrow \boldsymbol{\theta} + \alpha^i \sqrt{\frac{2d_{\max}}{\mathbf{v}^\mathsf{T} \hat{\mathbf{H}} \mathbf{v}}} \mathbf{y}
           satisfies \bar{D}_{\mathrm{KL}}(\pi_{\theta'} \| \pi_{\theta}) \leq d_{\mathrm{max}}
```

12: end while

11:

Update $\theta \leftarrow \theta'$

Back to Trust Region PGM

```
AdvantageGD():
1: Start with some initial \theta_0
```

- 1: Start with some initial $oldsymbol{ heta}_0$
- 2: for k = 1 : K do
- 3: Compute the surrogate function $\mathcal{L}_k(\pi_{\theta})$
- 4: Update the parameters as

$$oldsymbol{ heta}_{k+1} = rgmax_{oldsymbol{ heta}} \mathcal{L}_k\left(\pi_{oldsymbol{ heta}}
ight) \;\; ext{subject to} \;\; \pi_{oldsymbol{ heta}} \;\; ext{and} \; \pi_{oldsymbol{ heta}_k} \;\; ext{are close}$$

5: end for

- + Was this whole "closeness" metric worth it?
- Well! Maybe not!

Back to Trust Region PGM: Alternative Formulation

Let's check back what was our concern: we wanted to maximize

$$\mathcal{L}_{k}\left(\pi_{\boldsymbol{\theta}}\right) = \mathbb{E}_{\pi_{\boldsymbol{\theta}_{k}}}\left\{u_{\pi_{\boldsymbol{\theta}_{k}}}\left(S, \boldsymbol{A}\right) \frac{\pi_{\boldsymbol{\theta}}\left(\boldsymbol{A}|S\right)}{\pi_{\boldsymbol{\theta}_{k}}\left(\boldsymbol{A}|S\right)}\right\}$$

while making sure that

$$\operatorname{Var}\left\{\hat{\mathcal{L}}_{k}\left(\pi_{\boldsymbol{\theta}}\right)\right\} \propto \frac{\pi_{\boldsymbol{\theta}}\left(\boldsymbol{A}|S\right)}{\pi_{\boldsymbol{\theta}_{k}}\left(\boldsymbol{A}|S\right)}$$

does not explode!

- + Why don't we check the ratio of policies for "closeness"?
- Sounds like a good idea!

Trust Region PGM: Ratio-Limited Policy Optimization

Let's assume $\mathcal{C}\left(\cdot\right)$ is a function that limits its argument into a restricted interval of variation: then we can define

$$\tilde{\mathcal{L}}_{k}\left(\pi_{\boldsymbol{\theta}}\right) = \mathbb{E}_{\pi_{\boldsymbol{\theta}_{k}}}\left\{u_{\pi_{\boldsymbol{\theta}_{k}}}\left(S, \boldsymbol{A}\right) \, \mathcal{C}\left(\frac{\pi_{\boldsymbol{\theta}}\left(\boldsymbol{A}|S\right)}{\pi_{\boldsymbol{\theta}_{k}}\left(\boldsymbol{A}|S\right)}\right)\right\}$$

If we optimize this surrogate function, we proximally satisfy what we want

```
LimitedRatioAdvantageGD():

1: Start with some initial \theta_0
2: for k=1: K do
3: Compute the surrogate function \mathcal{L}_k\left(\pi_{\boldsymbol{\theta}}\right)
4: Update the parameters as

\boldsymbol{\theta}_{k+1} = \operatorname*{argmax}_{\boldsymbol{\theta}} \tilde{\mathcal{L}}_k\left(\pi_{\boldsymbol{\theta}}\right)
5: end for
```

A common form of this approach is used in

Proximal Policy Optimization \equiv PPO

In this algorithm, we set

$$\tilde{\mathcal{L}}_{k}\left(\pi_{\boldsymbol{\theta}}\right) = \mathbb{E}_{\pi_{\boldsymbol{\theta}_{k}}}\left\{\mathcal{L}_{k}^{\text{Clip}}\left(S, \boldsymbol{A}, \boldsymbol{\theta}\right)\right\}$$

where $\mathcal{L}_k^{ ext{Clip}}(S, \pmb{A}, \pmb{\theta})$ is importance sample of advantage with clipped ratio,i.e.,

$$\mathcal{L}_{k}^{\text{Clip}}\left(S, \boldsymbol{A}, \boldsymbol{\theta}\right) = \min \left\{ u_{\pi_{\boldsymbol{\theta}_{k}}}\left(S, \boldsymbol{A}\right) \frac{\pi_{\boldsymbol{\theta}}\left(\boldsymbol{A}|S\right)}{\pi_{\boldsymbol{\theta}_{k}}\left(\boldsymbol{A}|S\right)}, \ell_{\varepsilon}\left(u_{\pi_{\boldsymbol{\theta}_{k}}}\left(S, \boldsymbol{A}\right)\right) \right\}$$

for the clipping function

$$\ell_{\varepsilon}(x) = \begin{cases} (1+\varepsilon)x & x > 0\\ (1-\varepsilon)x & x \leq 0 \end{cases}$$

- + This clipping looks quite complicated! How does it restrict the domain of variation?
- It is indeed complicated, but we may understand it by a simple example

Say we have only one sample trajectory with single state S and action A: we hence estimate the restricted surrogate as

$$\tilde{\mathcal{L}}_k(\pi_{\boldsymbol{\theta}}) \approx \mathcal{L}_k^{\text{Clip}}(S, \mathbf{A}, \boldsymbol{\theta})$$

Now, say that this sample pair gives sample advantage $u_{\pi_{\theta_k}}(S, A)$: this can be

- a positive advantage
- a negative advantage

Let's see output of our restricted surrogate in each case

- + What happens when we have a positive sample advantage?
- In this case, we have

$$\mathcal{L}_{k}^{\text{Clip}}\left(S, \boldsymbol{A}, \boldsymbol{\theta}\right) = u_{\pi_{\boldsymbol{\theta}_{k}}}\left(S, \boldsymbol{A}\right) \min \left\{ \frac{\pi_{\boldsymbol{\theta}}\left(\boldsymbol{A}|S\right)}{\pi_{\boldsymbol{\theta}_{k}}\left(\boldsymbol{A}|S\right)}, 1 + \varepsilon \right\}$$

Since the advantage is positive, surrogate is optimized by θ that increases the ratio: the clipping operator lets us do it only up to some θ that

$$\frac{\pi_{\boldsymbol{\theta}}\left(\boldsymbol{A}|S\right)}{\pi_{\boldsymbol{\theta}_{k}}\left(\boldsymbol{A}|S\right)} \leqslant 1 + \varepsilon$$

if the ratio happens to be more, it clips it by $1+\varepsilon$

- + What happens when we have a negative sample advantage?
- In this case, we have

$$\mathcal{L}_{k}^{\text{Clip}}\left(S, \mathbf{A}, \boldsymbol{\theta}\right) = u_{\pi_{\boldsymbol{\theta}_{k}}}\left(S, \mathbf{A}\right) \max \left\{ \frac{\pi_{\boldsymbol{\theta}}\left(\mathbf{A}|S\right)}{\pi_{\boldsymbol{\theta}_{k}}\left(\mathbf{A}|S\right)}, 1 - \varepsilon \right\}$$

Since the advantage is negative, surrogate is maximized by θ that reduces the ratio: the clipping operator lets us do it only up to some θ that

$$\frac{\pi_{\boldsymbol{\theta}}\left(\boldsymbol{A}|S\right)}{\pi_{\boldsymbol{\theta}_{k}}\left(\boldsymbol{A}|S\right)} \geqslant 1 - \varepsilon$$

if the ratio happens to lie below, it clips it by $1-\varepsilon$

Moral of Story

Clipping will keep the maximizer of the restricted surrogate such that the new policy described by the maximizer of the surrogate has controlled variation as compared to π_{θ_k} . This controlled variation is tuned by ε

Doing so we are still keeping our new policy within a trust region; however,

- We don't need to check KL-divergence
- We don't need to estimate Hessian
- We don't need to implement conjugate gradient algorithm
- We don't need backtracking line

Or in a nutshell: the life becomes much easier ©

PPO Algorithm

```
PPO():
 1: Initiate with \theta and learning \alpha < 1
 2: while interacting do
 3:
            for mini-batch b = 1 : B do
                  Sample S_0, A_0 \xrightarrow{R_1} \cdots \xrightarrow{R_{T-1}} S_{T-1}, A_{T-1} \xrightarrow{R_T} S_T by policy \pi_{\theta}
 4:
                  Compute sample U_t = R_{t+1} + \gamma v_{\pi_{\theta}}(S_{t+1}) - v_{\pi_{\theta}}(S_t) for t = 0: T-1
 5:
 6:
            end for
 7:
            Compute the restricted surrogate
                                   \tilde{\mathcal{L}}\left(\pi_{\mathbf{x}}\right) = \operatorname{mean}_{b} \left[ \sum_{t=1}^{T} \min \left\{ U_{t} \frac{\pi_{\mathbf{x}}\left(A_{t} | S_{t}\right)}{\pi_{\boldsymbol{\theta}}\left(A_{t} | S_{t}\right)}, \ell_{\varepsilon}\left(U_{t}\right) \right\} \right]
 8:
            for i = 1: I potentially I = 1 do
                  Update \theta \leftarrow \theta + \alpha \nabla \tilde{\mathcal{L}}(\pi_{\mathbf{x}})|_{\mathbf{x}=\theta}
10:
              end for
11: end while
```

Sample Reuse with TRPO and PPO

- + Very nice! You did a great job; however, you did not mention anything about sample efficiency!
 - With TRPO and PPO, we can make sure that our updated policy will be within the vicinity of previous policy
 - → But, we still sample a mini-batch, apply SGD and drop it!
- Well! As long as we are using TRPO and PPO, we can reuse our previous samples for some time! This can help us with sample efficiency

In practice, we can use experience buffer here as well

- We collect multiple sample trajectory and save them into into a buffer
- We treat the buffer as a dataset and break it into mini-batches
- We go multiple epochs over this dataset
- * We remove old trajectories periodically as our policy is getting far gradually

Sample Reuse with TRPO and PPO

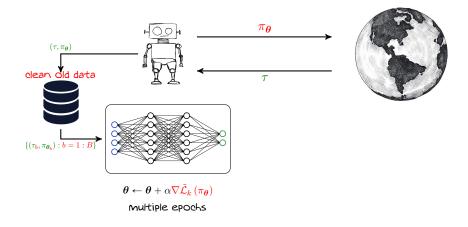
There is a tiny change that we need to consider in this case: when we compute the surrogate function, we should do the importance sampling with the policy that we sampled the trajectory with

For instance, say we sample B trajectories from the buffer

- It might be that each trajectory has been sampled by one policy $\pi_{m{ heta_b}}$
- ⚠ They are all close policies as we clean buffer periodically
 - If we use PPO, we could compute the surrogate as

$$\tilde{\mathcal{L}}\left(\pi_{\mathbf{x}}\right) = \mathbf{mean}_{b} \left[\sum_{t=1}^{T} \min \left\{ U_{t} \frac{\pi_{\mathbf{x}}\left(A_{t}|S_{t}\right)}{\pi_{\boldsymbol{\theta}_{b}}\left(A_{t}|S_{t}\right)}, \ell_{\varepsilon}\left(U_{t}\right) \right\} \right]$$

Sample Reuse with TRPO and PPO: Visualization



PPO Algorithm: Sample Efficient Example

```
PPO():
 1: Initiate with \theta, learning \alpha < 1, and an experience buffer with limited size
 2: while interacting do
        Sample \tau: S_0, A_0 \xrightarrow{R_1} \cdots \xrightarrow{R_{T-1}} S_{T-1}, A_{T-1} \xrightarrow{R_T} S_T by policy \pi_\theta
 4:
        if experience buffer is full then
 5:
            Remove oldest sample
 6:
        end if
 7:
        Save sample (\tau, \pi_{\theta}) into experience buffer as most recent
 8:
        for i = 1:I potentially for multiple epochs of buffer do
 9:
            Sample a mini-batch with B trajectories from experience buffer
10:
            Compute the restricted surrogate
```

$$\tilde{\mathcal{L}}\left(\pi_{\mathbf{x}}\right) = \underset{t=1}{\operatorname{mean}_{b}} \left[\sum_{t=1}^{T} \min \left\{ U_{t} \frac{\pi_{\mathbf{x}}\left(A_{t}|S_{t}\right)}{\pi_{\theta_{b}}\left(A_{t}|S_{t}\right)}, \ell_{\varepsilon}\left(U_{t}\right) \right\} \right]$$

- 11: Update $\theta \leftarrow \theta + \alpha \nabla \tilde{\mathcal{L}}(\pi_{\mathbf{x}})|_{\mathbf{x}=\theta}$
- 12: end for
- 13: end while

Sample Reuse with TRPO and PPO: Final Notes

Though we use experience reply as in DQL, we should note

- In DQL, we are not very restricted with memory update
- In policy optimization, we are strictly restricted with memory update
 - - If we use them, we will have large variance
 - We can only mildly go off-policy

Important Conclusion

In terms of sample efficiency, we always have

Policy Gradient Methods « DQL

But they could become more stable than DQL as they directly control the policy

Last Stop: Actor-Critic Approaches

We are finished with PGMs

- √ We know how to train efficiently a policy network
- X But we assumed that we have access to the value function

We now go for the last chapter, where we learn to

approximate the value function via a value network

This will complete our box of tools and we are ready to solve any RL problem!

Efficient Implementation: TorchRL

In larger RL projects, you might find it easier to have access to some pre-implemented modules: TorchRL does that for you

- It's a library implemented in PyTorch
- It contains lots of useful modules, e.g., to implement experience replay
- It does not give you implemented algorithms
- It's compatible with Gymnasium

Since we often use PyTorch for DL implementations and Gymnasium to implement environment, TorchRL is a very efficient toolbox

Torch RL: Sample Modules

Some sample lines of code

```
from torchrl.collectors import SyncDataCollector
from torchrl.data.replay_buffers import ReplayBuffer
from torchrl.data.replay_buffers.samplers import SamplerWithoutReplacement
from torchrl.data.replay_buffers.storages import LazyTensorStorage
```

Some Resources

- Take a look at the introductory presentation by Vincent Moens
- Go over its documentation at TorchRL page