
Reinforcement Learning
Chapter 5: RL via Policy Gradient

Ali Bereyhi
ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Fall 2025

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 1 / 29

mailto:ali.bereyhi@utoronto.ca

TRPO and PPO

Natural Policy Gradient: Main Challenges

θk`1 “ θk `

d

2dmax

∇T
kH

´1
k ∇k

H´1
k ∇k

If we update with this rule: we could see
1 the new point θk`1 does not fulfill what we expect, i.e.,

ë it might do no improvement

J
`

πθk`1

˘

ďJ pπθk
q

ë it might violate the constraint

D̄KL

`

πθk`1
}πθk

˘

ą dmax

+ But, didn’t we solve the optimization problem?!
– Well! We did it approximately not exactly

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 2 / 29

TRPO and PPO

Natural Policy Gradient: Main Challenges

θk`1 “ θk `

d

2dmax

∇T
kH

´1
k ∇k

H´1
k ∇k

If we update with this rule: we need to
2 compute Hessian of D̄KL pπθ}πθk

q

ë we need to compute all second order derivatives, i.e., for all choices of i and j

B2

BθiBθj
D̄KL pπθ}πθk

q

ë say we use ResNet-50 with 2.6 ˆ 107 trainable parameters
ë we need to compute about 6.6 ˆ 1014 derivatives
ë this in principle changes the complexity in orders of magnitude

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 3 / 29

TRPO and PPO

Natural Policy Gradient: Main Challenges

θk`1 “ θk `

d

2dmax

∇T
kH

´1
k ∇k

H´1
k ∇k

Say we computed the Hessian: we need to
3 invert the Hessian ofHk P RDˆD

ë the complexity scales asO
`

Dξ
˘

ë ξ “ 3 for classical Gauss-Jordan algorithm
ë it can reduces to ξ « 2.4 if we use more optimized algorithms like CW

ë at the end, this is computationally very expensive

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 4 / 29

TRPO and PPO TRPO Algorithm

TRPO: Backtracking Line
The first algorithmic approach proposed by Schulman et. al was

Trust Region Policy Optimization ” TRPO

It uses two simple ideas to overcome the mentioned issues
‚ Backtracking line challenge to get rid of the first issue
‚ Conjugate gradient to overcome the other two

Let’s take a look

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 5 / 29

TRPO and PPO TRPO Algorithm

TRPO: Backtracking Line
θk`1 “ θk `

d

2dmax

∇T
kH

´1
k ∇k

H´1
k ∇k

Through analysis it turns out that: the direction of natural policy gradient is
effective; however, the step size might be overshooting
+ Why don’t we scale it back?
– Sure! We can do this efficiently via backtracking line

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 6 / 29

TRPO and PPO TRPO Algorithm

TRPO: Backtracking Line
BacktrackLine():
1: Choose some α ă 1, set i “ 0 and start with some δ ą dmax

2: while δ ą dmax do
3: Replace θk`1 with

θk`1 Ð θk ` αi

d

2dmax

∇T
kH

´1
k ∇k

H´1
k ∇k

4: Set δ Ð D̄KL

`

πθk`1}πθk

˘

5: Update i Ð i ` 1
6: end while

+ But we are only checking the constraint?!
– It turns out that this could also guarantee policy improvement

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 7 / 29

TRPO and PPO TRPO Algorithm

TRPO: Conjugate Gradient
The next trick in TRPO is to write down the update in a form that can be
computed via conjugate gradient: let’s take a look at the update rule

θk`1 Ð θk ` αi

d

2dmax

∇T
kH

´1
k ∇k

H´1
k ∇k

We can define the vector

yk “ H´1
k ∇k

It is then easy to say that

∇T
kH

´1
k ∇k “ ∇T

kH
´1
k I∇k “ ∇T

kH
´1
k HkH

´1
k

looomooon

I

∇k

“ ∇T
kH

´1
k

looomooon

yT
k

Hk H
´1
k ∇k

loomoon

yk

“ yT
kHkyk

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 8 / 29

TRPO and PPO TRPO Algorithm

TRPO: Conjugate Gradient
If we have yk , we could update more easily

θk`1 Ð θk ` αi

d

2dmax

yT
kHkyk

yk

Let’s see if there is any efficient way to find yk at least approximately

yk “ H´1
k ∇k ù Hkyk “ ∇k

Now, let’s define g pθq “ ∇Lk pθq: obviously, we have

∇k “ g pθkq

Hk “ ∇g pθq |θ“θk

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 9 / 29

TRPO and PPO TRPO Algorithm

TRPO: Conjugate Gradient
Let’s use these facts to expand our equation

yk “ H´1
k ∇k ù Hkyk “ ∇k

∇g pθkqyk “ g pθkq

∇ pg pθqykq |θ“θk
“ g pθkq

The above functional equation can be solved for yk via conjugate gradient
algorithm1, even without knowing the completeHk “ ∇g pθkq!

In practice, we do the following
‚ Compute the gradient estimator ∇̂k

‚ Compute a sample Hessian Ĥk

‚ Solve Ĥkyk “ ∇̂k via conjugate gradient

1You could check this tutorial if you are interested to know more about that
Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 10 / 29

http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

TRPO and PPO TRPO Algorithm

TRPO: Comments on Estimating Hessian
As long as we need only an estimate, we can estimate Hessian by sampling: if
we extend our derivative in Assignment 3, we will see

Hk “ ∇2D̄KL pπθ}πθk
q |θk

“

ż

s

ż

a

dθk
psq∇πθk

pa|sq∇ log πθk
pa|sq

T

“

ż

s

ż

a

dθk
psqπθk

pa|sq
loooooooomoooooooon

distribution

∇ log πθk
pa|sq∇ log πθk

pa|sq
T

looooooooooooooooooomooooooooooooooooooon

sample outer product

“ Eπθk

!

∇ log πθk
pA|Sq∇ log πθk

pA|Sq
T

)

This is the Fisher information matrix and can be estimated by sampling

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 11 / 29

TRPO and PPO TRPO Algorithm

TRPO
TRPO():
1: Initiate with θ and dampening factor α ă 1
2: while interacting do
3: formini-batch b “ 1 : B do
4: Sample S0,A0

R1
ÝÑ ¨ ¨ ¨

RT´1
ÝÝÝÑ ST´1,AT´1

RT
ÝÑ ST by policy πθ

5: Compute sample Ut “ Rt`1 ` γvπθ pSt`1q ´ vπθ pStq for t “ 0 : T ´ 1
6: Compute sample gradient as ∇̂b “

ř

t Ut∇ log πθ pAt|Stq

7: end for
8: Compute estimator as ∇̂ “ meanp∇̂1, . . . , ∇̂Bq and a Hessian estimator Ĥ
9: Solve Ĥy “ ∇̂ for y via conjugate gradient with multiple iterations
10: Backtrack on a line: find minimum integer i such that

θ1
Ð θ ` αi

d

2dmax

yTĤy
y

satisfies D̄KL pπθ1 }πθq ď dmax

11: Update θ Ð θ1

12: end while

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 12 / 29

TRPO and PPO PPO Algorithm

Back to Trust Region PGM
AdvantageGD():
1: Start with some initial θ0

2: for k “ 1 : K do
3: Compute the surrogate function Lk pπθq

4: Update the parameters as

θk`1 “ argmax
θ

Lk pπθq subject to πθ and πθk are close

5: end for

+ Was this whole “closeness” metric worth it?
– Well! Maybe not!

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 13 / 29

TRPO and PPO PPO Algorithm

Back to Trust Region PGM: Alternative Formulation
Let’s check back what was our concern: we wanted to maximize

Lk pπθq “ Eπθk

"

uπθk
pS,Aq

πθ pA|Sq

πθk
pA|Sq

*

while making sure that

Var
!

L̂k pπθq

)

9
πθ pA|Sq

πθk
pA|Sq

does not explode!
+ Why don’t we check the ratio of policies for “closeness”?
– Sounds like a good idea!

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 14 / 29

TRPO and PPO PPO Algorithm

Trust Region PGM: Ratio-Limited Policy Optimization
Let’s assume C p¨q is a function that limits its argument into a restricted interval
of variation: then we can define

L̃k pπθq “ Eπθk

"

uπθk
pS,Aq C

ˆ

πθ pA|Sq

πθk
pA|Sq

˙*

If we optimize this surrogate function, we proximally satisfy what we want

LimitedRatioAdvantageGD():
1: Start with some initial θ0

2: for k “ 1 : K do
3: Compute the surrogate function Lk pπθq

4: Update the parameters as

θk`1 “ argmax
θ

L̃k pπθq

5: end for

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 15 / 29

TRPO and PPO PPO Algorithm

Proximal Policy Optimization
A common form of this approach is used in

Proximal Policy Optimization ” PPO

In this algorithm, we set

L̃k pπθq “ Eπθk

!

LClip
k pS,A,θq

)

where LClip
k pS,A,θq is importance sample of advantage with clipped ratio,i.e.,

LClip
k pS,A,θq “ min

"

uπθk
pS,Aq

πθ pA|Sq

πθk
pA|Sq

, ℓε

´

uπθk
pS,Aq

¯

*

for the clipping function

ℓε pxq “

#

p1 ` εqx x ą 0

p1 ´ εqx x ď 0

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 16 / 29

TRPO and PPO PPO Algorithm

Proximal Policy Optimization
+ This clipping looks quite complicated! How does it restrict the domain of

variation?
– It is indeed complicated, but we may understand it by a simple example

Say we have only one sample trajectory with single state S and actionA: we
hence estimate the restricted surrogate as

L̃k pπθq « LClip
k pS,A,θq

Now, say that this sample pair gives sample advantage uπθk
pS,Aq: this can be

‚ a positive advantage
‚ a negative advantage

Let’s see output of our restricted surrogate in each case

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 17 / 29

TRPO and PPO PPO Algorithm

Proximal Policy Optimization
+ What happens when we have a positive sample advantage?
– In this case, we have

LClip
k pS,A,θq “ uπθk

pS,Aqmin

"

πθ pA|Sq

πθk
pA|Sq

, 1 ` ε

*

Since the advantage is positive, surrogate is optimized by θ that increases
the ratio: the clipping operator lets us do it only up to some θ that

πθ pA|Sq

πθk
pA|Sq

ď 1 ` ε

if the ratio happens to be more, it clips it by 1 ` ε

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 18 / 29

TRPO and PPO PPO Algorithm

Proximal Policy Optimization
+ What happens when we have a negative sample advantage?
– In this case, we have

LClip
k pS,A,θq “ uπθk

pS,Aqmax

"

πθ pA|Sq

πθk
pA|Sq

, 1 ´ ε

*

Since the advantage is negative, surrogate is maximized by θ that reduces
the ratio: the clipping operator lets us do it only up to some θ that

πθ pA|Sq

πθk
pA|Sq

ě 1 ´ ε

if the ratio happens to lie below, it clips it by 1 ´ ε

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 19 / 29

TRPO and PPO PPO Algorithm

Proximal Policy Optimization
Moral of Story
Clipping will keep the maximizer of the restricted surrogate such that the new
policy described by the maximizer of the surrogate has controlled variation as
compared to πθk

. This controlled variation is tuned by ε

Doing so we are still keeping our new policy within a trust region; however,
‚ We don’t need to check KL-divergence
‚ We don’t need to estimate Hessian
‚ We don’t need to implement conjugate gradient algorithm
‚ We don’t need backtracking line

Or in a nutshell: the life becomes much easier⌣

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 20 / 29

TRPO and PPO PPO Algorithm

PPO Algorithm
PPO():
1: Initiate with θ and learning α ă 1
2: while interacting do
3: formini-batch b “ 1 : B do
4: Sample S0,A0

R1
ÝÑ ¨ ¨ ¨

RT´1
ÝÝÝÑ ST´1,AT´1

RT
ÝÑ ST by policy πθ

5: Compute sample Ut “ Rt`1 ` γvπθ pSt`1q ´ vπθ pStq for t “ 0 : T ´ 1
6: end for
7: Compute the restricted surrogate

L̃ pπxq “ meanb

«

T
ÿ

t“1

min

"

Ut
πx pAt|Stq

πθ pAt|Stq
, ℓε pUtq

*

ff

8: for i “ 1 : I potentially I “ 1 do
9: Update θ Ð θ ` α∇L̃ pπxq |x“θ

10: end for
11: end while

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 21 / 29

TRPO and PPO Sample Efficiency

Sample Reuse with TRPO and PPO
+ Very nice! You did a great job; however, you did not mention anything

about sample efficiency!
ë With TRPO and PPO, we can make sure that our updated policy will be

within the vicinity of previous policy
ë But, we still sample a mini-batch, apply SGD and drop it!

– Well! As long as we are using TRPO and PPO, we can reuse our previous
samples for some time! This can help us with sample efficiency

In practice, we can use experience buffer here as well
‚ We collect multiple sample trajectory and save them into into a buffer
‚ We treat the buffer as a dataset and break it into mini-batches
‚ We go multiple epochs over this dataset
‹ We remove old trajectories periodically as our policy is getting far gradually

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 22 / 29

TRPO and PPO Sample Efficiency

Sample Reuse with TRPO and PPO
There is a tiny change that we need to consider in this case: when we compute
the surrogate function, we should do the importance sampling with the policy
that we sampled the trajectory with

For instance, say we sampleB trajectories from the buffer
‚ It might be that each trajectory has been sampled by one policy πθb

� They are all close policies as we clean buffer periodically
‚ If we use PPO, we could compute the surrogate as

L̃ pπxq “ meanb

«

T
ÿ

t“1

min

"

Ut
πx pAt|Stq

πθb
pAt|Stq

, ℓε pUtq

*

ff

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 23 / 29

TRPO and PPO Sample Efficiency

Sample Reuse with TRPO and PPO: Visualization

θ Ð θ ` α∇L̃k pπθq

multiple epochs

clean old data

πθ

τ

pτ, πθq

tpτb, πθb
q : b “ 1 : Bu

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 24 / 29

TRPO and PPO Sample Efficiency

PPO Algorithm: Sample Efficient Example

PPO():
1: Initiate with θ, learning α ă 1, and an experience buffer with limited size
2: while interacting do
3: Sample τ : S0,A0

R1
ÝÑ ¨ ¨ ¨

RT´1
ÝÝÝÑ ST´1,AT´1

RT
ÝÑ ST by policy πθ

4: if experience buffer is full then
5: Remove oldest sample
6: end if
7: Save sample pτ, πθq into experience buffer as most recent
8: for i “ 1 : I potentially for multiple epochs of buffer do
9: Sample a mini-batch withB trajectories from experience buffer
10: Compute the restricted surrogate

L̃ pπxq “ meanb

«

T
ÿ

t“1

min

"

Ut
πx pAt|Stq

πθb pAt|Stq
, ℓε pUtq

*

ff

11: Update θ Ð θ ` α∇L̃ pπxq |x“θ

12: end for
13: end while

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 25 / 29

TRPO and PPO Sample Efficiency

Sample Reuse with TRPO and PPO: Final Notes
Though we use experience reply as in DQL, we should note

‚ In DQL, we are not very restricted with memory update
ë We could keep all samples and reuse them
ë This was because we could go totally off-policy with DQL

‚ In policy optimization, we are strictly restricted with memory update
ë We could not use very old samples efficiently

ë If we use them, we will have large variance
ë We can only mildly go off-policy

ë We keep a sample and squeeze the its most possible juice

Important Conclusion
In terms of sample efficiency, we always have

Policy Gradient Methods ! DQL

But they could become more stable than DQL as they directly control the policy

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 26 / 29

TRPO and PPO Sample Efficiency

Last Stop: Actor-Critic Approaches
We are finished with PGMs
✓ We know how to train efficiently a policy network

ë We can use TRPO and PPO pretty much in any problem
✗ But we assumed that we have access to the value function

ë This is not really the case in practice!

We now go for the last chapter, where we learn to

approximate the value function via a value network

This will complete our box of tools and we are ready to solve any RL problem!

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 27 / 29

TRPO and PPO Introducing Torch RL

Efficient Implementation: TorchRL

In larger RL projects, you might find it easier to have access to some
pre-implemented modules: TorchRL does that for you

‚ It’s a library implemented in PyTorch
‚ It contains lots of useful modules, e.g., to implement experience replay
‚ It does not give you implemented algorithms

ë Instead, it gives you modules that you need to implement the algorithm
‚ It’s compatible with Gymnasium

Since we often use PyTorch for DL implementations and Gymnasium to
implement environment, TorchRL is a very efficient toolbox

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 28 / 29

TRPO and PPO Introducing Torch RL

Torch RL: Sample Modules

Some sample lines of code

Some Resources
‚ Take a look at the introductory presentation by Vincent Moens
‚ Go over its documentation at TorchRL page

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 29 / 29

https://www.youtube.com/watch?v=cIKMhZoykEE
https://pytorch.org/rl/stable/index.html

	TRPO and PPO
	TRPO Algorithm
	TRPO Algorithm
	PPO Algorithm
	Sample Efficiency
	Introducing Torch RL

