Reinforcement Learning

Chapter 5: RL via Policy Gradient
Ali Bereyhi
ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Fall 2025

Reinforcement Learning Chapter 5: RL via Policy Gradient

mailto:ali.bereyhi@utoronto.ca

Natural Policy Gradient: Main Challenges

Or41 =0 +

2dmax

2l
VIH, 'V,

lelvk

If we update with this rule: we could see
@ the new point 8, 1 does not fulfill what we expect, i.e.,

L, it might do no improvement

L, it might violate the constraint

\7 (7TGH1) gj (7T0k)

DKL (7T0k+1”ﬂ-9k) > dmax

+ But, didn’t we solve the optimization problem?!

- Well! We did it approximately not exactly

Reinforcement Learning Chapter 5: RL via Policy Gradient

© A. Bereyhi 2024 - 2025

2/29

Natural Policy Gradient: Main Challenges

Qdmax

_omax ppoly,
—1 k
VIH, 'V,

Or11 =0 +

If we update with this rule: we need to
@® compute Hessian of D1, (mel|Te,)
L, we need to compute all second order derivatives, i.e., for all choices of i and j

82

WDKL (7ol me,,)

L, say we use ResNet-50 with 2.6 x 107 trainable parameters

L, we need to compute about 6.6 x 10** derivatives
L, this in principle changes the complexity in orders of magnitude

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 3/29

Natural Policy Gradient: Main Challenges

Qdmax

_omax ppoly,
—1 k
VIH, 'V,

Or11 =0 +

Say we computed the Hessian: we need to
© invert the Hessian of Hj, € RP*P
L, the complexity scales as O (D*)

L, & = 3 for classical Gauss-Jordan algorithm
L, it canreduces to & ~ 2.4 if we use more optimized algorithms like CW

L, at the end, this is computationally very expensive

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025

4/29

TRPO: Backtracking Line

The first algorithmic approach proposed by Schulman et. al was
Trust Region Policy Optimization = TRPO

It uses two simple ideas to overcome the mentioned issues
e Backtracking line challenge to get rid of the first issue
e Conjugate gradient to overcome the other two

Let’s take a look

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025

5/29

TRPO: Backtracking Line

Qdmax

——max pg-ly,
—1 k
VIH, 'V,

Or41 =0 +

Through analysis it turns out that: the direction of natural policy gradient is
effective; however, the step size might be overshooting

+ Why don’t we scale it back?
- Sure! We can do this efficiently via backtracking line

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 6/29

TRPO: Backtracking Line

BacktrackLine():

1: Choose some @ < 1, set i = 0 and start with some § > dmax
2: while § > d,.x do
3: Replace 041 with

i 2dmax —1
0k+1<—0k+a 7_Hk Vk
VIH, v
4: Set § «— DKL (779k+1 Hﬂ-ek)
5: Update i «— i + 1
6: end while

+ But we are only checking the constraint?!
- It turns out that this could also guarantee policy improvement

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 7/29

TRPO: Conjugate Gradient

The next trick in TRPO is to write down the update in a form that can be
computed via conjugate gradient: let’s take a look at the update rule

- 2dmax 1
Ori1— O+ 'y | ==-—5=H, Vi
Vng Vi
We can define the vector
yi = H; 'V,

It is then easy to say that
ViH 'V, =V H 'V, = VIH 'HH_ 'V,
—
I
=ViH, 'H,H, 'V, =y Hyy;
— —

——

y-llc— Yk

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025

8/29

TRPO: Conjugate Gradient

If we have yy., we could update more easily

- 2d
R N e

Ve Hiyk

Let’s see if there is any efficient way to find y ;. at least approximately

vi = Hy 'V wo Hyyy = Vi,

Now, let’s define g (6) = V Ly, (6): obviously, we have

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025

9/29

TRPO: Conjugate Gradient
Let’s use these facts to expand our equation
vi = Hy 'V wo Hyyy, = Vy,

Ve (0r) yr = g(0k)
V(g (0)yr) lo=s, = g (0k)

The above functional equation can be solved for y . via conjugate gradient
algorithm?, even without knowing the complete Hy, = Vg (0},)!

In practice, we do the following
e Compute the gradient estimator @k
e Compute a sample Hessian ﬂk

® Solve I:Ikyk = @k via conjugate gradient

YYou could check this tutorial if you are interested to know more about that

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025

10/29

http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

TRPO: Comments on Estimating Hessian

As long as we need only an estimate, we can estimate Hessian by sampling: if
we extend our derivative in Assignment 3, we will see

H;, = V?Dxy, (mg||me,) o,

_ ”d(,k (5) Ve, (a|5)V log e, (als)T

JJ Eigk (s)me, (a]s}?log g, (a|s)Vlogmg, (a\s)i

sa distrirution sample outer product

— Ery, {V10g o, (4]5) Viogma, (4]5)" |

This is the Fisher information matrix and can be estimated by sampling

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 11/29

TRPO

TRPOQ) :

1: Initiate with @ and dampening factor o < 1
2: while interacting do
3: for mini-batchb = 1 : B do

Sample So, Ay T .. Lo, Sr_1, Ar_1 2T So by policy e

Compute sample Uy = Rit1 + YUr, (St41) — U (Se) fort =0:T — 1
Compute sample gradient as V;, = 2 UtV logmg (Ai]St)
end for
Compute estimator as V= mean(@l, Ce @B) and a Hessian estimator H
Solve ﬂy =V for y via conjugate gradient with multiple iterations
0: Backtrack on a line: find minimum integer i such that

4
5
6.
7
8
9

[N

0 —0+a 2dn2ax
y' Hy

satisfies Dxr, (7e/ | To) < dmax
11: Update @ < 0’
12: end while

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 12/29

Back to Trust Region PGM

AdvantageGD() :

1: Start with some initial 8¢

2: fork =1: K do

3: Compute the surrogate function Ly, (me)
4: Update the parameters as

0141 = argmax Ly, (mg) subjectto me and me, are close
)

5: end for

+ Was this whole “closeness” metric worth it?
- Well! Maybe not!

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025

13/29

Back to Trust Region PGM: Alternative Formulation

Let’s check back what was our concern: we wanted to maximize

Ly, (770) = Eﬂ'ek {uﬂ'ek (S7A)%}

while making sure that

7 (A]S)

Var {Ek (7r9)} OC—Wok ALS)

does not explode!

+ Why don’t we check the ratio of policies for “closeness”?
- Sounds like a good idea!

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 14/29

Trust Region PGM: Ratio-Limited Policy Optimization

Let’s assume C (-) is a function that limits its argument into a restricted interval
of variation: then we can define

Ly (76) = Eng, {u (5,4)€ (%)}

If we optimize this surrogate function, we proximally satisfy what we want

LimitedRatioAdvantageGD() :
1: Start with some initial 0
2: fork =1: K do
3: Compute the surrogate function Ly, (me)
4: Update the parameters as

0)+1 = argmax L (o)
0

5: end for

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 15/29

Proximal Policy Optimization
A common form of this approach is used in
Proximal Policy Optimization = PPO

In this algorithm, we set
Ly (70) = Erg, { £ (5,4,0)}

where £glip (S, A, 0) is importance sample of advantage with clipped ratio,i.e.,

L™ (S, A,0) = min {umk (5, A)%y te (“Wek (5, A)> }

for the clipping function

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 16/29

Proximal Policy Optimization

+ This clipping looks quite complicated! How does it restrict the domain of
variation?

- It is indeed complicated, but we may understand it by a simple example

Say we have only one sample trajectory with single state S and action A: we
hence estimate the restricted surrogate as

Ly (mo) ~ £ (S, A,0)

Now, say that this sample pair gives sample advantage Ung, (S, A): this can be
® a positive advantage
® g negative advantage

Let’s see output of our restricted surrogate in each case

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 17/29

TRPO and PPO PPO Algorithm

Proximal Policy Optimization

+ What happens when we have a positive sample advantage?
- In this case, we have

Clip (o 4 g) — A min 4 0 (A]S) 1
L7 (5,4,0) = ug, (5,)mm{—ﬂek(mg), +€

Since the advantage is positive, surrogate is optimized by 0 that increases
the ratio: the clipping operator lets us do it only up to some 6 that
mg (A|S)

— < 1l+e
oy, (A[S)

if the ratio happens to be more, it clipsitby 1 + ¢

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 18/29

TRPO and PPO PPO Algorithm

Proximal Policy Optimization

+ What happens when we have a negative sample advantage?
- In this case, we have

L (5, 4,8) = un, (S, A)max {M, 1- 5}

0y, (AlS)

Since the advantage is negative, surrogate is maximized by 0 that reduces
the ratio: the clipping operator lets us do it only up to some 6 that
mo (A[S)

LA Sl e R
7o, (A|S)

if the ratio happens to lie below, it clipsitby 1 — e

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 19/29

Proximal Policy Optimization

Moral of Story

Clipping will keep the maximizer of the restricted surrogate such that the new
policy described by the maximizer of the surrogate has controlled variation as
compared to mg, . This controlled variation is tuned by ¢

Doing so we are still keeping our new policy within a trust region; however,
e We don't need to check KL-divergence
® We don't need to estimate Hessian
e We don't need to implement conjugate gradient algorithm
e We don’t need backtracking line

Or in a nutshell: the life becomes much easier ©

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 20/29

PPO Algorithm

PPO():

1: Initiate with @ and learning oo < 1
2: while interacting do

3: for mini-batchb = 1 : B do

Rp_y

4; Sample Sp, Ao iz Nl R Sr—1,Ar_1 Br, St by policy we

5: Compute sample U, = Ri1 + YUry (St41) — g (Se)fort =0:T — 1
6: end for

7: Compute the restricted surrogate

c (mx) = mean; [; min {Ut%,& (Uz)}:|

8: fori=1:1potentially I = 1do

9: Update @ «— 0 + aV L (mx) |x—e
10: end for

11: end while

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 21/29

Sample Reuse with TRPO and PPO

+ Very nice! You did a great job; however, you did not mention anything
about sample efficiency!

L, With TRPO and PPO, we can make sure that our updated policy will be
within the vicinity of previous policy
L, But, we still sample a mini-batch, apply SGD and drop it!
- Well! As long as we are using TRPO and PPO, we can reuse our previous
samples for some time! This can help us with sample efficiency

In practice, we can use experience buffer here as well
® We collect multiple sample trajectory and save them into into a buffer
e We treat the buffer as a dataset and break it into mini-batches
® We go multiple epochs over this dataset
* We remove old trajectories periodically as our policy is getting far gradually

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 22/29

TRPO and PPO Sample Efficiency

Sample Reuse with TRPO and PPO

There is a tiny change that we need to consider in this case: when we compute

the surrogate function, we should do the importance sampling with the policy
that we sampled the trajectory with

For instance, say we sample B trajectories from the buffer
* It might be that each trajectory has been sampled by one policy g,
A They are all close policies as we clean buffer periodically
¢ |f we use PPO, we could compute the surrogate as

T
y = mean min M
L(mx) = b [; {Utﬂob (At|St)7€8 (Ut)}

Reinforcement Learning

Chapter 5: RL via Policy Gradient

© A. Bereyhi 2024 - 2025 23/29

Sample Reuse with TRPO and PPO: Visualization

Y

14 Qo 9
(1,70)

clean Qld data = T

{(my,mq,) :b=1: B}

0—0+ aVka. (7r9)
multiple epochs

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 24/29

PPO Algorithm: Sample Efficient Example

PPO():
1: Initiate with 6, learning o« < 1, and an experience buffer with limited size
2: while interacting do
3 Sampler: So, Ay 2 ... i SN Ar_1 BT 50 by policy e
4: if experience buffer is full then
5: Remove oldest sample
6: endif
7: Save sample (7, 7g) into experience buffer as most recent
8: fori =1 : I potentially for multiple epochs of buffer do
9: Sample a mini-batch with B trajectories from experience buffer
10: Compute the restricted surrogate
S mx (Ad]S:)
L Tx) = mean min Uxitt,fa U, }
() ’ [t_Zl { ‘e, (A:]S1) (@)
11: Update 6 — 6 + aV L (7x) |x—o
12: end for
13: end while

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 25/29

Sample Reuse with TRPO and PPO: Final Notes

Though we use experience reply as in DQL, we should note
¢ |n DQL, we are not very restricted with memory update

L, We could keep all samples and reuse them
L, This was because we could go totally off-policy with DQL

® |n policy optimization, we are strictly restricted with memory update
L, We could not use very old samples efficiently
L, If we use them, we will have large variance
L, We can only mildly go off-policy
L, We keep a sample and squeeze the its most possible juice

Important Conclusion

In terms of sample efficiency, we always have
Policy Gradient Methods « DQL

But they could become more stable than DQL as they directly control the policy

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 26/29

TRPO and PPO Sample Efficiency

Last Stop: Actor-Critic Approaches

We are finished with PGMs
v We know how to train efficiently a policy network
L, We can use TRPO and PPO pretty much in any problem
X But we assumed that we have access to the value function
L, This is not really the case in practice!

We now go for the last chapter, where we learn to
approximate the value function via a value network

This will complete our box of tools and we are ready to solve any RL problem!

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 27/29

TRPO and PPO Introducing Torch RL

Efficient Implementation: TorchRL

¢ TorchRL

In larger RL projects, you might find it easier to have access to some
pre-implemented modules: TorchRL does that for you

e |t's a library implemented in PyTorch
e |t contains lots of useful modules, e.g., to implement experience replay
e |t does not give you implemented algorithms

L, Instead, it gives you modules that you need to implement the algorithm

e |t's compatible with Gymnasium

Since we often use PyTorch for DL implementations and Gymnasium to
implement environment, TorchRL is a very efficient toolbox

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025

28/29

TRPO and PPO Introducing Torch RL

Torch RL: Sample Modules

Some sample lines of code

from torchrl.collectors import SyncDataCollector

from torchrl.data.replay_buffers import ReplayBuffer

from torchrl.data.replay_buffers.samplers import SamplerWithoutReplacement
from torchrl.data.replay_buffers.storages import LazyTensorStorage

Some Resources
¢ Take a look at the introductory presentation by Vincent Moens

® Go over its documentation at TorchRL page

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025

29/29

https://www.youtube.com/watch?v=cIKMhZoykEE
https://pytorch.org/rl/stable/index.html

	TRPO and PPO
	TRPO Algorithm
	TRPO Algorithm
	PPO Algorithm
	Sample Efficiency
	Introducing Torch RL

