Reinforcement Learning

Chapter 5: RL via Policy Gradient
Ali Bereyhi
ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Fall 2025

Reinforcement Learning Chapter 5: RL via Policy Gradient

mailto:ali.bereyhi@utoronto.ca

Observing Basic PGM

Let's break the problem down: even by using baseline, we still observe
instability while we use PGM

If we plot the average reward we collect through time
* We might see it getting improved up to some point

e |t then could drop drastically at some other point

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025

2/28

Main Reason: Estimate Variance

The main reason for this behavior is high variance of the gradient estimator:
recall that we estimate the gradient of average value by

T-1

VJ (me) = Z UV log mg (A¢]S)
t=0

This is true that A
Erg { V7 (70) | = V.7 (o)

However, its variance, i.e.,

var {V7 (m)} = Ex, {(@j (o) —J (W@))z}

could be very large: one given sample take us far away from the true direction!

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 3/28

Reducing Variance: Using Mini-Batches

+ But, isn’t that always the case in SGD?! We assume that those errors
cancel each other out! Right?!
- That’s right! But apparently, it’s not working here!

To find out an explanation to this behavior, let’s try to reduce the variance by
using larger mini-batches

e Collect B sample trajectories by policy mg

e Compute the gradient estimator for each trajectory

T-1
VT (m9) = Y, UiV logmg (Ai|S:)
t=0

® Average the estimators to get a better estimator

VI () Z Vo T

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 4/28

Advantage PGM: Mini-Batch Version

AdvantagePGMQ) :
1: Initiate with @ and learning rate «
2: while interacting do
3: formini-batchb = 1 : B do
4: Sample the environment with policy g
So.Ao 2 5y, A4, B2 T g A, BT sy
5: fort =0:T—1 do
6: Compute sample advantage Uy = Ryy1 + YUz, (St41) — Ung (St)
7: end for
. T—1
8: Compute sample gradient V;, = Z UV log o (A+|St)
t=0
9: end for
10: Update policy network
B
o ~
00+ —
B ; Ve
11: end while

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 5/28

Observing Mini-Batch

After trying mini-batch PGM: we see that the variance of the curve slightly
improves; however, we still see that problem

+ What does this say then?
- It says that the problem is simply coming from high variance

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 6/28

Alternative Look at Advantage Optimization

In the latest version of PGM: we saw that the gradient of the average value
can be computed as

VJ (mg) = Ex, {tn, (S, A)V1ogmg (A|S)}

Let’s assume that we can compute it exactly: then, we will muse gradient
descent to find optimal 0, i.e.,

AdvantageGD() :

1: Start with some initial 8¢
2: fork=1: K do
3: Compute the exact gradient

VT (70,) = Exg, {ting, (5, 4)Vloga (A]S) oo, }

4: Update the parameters as 0,41 = 01 + oV .7 (7,)
5: end for

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 7/28

Alternative Look: Surrogate Function

Let us now define the following surrogate function at point 0,

o (A[5) }

Ly (m9) = Eny, {um,k (S,A)m

We should pay attention that
@ We have a sequence of surrogate functions
L, Each function is defined locally at point 8,

@ 79 (A|S) is the only term that belongs to 6 %//’\\
//
/
N

L, Everything else depends on 8, which is a constant

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 8/28

Trust Region PGM Surrogate Optimization

Alternative Look: Surrogate Function

Ly, (mg) = Eﬁek {u“‘?k (S’A)M}

mo, (AlS)

Let’s compute the gradient of this surrogate function at @ = 6,
Ve (AlS) }

7o, (A[S)

— Erg, {tno, (5, 4)V 10g 0 (4]5)l0-0, }
= VJ (7))

VL (70,) = Eng, {u,rgk (S, A)

This is exactly the gradient that we update our policy with!

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 9/28

Alternative Look: GD with Surrogate Function

So, we could re-write the gradient descent loop as

AdvantageGD():
1: Start with some initial 0
2: fork=1: K do
3: Compute the exact gradient V Ly, (mg,,)
4: Update the parameters as 01 = 01 + oV Ly (7g,,)
5: end for

+ Now, what's the point?! It’s still same problem!

- Sure! But, let’s see what we are doing now

In each iteration we add gradient scaled with o to the previous parameters
- Why we do that?
+ We want to increase Ly, (mg) maximally

- Exactly! So, why don’t we simply replace 8., 1 with its maximizer?!

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 10/28

Alternative Look: GD with Surrogate Function

We re-write the gradient descent loop as follows

AdvantageGD() :
1: Start with some initial 0
2: fork=1: K do
3: Compute the surrogate function Ly, (me)
4 Update the parameters as 0,11 = argmaxgy L, (7e)
5: end for

This algorithm algorithm does the learning rate tuning by itself

It gets us rid of specifying the learning rate « ‘

+ Nice job! But, how are we su[supposed] to find the surrogate function?

- You could guess! By sampling!

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 11/28

Trust Region PGM Importance Sampling Viewpoint

Understanding Surrogate Function

Let's get back to the definition of the surrogate function:it is easy to
interprete it as importance sampling

Ly, (770) = Eﬂ'ek {uﬂ'ek (S7A)%}

We sample trajectories by policy mg,
* We collect advantage samples ur, (S, A)
* We do know the policy samples g, (A|S)
But we compute the average with respect to mg

This gives us a very good explanation of why PGM is unstable

Reinforcement Learning Chapter 5: RL via Policy Gradient

© A. Bereyhi 2024 - 2025 12/28

Trust Region PGM Importance Sampling Viewpoint

Review: Importance Sampling Trade-off

Consider the basic setting in importance sampling:

we have samples from X ~ p () but we want to estimate X ~ ¢ (z)

If we could sample from q (x)
p=Eq{X}

The variance of the estimate is

Var (X} = E, {(X -)’}
=k {Xz} _,UQ = o’

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 13/28

Trust Region PGM Importance Sampling Viewpoint

Review: Importance Sampling Trade-off

Consider the basic setting in importance sampling:

we have samples from X ~ p (z) but we want to estimate X ~ ¢ (z)

Now that we sample p (x)

e X0 e -

The variance of this estimate is

2 2 T
Var (X} =, { (x25) } i = [P) -

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025

14/28

Trust Region PGM Importance Sampling Viewpoint

Review: Importance Sampling Trade-off

Consider the basic setting in importance sampling:

we have samples from X ~ p () but we want to estimate X ~ ¢ (z)

If we could sample from ¢ ()

1= Eq{X}
and the estimate variance is

0% = B { X7} — 2

Now that we sample p ()

p=Eg{X}

and the estimate variance is

With importance sampling, variance scales with ratio of the distributions ‘

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025

15/28

Back to Surrogate: Root of High Variance

Gradient descent based on surrogate functions optimizes

ﬁk (71'9) = Eﬂek {uﬂek <S’A)%}

We can assume that by sampling the environment, we are estimating this
surrogate function by importance sampling from samples of policy mg, :let
Ly (mg) be our estimate; then we could say

A 7 (A]S)
Var { £ (ng) o 22 (A19)
k(ﬂ-@) ocﬂ-ok (A|S)
- This explains why we see unreliable estimates in PGM!
+ How exactly?!

- Let’s break it down!

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 16/28

Back to Surrogate: Root of High Variance

7o (A]S)

Var {ﬁk (ne)} o (AI9)

Looking at this variance, we could say: we should not naively update 8y, by
maximizing its surrogate function. We should update it such that

@ surrogate function is maximized, and
@ the policy specified by mg, ., is rather close to g,

+ But aren’t we doing that?! We just change the policy parameters slightly,
ie., ||0r1 — 01||% is typically small

- Well! That doesn’t say anything about difference between mg, . and g,

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 17/28

Observation: Sensitivity of Policy Network

Sensitivity of Policy
Even if we change parameters 0 slightly, g can change hugely!

Given this observation, we could modify our gradient descent loop as

AdvantageGD():

1: Start with some initial O

2: fork=1: K do

3: Compute the surrogate function Ly, (me)
4: Update the parameters as

0141 = argmax Ly, (mg) subjectto mg and me, are close
)

5: end for

+ How can we quantify “rg and mg, being close”?

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 18/28

Trust Region PGM Trust Region Optimization

Review: Kullback-Leibler Divergence

KL Divergence

Kullback-Leibler divergence between two distributions p and q is defined as
p(X) p(z)
D pq=E{log<—)}=Jlog<— p(x

We can use this definition to find the divergence between 7y and g,

D, (7o) = Esay, {E”" {log (%) }}

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 19/28

Review: Properties of KL Divergence

KL divergence shows interesting properties
® |tis zero when distributions are the same

Dy, (p|p) =0

and increases when they get more different

e |tis always non-negative, i.e., for any p and q
Dxu (plg) = 0

L, This property is often called Gibbs’ inequality

But remember that KL divergence is asymmetric, i.e.,

Dxt, (pllq) # Dk (¢p)

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025

20/28

Trust Region Policy Gradient Method

Back to our modified gradient descent loop, we could write

AdvantageGD() :

1: Start with some initial 0

2: fork =1: K do

3: Compute the surrogate function Ly, (me)
4: Update the parameters as

0k+1 = argmaxﬁk (TFQ) subject to DKL (71'9H7r9k) < dmax
2]

5: end for

This modified approach is called
Trust Region PGM

since it computes the best policy gradient within a trusted resion

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025

21/28

Surrogate Optimization: Exact Solution

+ How can we solve the optimization in the loop then?

- As you could guess, we are going to find a way around it!

The concrete way to solve it is to use regularization: we want to solve
Ok = arg;nax Ly (mg) subject to Dkr, (mo|me,) < dmax
We solve instead
Ory1 = argmax Ly, (mg) — B(Dxr (7| me,) — dmax)

for some (3 that potentially minimizes the regularized objective

‘ This is going to be computationally very expensive! ‘

Reinforcement Learning Chapter 5: RL via Policy Gradient

© A. Bereyhi 2024 - 2025

22/28

Surrogate Optimization: Natural Policy Gradient
We instead use Taylor expansion to approximate both surrogate and constraint

Taylor Expansion

An analytic function f (x) can be expanded around point x as

7 (5) = £ (o) + (@) (7 = o) + 5" (@0) (2 —)" + -

Let’s start with the surrogate function
Ly, (mg) = Ly, (ng,) + VL, (m9,)" (0 — 1) + ¢

In Assignment 3, we show L, (mg,) = 0: so, settingV;, = VL, (mg,) we get

Ly (m9) ~ V} (60 — 6})

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 23/28

Trust Region PGM Natural PGM

Surrogate Optimization: Natural Policy Gradient

Next, we go for constraint term
Dxy, (mg|m,) = Dk (mg, |7e,) + V Dk (mel|mo,) g, (6 — O4)
+5(0—6,)T V2 Dy (molma,) o, (6 — 64) +
In Assignment 3, we show that

Dy, (70,[70,) =0
V Dk, (mellme,) lo, = 0O

So, by defining Hy, = V2Dxy, (mg|me,,) |g, we have

= 1
Dxu (mo|mo,) ~ 5 (6 — 6x)" Hy (6 — 6)

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025

24/28

Trust Region PGM Natural PGM

Surrogate Optimization: Natural Policy Gradient

Now, let’s replace these approximations
Ly (mg) ~ V} (6 — 6y)
Dic (rolro,) ~ 5 (0 01)T Hi (6 - 65)
into the optimization problem
Opi1 = argmax V] (6 —6;) subjectto % (0 —6,)" H, (0 —0)) < dinax

This is a classic linear programming whose solution is given by

2dmax
-1
VIH, 'V,

011 =0 + H, 'V,

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 25/28

Surrogate Optimization: Natural Policy Gradient

This is like classic update with linear correction and tuned learning rate

2dmax

Op 1 = Op + | —tx

lelvk

This is often referred to as

natural policy gradient

It gives a better direction for update; however,
e |t could still not increase surrogate or deviate constraint
L, This is due to the inaccuracy of approximations

® |t requires estimate of H;, which is computationally expensive
¢ |t also needs to invert estimate of H;, which is again expensive

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 26/28

Natural PGM

NaturalPGM() :

1: Start with some initial 0

2: while interacting do

3: for mini-batchb = 1 : B do

4: Sample the environment with policy g
Rp_
So,Ao > 81, Ay L2 .o TN Gy Ay T S
5: end for . R
6: Estimate V and H from samples
7: Update the parameters as
004, 2 oy
VTHV

8: end while

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025

27/28

TRPO and PPO Algorithms

There are two sets of solutions to overcome the challenges in natural PGM
¢ Trust Region Policy Optimization
L, Regularize learning rate via backtracking line
L, This guarantees the satisfaction of constraint
L, Use sampling to find the estimate H
L, Use gradient conjugate to compute the inverse
® Proximal Policy Optimization
L, Skip all these steps by computationally-efficient clipping
L, The clipping guarantees the satisfaction of constraint

L, We do not need to find estimate H anymore

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 28/28

	Trust Region PGM
	Variance in PGM
	Surrogate Optimization
	Importance Sampling Viewpoint
	Trust Region Optimization
	Natural PGM

