Reinforcement Learning Chapter 5: RL via Policy Gradient

Ali Bereyhi

ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

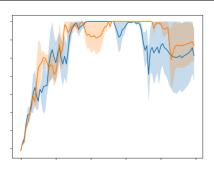
Fall 2025

Observing Basic PGM

Let's break the problem down: even by using baseline, we still observe instability while we use PGM

If we plot the average reward we collect through time

- We might see it getting improved up to some point
- It then could drop drastically at some other point



Main Reason: Estimate Variance

The main reason for this behavior is high variance of the gradient estimator: recall that we estimate the gradient of average value by

$$\hat{\nabla} \mathcal{J} \left(\pi_{\boldsymbol{\theta}} \right) = \sum_{t=0}^{T-1} U_t \nabla \log \pi_{\boldsymbol{\theta}} \left(A_t | S_t \right)$$

This is true that

$$\mathbb{E}_{\pi_{\boldsymbol{\theta}}}\left\{\hat{\nabla}\mathcal{J}\left(\pi_{\boldsymbol{\theta}}\right)\right\} = \nabla\mathcal{J}\left(\pi_{\boldsymbol{\theta}}\right)$$

However, its variance, i.e.,

$$\operatorname{Vor}\left\{\hat{\nabla}\mathcal{J}\left(\pi_{\boldsymbol{\theta}}\right)\right\} = \mathbb{E}_{\pi_{\boldsymbol{\theta}}}\left\{\left(\hat{\nabla}\mathcal{J}\left(\pi_{\boldsymbol{\theta}}\right) - \mathcal{J}\left(\pi_{\boldsymbol{\theta}}\right)\right)^2\right\}$$

could be very large: one given sample take us far away from the true direction!

Reducing Variance: Using Mini-Batches

- + But, isn't that always the case in SGD?! We assume that those errors cancel each other out! Right?!
- That's right! But apparently, it's not working here!

To find out an explanation to this behavior, let's try to reduce the variance by using larger mini-batches

- Collect B sample trajectories by policy π_{θ}
- Compute the gradient estimator for each trajectory

$$\hat{\nabla}_{b} \mathcal{J} (\pi_{\theta}) = \sum_{t=0}^{T-1} U_{t} \nabla \log \pi_{\theta} (A_{t} | S_{t})$$

Average the estimators to get a better estimator

$$\hat{\nabla} \mathcal{J} (\pi_{\boldsymbol{\theta}}) = \frac{1}{B} \sum_{b=1}^{B} \hat{\nabla}_{b} \mathcal{J} (\pi_{\boldsymbol{\theta}})$$

Advantage PGM: Mini-Batch Version

AdvantagePGM():

- 1: Initiate with θ and learning rate α
- 2: while interacting do
- 3: **for mini-batch** b = 1 : B **do**
- 4: Sample the environment with policy π_{θ}

$$S_0, A_0 \xrightarrow{R_1} S_1, A_1 \xrightarrow{R_2} \cdots \xrightarrow{R_{T-1}} S_{T-1}, A_{T-1} \xrightarrow{R_T} S_T$$

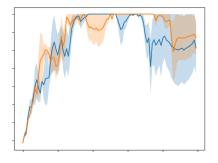
- 5: **for** t = 0 : T 1 **do**
- 6: Compute sample advantage $U_t = R_{t+1} + \gamma v_{\pi_{\theta}}(S_{t+1}) v_{\pi_{\theta}}(S_t)$
- 7: end for
- 8: Compute sample gradient $\hat{\nabla}_b = \sum_{t=0}^{T-1} U_t \nabla \log \pi_{\theta} \left(A_t | S_t \right)$
- 9: end for
- 10: Update policy network

$$\theta \leftarrow \theta + \frac{\alpha}{B} \sum_{b=1}^{B} \hat{\nabla}_b$$

11: end while

Observing Mini-Batch

After trying mini-batch PGM: we see that the variance of the curve slightly improves; however, we still see that problem



- + What does this say then?
- It says that the problem is simply coming from high variance

Alternative Look at Advantage Optimization

In the latest version of PGM: we saw that the gradient of the average value can be computed as

$$\nabla \mathcal{J}(\pi_{\theta}) = \mathbb{E}_{\pi_{\theta}} \left\{ u_{\pi_{\theta}}(S, A) \nabla \log \pi_{\theta}(A|S) \right\}$$

Let's assume that we can compute it exactly: then, we will muse gradient descent to find optimal θ , i.e.,

AdvantageGD():

- 1: Start with some initial θ_0
- 2: for k = 1 : K do
- 3: Compute the exact gradient

$$\nabla \mathcal{J}\left(\pi_{\boldsymbol{\theta}_{k}}\right) = \mathbb{E}_{\pi_{\boldsymbol{\theta}_{k}}}\left\{u_{\pi_{\boldsymbol{\theta}_{k}}}\left(S, \boldsymbol{A}\right) \nabla \log \pi_{\boldsymbol{\theta}}\left(\boldsymbol{A}|S\right) \middle|_{\boldsymbol{\theta} = \boldsymbol{\theta}_{k}}\right\}$$

- 4: Update the parameters as $\theta_{k+1} = \theta_k + \alpha \nabla \mathcal{J}(\pi_{\theta_k})$
- 5: end for

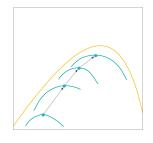
Alternative Look: Surrogate Function

Let us now define the following surrogate function at point $oldsymbol{ heta}_k$

$$\mathcal{L}_{k}\left(\pi_{\boldsymbol{\theta}}\right) = \mathbb{E}_{\pi_{\boldsymbol{\theta}_{k}}}\left\{u_{\pi_{\boldsymbol{\theta}_{k}}}\left(S, \boldsymbol{A}\right) \frac{\pi_{\boldsymbol{\theta}}\left(\boldsymbol{A}|S\right)}{\pi_{\boldsymbol{\theta}_{k}}\left(\boldsymbol{A}|S\right)}\right\}$$

We should pay attention that

- 1 We have a sequence of surrogate functions
 - $\,\,\,\,\,\,\,\,$ Each function is defined locally at point $oldsymbol{ heta}_k$
- 2 $\pi_{\theta}(A|S)$ is the only term that belongs to θ



Alternative Look: Surrogate Function

$$\mathcal{L}_{k}\left(\pi_{\boldsymbol{\theta}}\right) = \mathbb{E}_{\pi_{\boldsymbol{\theta}_{k}}}\left\{u_{\pi_{\boldsymbol{\theta}_{k}}}\left(S, \boldsymbol{A}\right) \frac{\pi_{\boldsymbol{\theta}}\left(\boldsymbol{A}|S\right)}{\pi_{\boldsymbol{\theta}_{k}}\left(\boldsymbol{A}|S\right)}\right\}$$

Let's compute the gradient of this surrogate function at $oldsymbol{ heta}=oldsymbol{ heta}_k$

$$\nabla \mathcal{L}_{k} (\pi_{\boldsymbol{\theta}_{k}}) = \mathbb{E}_{\pi_{\boldsymbol{\theta}_{k}}} \left\{ u_{\pi_{\boldsymbol{\theta}_{k}}} (S, \boldsymbol{A}) \frac{\nabla \pi_{\boldsymbol{\theta}} (\boldsymbol{A}|S)}{\pi_{\boldsymbol{\theta}_{k}} (\boldsymbol{A}|S)} \right\}$$
$$= \mathbb{E}_{\pi_{\boldsymbol{\theta}_{k}}} \left\{ u_{\pi_{\boldsymbol{\theta}_{k}}} (S, \boldsymbol{A}) \nabla \log \pi_{\boldsymbol{\theta}} (\boldsymbol{A}|S) |_{\boldsymbol{\theta} = \boldsymbol{\theta}_{k}} \right\}$$
$$= \nabla \mathcal{J} (\pi_{\boldsymbol{\theta}_{k}})$$

This is exactly the gradient that we update our policy with!

Alternative Look: GD with Surrogate Function

So, we could re-write the gradient descent loop as

```
AdvantageGD():

1: Start with some initial \theta_0

2: for k = 1 : K do

3: Compute the exact gradient \nabla \mathcal{L}_k (\pi_{\theta_k})

4: Update the parameters as \theta_{k+1} = \theta_k + \alpha \nabla \mathcal{L}_k (\pi_{\theta_k})

5: end for
```

- + Now, what's the point?! It's still same problem!
- Sure! But, let's see what we are doing now

In each iteration we add gradient scaled with lpha to the previous parameters

- Why we do that?
- + We want to increase $\mathcal{L}_k(\pi_{\theta})$ maximally
- Exactly! So, why don't we simply replace θ_{k+1} with its maximizer?!

Alternative Look: GD with Surrogate Function

We re-write the gradient descent loop as follows

```
AdvantageGD():

1: Start with some initial \theta_0

2: for k = 1 : K do

3: Compute the surrogate function \mathcal{L}_k(\pi_{\theta})

4: Update the parameters as \theta_{k+1} = \operatorname{argmax}_{\theta} \mathcal{L}_k(\pi_{\theta})

5: end for
```

This algorithm algorithm does the learning rate tuning by itself

It gets us rid of specifying the learning rate α

- + Nice job! But, how are we su[supposed] to find the surrogate function?
- You could guess! By sampling!

Understanding Surrogate Function

Let's get back to the definition of the surrogate function: it is easy to interprete it as importance sampling

$$\mathcal{L}_{k}\left(\pi_{\boldsymbol{\theta}}\right) = \mathbb{E}_{\pi_{\boldsymbol{\theta}_{k}}}\left\{u_{\pi_{\boldsymbol{\theta}_{k}}}\left(S, \boldsymbol{A}\right) \frac{\pi_{\boldsymbol{\theta}}\left(\boldsymbol{A}|S\right)}{\pi_{\boldsymbol{\theta}_{k}}\left(\boldsymbol{A}|S\right)}\right\}$$

We sample trajectories by policy π_{θ_k}

- We collect advantage samples $u_{\pi_{\theta_k}}(S, \mathbf{A})$
- We do know the policy samples $\pi_{\theta_k}(A|S)$

But we compute the average with respect to π_{θ}

This gives us a very good explanation of why PGM is unstable

Review: Importance Sampling Trade-off

Consider the basic setting in importance sampling:

we have samples from $X \sim p(x)$ but we want to estimate $X \sim q(x)$

If we could sample from q(x)

$$\mu = \mathbb{E}_q \left\{ X \right\}$$

The variance of the estimate is

$$\begin{aligned} \operatorname{Vor}\left\{X\right\} &= \mathbb{E}_q\left\{(X-\mu)^2\right\} \\ &= \mathbb{E}_q\left\{X^2\right\} - \mu^2 = \sigma^2 \end{aligned}$$

Review: Importance Sampling Trade-off

Consider the basic setting in importance sampling:

we have samples from $X \sim p(x)$ but we want to estimate $X \sim q(x)$

Now that we sample p(x)

$$\bar{\mu} = \mathbb{E}_p \left\{ X \frac{q(X)}{p(X)} \right\} = \mathbb{E}_q \left\{ X \right\} = \mu$$

The variance of this estimate is

$$\begin{aligned} \operatorname{Vor}\left\{X\right\} &= \mathbb{E}_{p}\left\{\left(X\frac{q\left(X\right)}{p\left(X\right)}\right)^{2}\right\} - \mu^{2} = \int_{x} x^{2} \frac{q^{2}\left(x\right)}{p^{2}\left(x\right)} p\left(x\right) - \mu^{2} \\ &= \int_{x} x^{2} \frac{q\left(x\right)}{p\left(x\right)} q\left(x\right) - \mu^{2} = \mathbb{E}_{q}\left\{X^{2} \frac{q\left(X\right)}{p\left(X\right)}\right\} - \mu^{2} \neq \sigma^{2} \end{aligned}$$

Review: Importance Sampling Trade-off

Consider the basic setting in importance sampling:

we have samples from $X \sim p(x)$ but we want to estimate $X \sim q(x)$

If we could sample from q(x)

$$\mu = \mathbb{E}_q \left\{ X \right\}$$

and the estimate variance is

$$\sigma^2 = \mathbb{E}_q \left\{ X^2 \right\} - \mu^2$$

Now that we sample p(x)

$$\mu = \mathbb{E}_q \left\{ X \right\}$$

and the estimate variance is

$$\bar{\sigma}^{2} = \mathbb{E}_{q} \left\{ X^{2} \frac{q(X)}{p(X)} \right\} - \mu^{2}$$

With importance sampling, variance scales with ratio of the distributions

Back to Surrogate: Root of High Variance

Gradient descent based on surrogate functions optimizes

$$\mathcal{L}_{k}\left(\pi_{\boldsymbol{\theta}}\right) = \mathbb{E}_{\pi_{\boldsymbol{\theta}_{k}}}\left\{u_{\pi_{\boldsymbol{\theta}_{k}}}\left(S, \boldsymbol{A}\right) \frac{\pi_{\boldsymbol{\theta}}\left(\boldsymbol{A}|S\right)}{\pi_{\boldsymbol{\theta}_{k}}\left(\boldsymbol{A}|S\right)}\right\}$$

We can assume that by sampling the environment, we are estimating this surrogate function by importance sampling from samples of policy π_{θ_k} :let $\hat{\mathcal{L}}_k\left(\pi_{\theta}\right)$ be our estimate; then we could say

$$\operatorname{Var}\left\{\hat{\mathcal{L}}_{k}\left(\pi_{\boldsymbol{\theta}}\right)\right\} \propto \frac{\pi_{\boldsymbol{\theta}}\left(\boldsymbol{A}|S\right)}{\pi_{\boldsymbol{\theta}_{k}}\left(\boldsymbol{A}|S\right)}$$

- This explains why we see unreliable estimates in PGM!
- + How exactly?!
- Let's break it down!

Back to Surrogate: Root of High Variance

$$\operatorname{Vor}\left\{\hat{\mathcal{L}}_{k}\left(\pi_{\boldsymbol{\theta}}\right)\right\} \propto \frac{\pi_{\boldsymbol{\theta}}\left(\boldsymbol{A}|S\right)}{\pi_{\boldsymbol{\theta}_{k}}\left(\boldsymbol{A}|S\right)}$$

Looking at this variance, we could say: we should not naively update θ_k by maximizing its surrogate function. We should update it such that

- 1 surrogate function is maximized, and
- 2 the policy specified by $\pi_{\theta_{k+1}}$ is rather close to π_{θ_k}
- + But aren't we doing that?! We just change the policy parameters slightly, i.e., $\|\boldsymbol{\theta}_{k+1} - \boldsymbol{\theta}_k\|^2$ is typically small
- Well! That doesn't say anything about difference between $\pi_{\theta_{k+1}}$ and π_{θ_k}

Observation: Sensitivity of Policy Network

Sensitivity of Policy

Even if we change parameters θ slightly, π_{θ} can change hugely!

Given this observation, we could modify our gradient descent loop as

```
AdvantageGD():
```

1: Start with some initial θ_0

2: for k = 1 : K do

3: Compute the surrogate function $\mathcal{L}_k(\pi_{\theta})$

4: Update the parameters as

$$oldsymbol{ heta}_{k+1} = rgmax \mathcal{L}_k\left(\pi_{oldsymbol{ heta}}
ight) \;\; extstyle ext{subject to} \;\;\; \pi_{oldsymbol{ heta}} \;\; ext{and} \;\; \pi_{oldsymbol{ heta}_k} \;\; ext{are close}$$

5: end for

+ How can we quantify " π_{θ} and π_{θ_h} being close"?

Review: Kullback-Leibler Divergence

KL Divergence

Kullback-Leibler divergence between two distributions p and q is defined as

$$D_{\mathrm{KL}}\left(p\|q\right) = \mathbb{E}_{p}\left\{\log\left(\frac{p\left(X\right)}{q\left(X\right)}\right)\right\} = \int_{x}\log\left(\frac{p\left(x\right)}{q\left(x\right)}\right)p\left(x\right)$$

We can use this definition to find the divergence between π_{θ} and π_{θ_k}

$$\bar{D}_{\mathrm{KL}}\left(\pi_{\boldsymbol{\theta}} \| \pi_{\boldsymbol{\theta}_{K}}\right) = \mathbb{E}_{S \sim d_{\pi_{\boldsymbol{\theta}_{k}}}} \left\{ \mathbb{E}_{\pi_{\boldsymbol{\theta}}} \left\{ \log \left(\frac{\pi_{\boldsymbol{\theta}} \left(\boldsymbol{A} | S \right)}{\pi_{\boldsymbol{\theta}_{k}} \left(\boldsymbol{A} | S \right)} \right) \right\} \right\}$$

Review: Properties of KL Divergence

KL divergence shows interesting properties

It is zero when distributions are the same

$$D_{\mathrm{KL}}\left(p\|p\right) = \mathbf{0}$$

and increases when they get more different

ullet It is always non-negative, i.e., for any p and q

$$D_{\mathrm{KL}}\left(p\|q\right) \geqslant 0$$

→ This property is often called Gibbs' inequality

But remember that KL divergence is asymmetric, i.e.,

$$D_{\mathrm{KL}}\left(\mathbf{p}\|q\right) \neq D_{\mathrm{KL}}\left(q\|\mathbf{p}\right)$$

Trust Region Policy Gradient Method

Back to our modified gradient descent loop, we could write

```
AdvantageGD():

1: Start with some initial \theta_0

2: for k=1:K do

3: Compute the surrogate function \mathcal{L}_k\left(\pi_{\theta}\right)

4: Update the parameters as

\theta_{k+1} = \operatorname*{argmax}_{\theta} \mathcal{L}_k\left(\pi_{\theta}\right) \text{ subject to } \bar{D}_{\mathrm{KL}}\left(\pi_{\theta} \| \pi_{\theta_k}\right) \leqslant d_{\mathrm{max}}

5: end for
```

This modified approach is called

Trust Region PGM

since it computes the best policy gradient within a trusted resion

Surrogate Optimization: Exact Solution

- + How can we solve the optimization in the loop then?
- As you could guess, we are going to find a way around it!

The concrete way to solve it is to use regularization: we want to solve

$$oldsymbol{ heta}_{k+1} = \mathop{\mathrm{argmax}}_{oldsymbol{ heta}} \mathcal{L}_k\left(\pi_{oldsymbol{ heta}}
ight) \; ext{subject to} \; \; ar{D}_{\mathrm{KL}}\left(\pi_{oldsymbol{ heta}} \| \pi_{oldsymbol{ heta}_k}
ight) \leqslant d_{\mathrm{max}}$$

We solve instead

$$\boldsymbol{\theta}_{k+1} = \operatorname*{argmax}_{\boldsymbol{\theta}} \mathcal{L}_k \left(\pi_{\boldsymbol{\theta}} \right) - \beta \left(\bar{D}_{\mathrm{KL}} \left(\pi_{\boldsymbol{\theta}} \| \pi_{\boldsymbol{\theta}_k} \right) - d_{\mathrm{max}} \right)$$

for some β that potentially minimizes the regularized objective

This is going to be computationally very expensive!

We instead use Taylor expansion to approximate both surrogate and constraint

Taylor Expansion

An analytic function f(x) can be expanded around point x_0 as

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + \cdots$$

Let's start with the surrogate function

$$\mathcal{L}_{k}(\pi_{\boldsymbol{\theta}}) = \mathcal{L}_{k}(\pi_{\boldsymbol{\theta}_{k}}) + \nabla \mathcal{L}_{k}(\pi_{\boldsymbol{\theta}_{k}})^{\mathsf{T}}(\boldsymbol{\theta} - \boldsymbol{\theta}_{k}) + \varepsilon$$

In Assignment 3, we show $\mathcal{L}_{k}\left(\pi_{\theta_{k}}\right)=0$: so, setting $\nabla_{k}=\nabla\mathcal{L}_{k}\left(\pi_{\theta_{k}}\right)$ we get

$$\mathcal{L}_k\left(\pi_{\boldsymbol{\theta}}\right) \approx \nabla_k^{\mathsf{T}}\left(\boldsymbol{\theta} - \boldsymbol{\theta}_k\right)$$

Next, we go for constraint term

$$\begin{split} \bar{D}_{\mathrm{KL}}\left(\pi_{\boldsymbol{\theta}} \| \pi_{\boldsymbol{\theta}_{k}}\right) &= \bar{D}_{\mathrm{KL}}\left(\pi_{\boldsymbol{\theta}_{k}} \| \pi_{\boldsymbol{\theta}_{k}}\right) + \nabla \bar{D}_{\mathrm{KL}}\left(\pi_{\boldsymbol{\theta}} \| \pi_{\boldsymbol{\theta}_{k}}\right) |_{\boldsymbol{\theta}_{k}}^{\mathsf{T}} \left(\boldsymbol{\theta} - \boldsymbol{\theta}_{k}\right) \\ &+ \frac{1}{2} \left(\boldsymbol{\theta} - \boldsymbol{\theta}_{k}\right)^{\mathsf{T}} \nabla^{2} \bar{D}_{\mathrm{KL}}\left(\pi_{\boldsymbol{\theta}} \| \pi_{\boldsymbol{\theta}_{k}}\right) |_{\boldsymbol{\theta}_{k}} \left(\boldsymbol{\theta} - \boldsymbol{\theta}_{k}\right) + \varepsilon \end{split}$$

In Assignment 3, we show that

$$\bar{D}_{\mathrm{KL}}(\pi_{\boldsymbol{\theta}_{k}} \| \pi_{\boldsymbol{\theta}_{k}}) = 0$$
$$\nabla \bar{D}_{\mathrm{KL}}(\pi_{\boldsymbol{\theta}} \| \pi_{\boldsymbol{\theta}_{k}}) |_{\boldsymbol{\theta}_{k}} = \mathbf{0}$$

So, by defining $\mathbf{H}_k = \nabla^2 \bar{D}_{\mathrm{KL}} \left(\pi_{m{ heta}} \| \pi_{m{ heta}_k} \right) |_{m{ heta}_k}$ we have

$$\bar{D}_{\mathrm{KL}}\left(\pi_{\boldsymbol{\theta}} \| \pi_{\boldsymbol{\theta}_k}\right) \approx \frac{1}{2} \left(\boldsymbol{\theta} - \boldsymbol{\theta}_k\right)^{\mathsf{T}} \mathbf{H}_k \left(\boldsymbol{\theta} - \boldsymbol{\theta}_k\right)$$

Now, let's replace these approximations

$$\mathcal{L}_{k}\left(\pi_{\boldsymbol{\theta}}\right) \approx \nabla_{k}^{\mathsf{T}}\left(\boldsymbol{\theta} - \boldsymbol{\theta}_{k}\right)$$
$$\bar{D}_{\mathrm{KL}}\left(\pi_{\boldsymbol{\theta}} \| \pi_{\boldsymbol{\theta}_{k}}\right) \approx \frac{1}{2}\left(\boldsymbol{\theta} - \boldsymbol{\theta}_{k}\right)^{\mathsf{T}} \mathbf{H}_{k}\left(\boldsymbol{\theta} - \boldsymbol{\theta}_{k}\right)$$

into the optimization problem

$$\boldsymbol{\theta}_{k+1} = \operatorname*{argmax}_{\boldsymbol{\theta}} \nabla_k^{\mathsf{T}} \left(\boldsymbol{\theta} - \boldsymbol{\theta}_k \right) \text{ subject to } \frac{1}{2} \left(\boldsymbol{\theta} - \boldsymbol{\theta}_k \right)^{\mathsf{T}} \mathbf{H}_k \left(\boldsymbol{\theta} - \boldsymbol{\theta}_k \right) \leqslant d_{\max}$$

This is a classic linear programming whose solution is given by

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \sqrt{\frac{2d_{\text{max}}}{\nabla_k^{\mathsf{T}} \mathbf{H}_k^{-1} \nabla_k}} \mathbf{H}_k^{-1} \nabla_k$$

This is like classic update with linear correction and tuned learning rate

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \sqrt{\frac{2d_{\max}}{\nabla_k^{\mathsf{T}} \mathbf{H}_k^{-1} \nabla_k}} \mathbf{H}_k^{-1} \nabla_k$$

This is often referred to as

natural policy gradient

It gives a better direction for update; however,

- It could still not increase surrogate or deviate constraint
- It requires estimate of \mathbf{H}_k which is computationally expensive
- It also needs to invert estimate of \mathbf{H}_k which is again expensive

Natural PGM

NaturalPGM():

- 1. Start with some initial θ
- 2: while interacting do
- 3: for mini-batch b = 1 : B do
- 4: Sample the environment with policy π_{θ}

$$S_0, A_0 \xrightarrow{R_1} S_1, A_1 \xrightarrow{R_2} \cdots \xrightarrow{R_{T-1}} S_{T-1}, A_{T-1} \xrightarrow{R_T} S_T$$

- 5: end for
- 6: Estimate $\hat{\nabla}$ and $\hat{\mathbf{H}}$ from samples
- 7: Update the parameters as

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \sqrt{\frac{2d_{\text{max}}}{\hat{\nabla}^{\mathsf{T}}\hat{\mathbf{H}}\hat{\nabla}}}\hat{\mathbf{H}}^{-1}\hat{\nabla}$$

8: end while

TRPO and PPO Algorithms

There are two sets of solutions to overcome the challenges in natural PGM

- Trust Region Policy Optimization
 - □ Regularize learning rate via backtracking line
 - \downarrow Use sampling to find the estimate $\hat{\mathbf{H}}$
- Proximal Policy Optimization
 - Skip all these steps by computationally-efficient clipping
 - \rightarrow We do not need to find estimate $\hat{\mathbf{H}}$ anymore