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Policy Network

x(s,a) 7o (-) 7 (als)

Policy networks are used in two sets of deep RL approaches
e Policy gradient approaches
L, We do not use a value network and directly approximate optimal policy
e Actor-critic approaches

L, We keep the value network to examine the approximated optimal policy
L, This is the most practically-robust approach we can use
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Policy Network

Policy Network

Policy network is an approximation model that maps state-action features to a
conditional probability distribution

x (s, a) 7o (-) 7 (als)

+ How can we realize such a network? It is not any network! It should return
probabilities!

- Yes! That's right! Let's see a few examples
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Policy Network Basic Definitions

Recall: Feature

Feature Representation of State-Actions

Feature representation maps each state-action pair into a vector of features
that correspond to that state and action, i.e.,

x():$x AR’

for some integer J that is the feature dimension

Attention

Note that are now in the most general case: states and actions can be either
discrete or continuous
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Policy Network Basic Definitions

Example: Moving Particle

We are controlling a moving particle that could move in the 2D space

-

(z,y)

~

We can set the feature vector
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Policy Network Basic Definitions

Example: Moving Particle

We have the same moving particle that could move in any direction

4 N

a = anale

N /

We can set the feature vector

X (s,a) =

SIS
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Policy Network Basic Definitions

New Notation

+ Shall we see now an example of a policy network?

- Sure! Just last point to mention before

New Notation

As we think of a generic action and state space, we use a simple notation

Z f(a) discrete a

ff (a) _ aceA
a J f(a)da continuous a
A
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Example: Softmax

The most basic example is to assume a linear mapping

g (als) = 87x (s, a)

+ But how can we guarantee that it returns a probability?! Shall we assume

fﬂg (als) = JOTX (s,a) =1

a a

- Well! We can do that, but there is a better way to convert a linear function
into a probability distribution
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Example: Softmax

Softmax

Softmax is a vector-activated neuron that maps input x (s, a) into

exp {OTX (s,a)}

Softimax (X (5,0)) =

Jexp {OTX (s, a)}

a

We can now simply set

e (CL|S) = Soft?;lax (X (S’ (Z))

As we are going to have

| 7o als) = [ Softh (x5 0)) =

a a
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Example: Gaussian

Another approach is to use a Gaussian policy that is controllable with some
parameters: say at state s we only look at the state representation x ()

mg (a|s) =N <0Tx (s) ,02>

1 ox {_((I—OTX(S))2}
T Voro? P 202

We may train this network by

e eijther only learning 6
* or learning both 8 and o>
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Example: DPN

In practice, we are more interested to train
Deep Policy Network = DPN

as it can learn a richer class of policies

- \

x(s,a) \"'H g (als)
[

And we very well know how to make it return a probability distribution!

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025

11/40



Training Policy Network

Let's now train the policy network: assume a general network as
x (s, a) 7o () 7 (als)

+ How can we train it? What should be the loss?
- Well! We know what we want?

We want ro have a policy that maximizes value at all states, i.e.,

0" = argmax vy, (s)
0

for all states s € $

Since we are more happy with minimization we can alternatively say ©

0" = argmin —vy, (s)
(4
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Policy Network Loss for Training

Training Policy Network

+ But that is weird! We have so many states! For which one we should do it?!
- That's right! We should find a way around it

This naive training reduces to a multi-objective optimization

0" = argmin —vy, (s)
0

with the number of objectives being as much as the number of states!

Say we have N states: we need to have simultaneously

6* = argmin —vy, (s') . 0" = argmin —uv,, (SN)
0 (4

which is not necessarily possible!
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Finding Loss

A classical remedy to such multi-objective optimization is to scalarize
0 = arg;nin —p (sl)v,rg (51) —...=p (SN)Uﬂ-g (sN)
Or better to say: to minimize the average return over all states, i.e.,

7 (mg) = f vy (5)p ()

S

= Esp {vmy (9)}

+ OK! But what is p (s)?! Do we have it? Or shall we assume it?
- Neither and both © Let’s try a simple setting first
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Finding Loss

Let’s consider a simple case: we have an episodic environment whose a sample
trajectory looks like

R R Ry R
7:80,Ag =5 S1, A1 =% -+ —— Sp_1,Ap_1 =5 Sp

We denote the whole trajectory by T to keep our notation simple

Assume we have no discount; then, we could say that a sample return is

T-1

Go = Z Riq
=0

and that the value for sample state S

Urg (S0) = Exg {GolSo}
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Finding Loss
Say we fix our starting state to Sy = so: we get a sample trajectory as

Rl R2 RT*l RT
7 (s0) @ 80,49 — S1, 41 — -+ —— Sp_1,Ar_1 — St

The value of the starting state s is then given by

Urg (50) = Erg {Gols0}
T-1

f J f Z rev1 | mo (aolso) p (s1,71]s0, ao)

t=0

T S81y-,8T Q05 ,AT —1

Aar—ilsr—1) p (s7,rr|s7—1,a1-1)

71 T-1
f Dires | ] wo (aidso) p (sevrsresnlse, ar)
i=0 1=0

7(s0)
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Finding Loss

Say we fix our starting state to Sy = so: we get a sample trajectory as

7 (50) : 50,40 = §1, A 22 .. L, Sr_1,Ar_1 25 Sy
Let’s define the return of this trajectory as
T—1
g (7 (s0)) = Z Ti4+1
t=0

This an outcome of random variable

T—1
G (7 (s0)) = Z Ry 1
=0

We can now write

T-1
Urg (50) = J g (7 (s0)) H o (atlst) p (St+1, Te+1]5¢, ar)
t=0

7(s0)
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Finding Loss
Say we fix our starting state to Sy = so: we get a sample trajectory as
Ro_
7 (s0) t 0,40 2> Sy, Ay 22 oo L 60 Ay 2, 5y
Note that we could look at this term as an expectation
T-1
g (s0) = | (s0)) [ 7o (o) p s, )
t=0
7(s0)
= B (o)~ moarlse)p(ss e lsear) G (T (50))}

Initial Conclusion

Distribution of T (s) for a given sy which includes all next states is specified by
policy and environment
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Finding Loss
Now, let’s assume a randomly chosen starting state Sy: then, we have

R R Ry
7: 80,40 =5 S1, Ay =2 -+ —— S 1, Ap_ 1_’ST

We choose it with some distribution p (s(); thus, we have

J(ﬂ'e) = E50~p {Uﬂ'e (SO)}

T-1
J J o) p (s0) [ | me (arlse) p (sei1,regalse, ar)
t=0

SOT so

T-1
— [ (s0) [T 7o (aulsi)p (5141, resa v )
p t=0

averaae over all possigle trajectories
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Finding Loss: Estimating Form

Now, let’s define the overall distribution of trajectory T as

T—1
Pro (7) =0 (50) | | 7o (arls) p (5151, re41]s0, )

t=0
Then we could compute the average return of the environment as

7 (mg) = jg (7) prg (7)

T / return of trajectory
= ET~p7r9 {G (1)}
/

distrisution of trajectory

Final Conclusion

Part of distribution of T is assumed and remaining by policy and environment
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Training Policy Network: Gradient Descent

We have the loss ready: let’s start training the policy network
+ What do you mean by training?
- Simply, we want to find the network parameters that minimize the loss

0™ = argmin —J (7g)
0

We can use gradient descent: we consider learning rate o and update as

0 —60—aV{-J(mg)}
— 0+ aVTg (71'9)

So, we need to compute V.7 (mg) with respect to 0
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Training Policy Network: Gradient Descent

We are using gradient descent (ascent)
0 — 60+ aVJ(mg)

and we need the gradient: so, we write

\V4 (779 =V f pﬂ'e fg VPTFG

T

= Jg (r)V { 1:[ 7o (ae|se) p (Sev1,Te41l50,a0) p (50)}
t=0

T

+ It looks challenging!

- Let’s take a deeper look
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Training Policy Network: Gradient Descent
There is a trick that might help us in this respect

the so-called log-derivative trick

Log-Derivative Trick

For any positive function f (-) : R’ — R, we have by definition

Vf(0)=71(6)Vliegf(0)

Let’s apply the log-derivative trick to our problem
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Training Policy Network: Gradient Descent

Applying the log-derivative trick to our problem, we have

V7 (me) = f 8 () Yy (7)

g (7) pry (1) V1og pg ()

7) V108 pry (T)] Prg (T) = Erpr, {G (7) Viogpr, (1)}

- Jueo
i

+ Why should that be helpful?!
- Let’s see how log pr, (7) looks

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 24/40



Training Policy Network: Gradient Descent

Consider one instant trajectory: we have a particular outcome
rT

1 T2 —1 T
T :S8,a0 — S1,a1 —> o ——> ST-1,a7—-1 —> ST

Using the definition of pg (7), we can write

T-1
log pry (7) = log {p (s0) [ ] mo <at|st>p<st+1,mnst,ao}
t=0

T—1
= log p (s0) + Z log g (as¢)
M R t=0
does not depend in 6
T-1
+ Z log p (st+1, T+1(51, ar)
t=0

~
does Nnot depend in 6
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Training Policy Network: Gradient Descent
Consider one instant trajectory: we have a particular outcome
1 T2 rT—1 T
T :.S0,a0 —> 81,41 —> > ST-1,A7-1 —> ST
The gradient of log pg (7) is hence given by

T-1 T-1
Viogpr, (1) =V Z log mg (at|s:) = Z V log g (at|st)
t=0 t=0

If we have a random sample trajectory

71 S0, Ag 2 51, A 2 L g LA Sy
we can similarly write
T—1
Vlog pr, (T Z V log mg (A¢|St)
t=0
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Training Policy Network: Gradient Descent
Back to our main problem: we have a random trajectory

Rp_
71 S0, Ag 25 5y, Ay B L g Ap 2, 5
and want to find the gradient of loss; so, we can write

VT (10) = Ervp, {G () Viog pry (1)}

T—1
= Ervp,, {G(T) ZE) V log mg (At|5t)}
t=

T—-1 T-1
= ETNPWg {(Z Rt+1) Z Vlogﬂ'g (At\St)}

t=0 t=0

We can estimate it via Monte-Carlo!
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Training Policy Network: SGD
Say we set the weights of policy network to 8: we sample K trajectories

R R Ry
71 80,40 = S1, Ap = o =T Sp oy Ap 1_’ST

from the environment using policy mg, and then estimate the gradient as

T-1
VT (m0) = 7 ZG ) Y Vg (A¢ [K][S: [K])
k=1 t=0

We can then use gradient descent to update 0 as

00 +oﬁj(wo)

T-1
<_0+— ZG 7k) Y. Vlogma (A [k]|S [k])
k 1 t=0
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Training Policy Network: SGD

+ Isn’t that again too slow?! We should wait for a single update!
- Sure! We can go for SGD

Using SGD, we could take a single sample gradient

T—1

VJ (mg) = G (1) ) Viegmg (A4i]5))
t=0

and then update the policy network as

T-1
0 — 6 +aG (1) Y, Viogmg (A]S;)
t=0
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First Policy Gradient Algorithm

PG_v1():

1: Initiate with @ and learning rate «

2: forepisode =1 : K do

3: Sample a trajectory with policy mg

7 80,0 I 81, Ay B o BT g Ay BT 8y
4:  Compute return G ()
5 fort =0:T —1 do
é: Update policy network @ < 0 + aG (7)V log e (A:|St)
7 end for
8: end for

+ Is it a kind of known algorithm?

- With a bit of modification it reduces to REINFORCE algorithm proposed
by Ronald J. Williams in 1992

Reinforcement Learning Chapter 5: RL via Policy Gradient © A. Bereyhi 2024 - 2025 30/40



REINFORCE: First Official Algorithm

REINFORCEQ) :

1: Initiate with @ and learning rate «

2: forepisode =1 : K do

3: Sample a trajectory with policy mg

7 S0,A0 s Sy, AL B L BT g, PRy
4 fort =0:T —1 do
5: Update policy network 6 < 6 + oGV log me (A¢|St)
6 end for
7: end for

+ But we are now computing a different gradient? Why should it work?!

- This is because of the Policy Gradient Theorem which says that we should
update proportional to V log g (A;|S;)
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SGD: General Setting

Let's have a more generic analysis: assume we start at a random state Sy that
is chosen according to
So ~ p(s0)

We start acting via the policy g and transit to a new state
So, A > 5y
We could then say that the average value of the policy is

J (mg) = Eso~p {Uﬂ'e (So)}

We need the gradient of this value against 0 to train the policy network
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N L Al Poicy Gradiet Theorem
SGD: General Setting

We can open up the loss expression

J (mg) = jvwe (s0) P (0)

S0

and write the gradient as

VJ (ng) =V f Uy (50) P (50)
=fv%gwm@w

S

Let’s compute Vv, (so)
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SGD: General Setting

We can use the marginalization rule to expand vy, (so)

Unp (50) = Jqﬂe (80, a0) e (aolso)

ao

So the gradient Vv, (so) is computed using chain rule as

vvﬂe (50) =V j Qrg (SOa CL()) e (a0|30)

ag

_ f Vg (0, a0) e (aols0) + f 4y (50, a0) Vg (ao]s0)

aop ao

Let’s compute V ¢y, (so, ao) next
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SGD: General Setting

We can use Bellman equation to expand g, (so, ao) as

g (50,a0) = R (s0,a0) + ’Yjvrre (s1) p(s1ls0,a0)

S1

So the gradient reads

Vg (50,00) = V R (s0,0) +7 f vy (51) D (5150, a0)

S1
= VR (s0,a0) +~yva7re (s1)p (s1]s0,a0)
——
0 51
=7 J Vg, (51) p (5150, a0)

51
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SGD: General Setting

Now, let’s put back all gradients gradually towards beginning of computation

V.7 (mp) = jv (50) p (50)

=8}an9 (1) Prg (1) + qum; (s0, a0) Ve (aolso) p (so)

where we define the marginal distribution of s, as

Pro (51) = f f p (51150, a0) s (a0ls0) p (50)

S0 ao
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SGD: General Setting

Since pr, (s1) and p (so) are distributions, we have
[ oo 50) = [ps0) =1
S1 S0

So, we could modify our final expression as

VT (50) = [ Fony (50)pry (50) [ (50

S0

+ fque (50, a0) Vg (ao|so) p (SO)JPM (1)

50 ao S1

ffpwe 51)p(80) | Vurg (s1) + fqm, (s0,a0) Ve (ao|so)

51 S0
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SGD: General Setting
If we keep on progressing in the trajectory as t — oo, we will see

VT (10) = [dey (5) | g (5,) Vo (als)

S a

for some distribution d., (s) that is the average marginal distribution of states
under policy mg, i.e.,
fdﬂe (s) =1

S

Finally, using the log-derivative trick we have

VT (ro) fdﬁe (s) f 4o (5,0) 7o (a]s) V log 7 (als)

S a
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Policy Gradient Theorem

This can be equivalently written as
VT (mg) = JJdﬁe (s) mg (a]5)qry (s,a) V1og mg (als)

= Esdyy Al5~mp {qmg (5, A) Vogme (A]S)}
which concludes the policy gradient theorem proved by Sutton et al. in 1992
Policy Gradient Theorem

For a policy network with non-zero probabilities, the gradient of the average
trajectory return is always given by

VT (19) = Esndy,,Al5~me {are (5, A) V1og e (A|S)}
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Policy Gradient Theorem: Implication

Policy Gradient Theorem
For a policy network with non-zero probabilities, the gradient of the average
trajectory return is always given by

VJ (76) = Esnd,, A|S~mg 101 (S, A) Vog g (A]S)}

ur- Rl

+

OK! That sounds nice! But what is special about it?!

It says to train a policy network, you only need gradient of log likelihood
Then what?!

Well! We could have much more complicated terms! We will talk about it
more in the next sections

+
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