Reinforcement Learning

Chapter 4: Function Approximation
Ali Bereyhi
ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Fall 2025

Reinforcement Learning Chapter 4: Function Approximation

mailto:ali.bereyhi@utoronto.ca

Vanilla Deep Q-Learning

SGD_Q-Learning():

1: Initiate with w and learning rate «

2: for episode = 1 : K or until 7 stops changing do

3: Initiate with a random state Sy

4: fort = 0 : T — 1 where St is either terminal or terminated do

5 Update policy to m «— e-Greedy(Qw (S, a))

é: Draw action A, from 7 (-|S;) and observe S;, A, plar St+1

7. A <« Rt+1 + Y maXm Qw (St+1, am) — Qw (St, At) # forward propagation
8 Update W «— W + OéAVQw (St, At) # backpropagation
9 end for

10: end for

In deep Q-learning, we use a DQN to perform offline control via Q-learning

deep Q-learning = DQL

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025

2/35

Deep Q-Learning

Vanilla DQL: Visualization

l—’ O_O AL

Sty1, R

S5t

We update the weights on the DQN as w < w + aAVQw (5S¢, A¢)

A <—‘ Rit1 + ymaxy, Qw (Si+1,a™)

—Qw (5, At)

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 3/35

Vanilla Deep Q-Learning: Challenges

Vanilla DQL does not perform impressive: it suffers from two major challenges

@ We dear with strongly correlated samples
L, We handle this issue via experience reply

@ The labels in the sample data-points change in each iteration
A —|Ryy1 + Y MaXy, Qw (St+1a am) —Qw (St7 At)

L, Here, we can look at each sampled state as a data sample with label

Yo = Ryp1 + ’YmT%XQw (St41,a™)

L, After each update of w this label changes
L, This results in divergence or high error variance
L, We are going to over-come this issue by using a target network

Let’s first get to experience replay

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025

4/35

Deep Q-Learning Experience Replay

Experience Replay

Ay

O
¢}
\

(St; At Sp41, Rer)

1

Stt1, R

—> S a
(Sby Abs Sp+1, Rp41) Quw (Shi1,2)

We update DQN by mini-batches w «— w + >}, A,V Qw (Sh, Ap)

Ap | Ryt1 + ymaxy, Qw (Spr1,a™) | —Qw (S, Ap)

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 5/35

DQL with Experience Replay

DQL_v1():

1: Initiate with w, empty replay buffer D and learning rate o

2: for episode = 1 : K or until 7 stops changing do

3: Initiate with a random state Sy

4 fort = 0 : T — 1 where St is either terminal or terminated do
5: Update policy to m «— e-Greedy(Qw (S, a))

6 Draw action A, from 7 (-|S;) and observe S;, A, pliar St+1
7

Add sample S;, A, Rif Si+1 to the replay buffer D

8 for iteration ¢ = 1 : L do :
|

L9 Sample mini-batch B = {S;, A, 2 Sp41 forb=1: B} fromD :

: 10: Ap — Rb+1 + vy max, Qw (Sb+1,am) —Qw (Sb,Ab) :

l B

11: Update w — w + a3 A,V Qu (Sh, Ap) |

! b=1

1_1_2 _____ gn_d_fgr __ J

13: end for

14: end for

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 6/35

DQL with Experience Replay

In general, we can iterate multiple mini-batches, i.e., L > 1
e This can improve the convergence speed
® The trained DQN may however stick to a bad local minima

In practice we typically set L = 1
e with a relatively large batch-size we can see good convergence results

+ What about the second challenge? | didn’t get really what was the issue at
the first place!
- Let’s break it down!

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 7/35

Varying Labels

Ay

O
¢}
\

(St; At Sp41, Rer)

1

Stt1, R

—> S a
(Sby Abs Sp+1, Rp41) Quw (Shi1,2)

We can look at the training procedure as supervised learning with label

Yo = Rps1 + 7y max Quw (Spr1,a™)

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 8/35

Varying Labels

Ay

O
¢}
\

(St; At Sp41, Rer)

1

Stt1, R

—> S a
(Sby Abs Sp+1, Rp41) Quw (Shi1,2)

We are then updating w gradually, such that
Ay = yp — Qw (Sh, Ap)

shrinks: but, each time we update w, the label v, also changes!

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 9/35

Varying Labels

Ay

O
¢}
\

(St; At Sp41, Rer)

1

Stt1, R

—> S a
(Sby Abs Sp+1, Rp41) Quw (Shi1,2)

This is an issue: in standard SGD, we have fixed labels and therefore

by multiple iterations the NN gradually converges to a good approximator

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 10/35

Target Network: Simple Remedy

Ay

tlele >
(St, At, Sti1, Rey1)
-, Str1, Ry
N —> Sy, a
(St Ap, Sp11, Rps1) Qw(b)
copy w — w every I rounds
Y Yo = Rp+1 +ymax Qw (Sb+17a)‘

—> Qw (Sp11,3)

(Sb, Ap, Spi1, Rys1)

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 11/35

DQL: Classic Algorithm

DQL():
1: Initiate with w, empty replay buffer D, learning rate «, and a random state S;

:=4=:===fo=r=h=;=1=:=ﬁ=do======================================_:
3 St «— Sii1if St is a terminal state then replace S: with a random state :
6 Update policy to m <« e-Greedy(Qw) and draw A, from 7 (-|S¢) |

|
7 AddS,A "3 S tothereplaybufferD :
' KB for iteration { = 1 : L do 1\;
' 9: Sample mini-batch B = {S;,A;) Syy1 forb=1: B} fromD :}
| |
:110: Ap | Rps1 + ymaxm Qw (Sp+1,a™) ‘_Qw (Sb, Ap) 0
| |
I B |
111 Update w « w + a > A,V Quw (Sp, As)
: | b=1 |
112 end for j !
Y | ‘

14: end while

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 12/35

A Revolution: Google DeepMind

LETTER

Human-level control through deep reinforcement
learning

Volodymyr Mnih'#, Koray Kavukcuoglu'*, David Silver'*, Andrei A. Rusu', Joel Veness', Marc G. Bellemare', Alex Graves',
Martin Riedmiller!, Andreas K. Fidjeland!, Georg Ostrovski', Stig Petersen!, Charles Beattie', Amir Sadik’, loannis Antonoglou’,
Helen King', Dharshan Kumaran', Daan Wierstra', Shane Legg' & Demis Hassabis'

doi:10.1038/nature14236

Just to have a clue about how revolutionary it had been

Human-level control through deep reinforcement learning
V Mnih, K Kavukcuoglu, D Silver, AA Rusu, J Veness, MG Bellemare, A Graves, M Riedmiller...
nature, 2015 - nature.com

Abstract
The theory of reinforcement learning provides a normative account, deeply rooted in
psy ical and r ientific persp on animal iour, of how agents may

optimize their control of an environment. To use reinforcement learning successfully in
situations approaching real-world complexity, however, agents are confronted with a
difficult task: they must derive efficient representations of the environment from high-

dimensional sensory inputs, and use these to aeneralize past experience to new

SHOW MORE v L

Y¢ Save 99 Cite | Cited by 30437 | Related articles All 57 versions Web of Science: 14719

Function Approximation © A. Bereyhi 2024 - 2025 13/35

Deep Q-Learning

A Revolution: Google DeepMind

DQL could show extraordinary performance

a 2200 b 6,000
2 2,000 ®
3 3
g 1,800 2 5,000
§ 1,600 2
. 2 4,000
g 1400 5
g 1200 2 3,000
g 1,000 8
2 800 @ 2,000
2 600 4
g 400 2 1,000
g 2
< 200 <
0
0030 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Training epochs Training epochs

c 10 d 11
- 9 _ 10
g g o
3 7 s 8
ER g 7
g 5 s 6
s g s
S o 4
g 3 g 3
2 2 g 2
2

1 <

0 0

0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200

Training epochs Training epochs

You may also watch the demo of the Breakout game on Youtube

Reinforcement Learning Chapter 4: Function Approximation

https://www.youtube.com/watch?v=TmPfTpjtdgg&t=64s

A Revolution: Google DeepMind

DQL was the first universal algorithm that could be applied to any environment

Video Pinball
B
B ——
o

Crazy Climber

Gopher
Demon Attack
Name This Game.

Pong

‘Space Invaders.

Beam Rider

Tutankham

Kung-Fu Master
Freew

Fishing Derby
Up and Down
loe Hockey

At human-level or above
Bolow human-level

Battle Zono

Wizard of Wor

Chopper Command
Centipede
Bank Heist
River Raid

wH lllllll!i“l"“mmu |

2
Bost Inear learner

T T T T T 1
100 200 300 400 500 600 1,000 4,500%

Reinforcement Learning Chapter 4: Function Approximati

Montezuma's Revenge

Deep Q-Learning

Example: Mountain Car

Let’s try to imagine DQL in the mountain car example with a simple DQN

/ .‘) al

X1 —>
o- -

X2 —>
o

A more concrete example will be solved in the next Tutorial

Reinforcement Learning Chapter 4: Function Approximation

DQL: Bias Problem

Q-learning is known to estimate action-values with bias: take a look at few
examples of DQL algorithm playing Atari games

Alien Space Invaders Time Pilot
DQN estimate

DQN true value

+ Why is it happening? Is it simply because of TD approach?
It's severer than only TD: it comes from the max operator in the update!

+ How does it come?
Well, It's best understood through an example

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 17/35

Bias Problem: Basic Example

Let's consider a simple example: assume we are dealing with two computers,
namely A and B. These computers are used to run the same program

e Computer A runs the program in exactly X, = 8 seconds

e Computer B runs the program in exactly Xg = 5 seconds
We however do not know these values: we can only run sample runs

® Qur time measurement is noisy, i.e., we compute on Computer i

~

X, =X, +e¢

L, This error is random and can increase or decrease X;

Ultimate Goal

We want to compute the maximum runtime between the two computers

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 18/35

Bias Problem: Basic Example
We have access to noisy samples
% (1) (K) (1) o ()
X, X X B -1 Xp
If K is only moderately large, we could almost surely say that

max {Xf\l),...,XgK),Xél), . ,XE(;K)} > max {Xa, Xg} = 8

e Within enough number of samples there is for sure a positive error sample
® This error sample renders an over-estimation

A crucial point is that if we repeat this experiment several times, we always get
an over-estimate; therefore,

‘ after averaging over multiple instances, we are still biased!

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 19/35

Solution to Max-Bias: Double Measurements

There is a very simple and intuitive solution to this problem: we can collect
two sequences of samples

Sequence 1: Xﬁ(\’ll), ... ,Xf{?,f(é}f, o ,)A(E(g)
Sequence 2: Xf\}z), e ,)A(/gg),)?é’lz), ,)A(E(fz{)

We find the index of the maximizer in Sequence 1, i.e.,
(i,k) = argmax {X}xll)’ o ’X(K) XE(;I)7 N ,XE(;Z()}

But we take the sample from Sequence 2, i.e.,

~

Xmax = XZ(Z)

This is an unbiased estimator: if we repeat this experiment several times

‘ after averaging over multiple instances, we get close to X,

Reinforcement Learning

Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 20/35

DQL with Double Measurements

We can apply this idea to DQL: we train two DQNSs simultaneously
® We find out the action with maximum value using one DQN
e We evaluate the action-value of this action by the other DQN
This way we get an unbiased estimator of the optimal action-value

we refer to this approach as double DQL

Attention

In general this does not mean that we are necessarily reaching to a better
policy: we could have biased estimator and still play optimally!

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 21/35

Double DQL

Selectina DQN Evaluatina DN

A¢| St

{50} >
ﬁ § g ——
Sti1s Riga

argmax

We train two DQNSs on two independent experience sets
e With the online DQL we find

Af.y = argmax Quw (S: 1,)
e With the double DQL we evaluate

Y = Ro1 + 7Qw (So+1, A1)

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 22/35

Double DQL: Sample Results
Let's take a look back to the earlier examples

Alien Space Invaders Time Pilot
DQN estimate

DQN true value

Here, blue curves show double DQL

® |n all examples we are getting less bias as compared to DQL
® |n two example it helps converging to better policy
L, Alien and Time Pilot

¢ In one example, it reduces bias but does not impact converging policy

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025

23/35

Other Variants

There are various extensions to classic DQL: some famous ones are

e Double DQL
L, It tries to reduce the bias of value estimation

¢ Dueling DQL
L, It uses notion of advantage = difference between action-value and value
L, It helps finding non-valuable actions

® Prioritized DQL
L, It gives priority to samples in the experience buffer

e Distributed DQL

L, It enables training DQN through pipelining
L, This let training of DQNs for massive problems

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 24/35

Distributed DQL: Gorila

General Reinforcement Learning Architecture = Gorila

Gorila is implemented through four main generalization
@ PFarallel actors generating acting behavior
@ Parallel DQNs trained by stored experience
® Distributed storage of experience
@ A distributed DQN that specifies acting behavior policy

Gorila massively parallelize implementation of DQL

this enables implementation of DQL for realistic hard control loops

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025

25/35

Distributed DQL: Gorila

With significantly lower training time, Gorila starts to beat classic DQL

athuman-evel o above

below human-evel

T T T T T T 1
o 200% 00 o0 o0 1.000% s000%

Reinforcement Learning Chapter 4: Function Approximation

Dealing with Continuous Actions

Once DQL was established a new question raised
? How can we handle settings with continuous action space?

This is a very practical setting that show up in robotics, autonomous driving, etc

+ What about it? Why should be a challenge to use DQL with continuous
action space?

- Well! How could we maximize action-value in this case?!

Let’s take a look to see the challenge clearly

Reinforcement Learning

Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 27/35

DQN: Recalling the Output

X (5, al) *>| qw (+) qr (s, al)
M x (s aM)‘>‘ qw ()

With continuous actions, we cannot enumerate the output!
+ Why don’t we use action-value approximator of form 12!
- Well! Let’s do this

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 28/35

Recall: Action-Value Approximator - Form |

This is what we called Form |

X(Sv a’) dw () dr (S,CL)

Let’s now see how the DQL algorithm can be applied
L, Let’s consider the vanilla DQL

1: Update policy to m <« e-Greedy(Qw (S, a))

2: Draw action A, from m (:|.S;) and observe S;, A, Reny St41
3: A — Riy1 + ymaxm, Qw (Sz+1, am) — Qw (St, At)
4: Update w < w + aAVQw (St, At)

We obviously can replace Qy, () with gy (+)

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 29/35

DQL with Action-Value Approximator - Form |

1: Update policy to m «— e-Greedy(Qw (S, a))

2: Draw action A, from m (-|.S;) and observe S;, A, pss St+1
3: A «— Rt+1 + Y MaXm Qw (St+17 am) - Qw (St7 At)
4: Update w — w + aAVQw (St, A¢)

We can replace these updates with

1: Update policy to m «— e-Greedy(qw (St, a))

2: Draw action A, from m (-|.S;) and observe S;, A, piaz. St
3: A« Rip1 + ymaxy qw (Si+1,a) — qw (St, At)
4: Update w — w + aAVqw (S, At)

Well! We need to optimize over a continuous variable!
+ Where exactly we need it?
- Inlines 1 and 3: once for e-greedy update and once for off-policy control

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 30/35

DQL with Action-Value Approximator - Form |

This is an essential challenge: we need to optimize over a continuous variable
® We may grid the action space
L, It's computationally expensive: we are back at square one!
e We may apply gradient descent
L, It makes a two-tier loop: it’s again computationally expensive!

+ It sounds like impossible!
- Only impossible is impossible
In practice, we solve the target optimization via a DNN!

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 31/35

Learning Optimal Action

a* = argmax qw (s, a)

x(@,m>m—@<@,m>

We could then update in DQL algorithm as

A — Rip1 + vqw (Si41,0") — qw (5S¢, Av)

and for e-greedy improvement, we could
act a* with probability 1 — € and random with probability ¢

Learning Optimal Action

+ Say we trained the network after some time; then, what do we do?
- We act a* for each state s

a* = argmax gw (s, a)

Critic

This is a particular example if actor-critic algorithm!

L, We will discuss these algorithms

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025

33/35

Solution to Continuous Action: Policy Networks

Our actor learns an optimal greedy policy
. . 1 a=a*(s)
XIS a . a \s) ———
” *) {o at o ()
This is a simplified form of the so-called policy network

Policy Network

Policy network is an approximation model that maps state-action features to
the optimal policy

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 34/35

Solution to Continuous Action: Policy Networks

+ What is the point in doing DQL anymore when we have a ? We already
learn the optimal policy that we are looking for!

- Great! This is what we do in policy gradient algorithms

Policy networks are used in two sets of deep RL approaches
® Policy gradient approaches

L, We do not use a value network and directly approximate optimal policy
L, This is what we study next

e Actor-critic approaches

L, We keep the value network to examine the approximated optimal policy
L, This is the most practically-robust approach we can use

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 35/35

	Deep Q-Learning
	Experience Replay
	Target Network
	Double DQL
	Other Variants
	DQL with Continuous Actions
	Policy Networks

