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Deep Q-Learning

Vanilla Deep Q-Learning
SGD_Q-Learning():
1: Initiate withw and learning rate α
2: for episode “ 1 : K or until π stops changing do
3: Initiate with a random state S0

4: for t “ 0 : T ´ 1 where ST is either terminal or terminated do
5: Update policy to π Ð ϵ-GreedypQw pSt,aqq

6: Draw actionAt from π p¨|Stq and observe St,At
Rt`1
ÝÑ St`1

7: ∆ Ð Rt`1 ` γmaxm Qw pSt`1, a
m

q ´ Qw pSt, Atq # forward propagation

8: Updatew Ð w ` α∆∇Qw pSt, Atq # backpropagation

9: end for
10: end for

In deep Q-learning, we use a DQN to perform offline control via Q-learning

deep Q-learning ” DQL
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Deep Q-Learning

Vanilla DQL: Visualization

Qw pSt,aqQw pSt`1,aq

At

St`1, Rt`1

∇Qw pSt, Atq

StSt`1

We update the weights on the DQN asw Ð w ` α∆∇Qw pSt, Atq

∆ Ð Rt`1 ` γmaxmQw pSt`1, a
mq ´Qw pSt, Atq
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Deep Q-Learning

Vanilla Deep Q-Learning: Challenges
Vanilla DQL does not perform impressive: it suffers from two major challenges

1 We dear with strongly correlated samples
ë We handle this issue via experience reply

2 The labels in the sample data-points change in each iteration
∆ Ð Rt`1 ` γmaxmQw pSt`1, a

mq ´Qw pSt, Atq

ë Here, we can look at each sampled state as a data sample with label

yt “ Rt`1 ` γmax
m

Qw pSt`1, a
mq

ë After each update ofw this label changes
ë This results in divergence or high error variance
ë We are going to over-come this issue by using a target network

Let’s first get to experience replay
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Deep Q-Learning Experience Replay

Experience Replay

Qw pSb`1,aq

At

St`1, Rt`1

pSt, At, St`1, Rt`1q

pSb, Ab, Sb`1, Rb`1q

We update DQN by mini-batchesw Ð w `
ř

b α∆b∇Qw pSb, Abq

∆b Ð Rb`1 ` γmaxmQw pSb`1, a
mq ´Qw pSb, Abq
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Deep Q-Learning Experience Replay

DQL with Experience Replay
DQL_v1():
1: Initiate withw, empty replay bufferD and learning rate α
2: for episode “ 1 : K or until π stops changing do
3: Initiate with a random state S0

4: for t “ 0 : T ´ 1 where ST is either terminal or terminated do
5: Update policy to π Ð ϵ-GreedypQw pSt,aqq

6: Draw actionAt from π p¨|Stq and observe St,At
Rt`1
ÝÑ St`1

7: Add sample St,At
Rt`1
ÝÑ St`1 to the replay bufferD

8: for iteration ℓ “ 1 : L do
9: Sample mini-batchB “ tSb,Ab

Rb`1
ÝÑ Sb`1 for b “ 1 : Bu fromD

10: ∆b Ð Rb`1 ` γmaxm Qw pSb`1, a
m

q ´ Qw pSb, Abq

11: Updatew Ð w ` α
B
ÿ

b“1

∆b∇Qw pSb, Abq

12: end for
13: end for
14: end for
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Deep Q-Learning Experience Replay

DQL with Experience Replay
In general, we can iterate multiple mini-batches, i.e., L ą 1

‚ This can improve the convergence speed
‚ The trained DQN may however stick to a bad local minima

In practice we typically set L “ 1

‚ with a relatively large batch-size we can see good convergence results

+ What about the second challenge? I didn’t get really what was the issue at
the first place!

– Let’s break it down!
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Deep Q-Learning Target Network

Varying Labels

Qw pSb`1,aq

At

St`1, Rt`1

pSt, At, St`1, Rt`1q

pSb, Ab, Sb`1, Rb`1q

We can look at the training procedure as supervised learning with label

yb “ Rb`1 ` γmax
m

Qw pSb`1, a
mq
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Deep Q-Learning Target Network

Varying Labels

Qw pSb`1,aq

At

St`1, Rt`1

pSt, At, St`1, Rt`1q

pSb, Ab, Sb`1, Rb`1q

We are then updatingw gradually, such that

∆b “ yb ´ Qw pSb, Abq

shrinks: but, each time we updatew, the label yb also changes!
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Deep Q-Learning Target Network

Varying Labels

Qw pSb`1,aq

At

St`1, Rt`1

pSt, At, St`1, Rt`1q

pSb, Ab, Sb`1, Rb`1q

This is an issue: in standard SGD, we have fixed labels and therefore

by multiple iterations the NN gradually converges to a good approximator
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Deep Q-Learning Target Network

Target Network: Simple Remedy

Qw pSb,aq

Qw̄ pSb`1,aq

copy w̄ Ð w everyH rounds

At

St`1, Rt`1

pSt, At, St`1, Rt`1q

pSb, Ab, Sb`1, Rb`1q

pSb, Ab, Sb`1, Rb`1q

yb “ Rb`1 ` γmaxQw̄ pSb`1,aq
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Deep Q-Learning Target Network

DQL: Classic Algorithm
DQL():
1: Initiate withw, empty replay bufferD, learning rate α, and a random state St

2: while interating do
3: Update w̄ Ð w
4: for h “ 1 : H do
5: St Ð St`1 if St is a terminal state then replace St with a random state
6: Update policy to π Ð ϵ-GreedypQwq and drawAt from π p¨|Stq

7: Add St,At
Rt`1
ÝÑ St`1 to the replay bufferD

8: for iteration ℓ “ 1 : L do
9: Sample mini-batchB “ tSb,Ab

Rb`1
ÝÑ Sb`1 for b “ 1 : Bu fromD

10: ∆b Ð Rb`1 ` γmaxm Qw̄ pSb`1, a
m

q ´Qw pSb, Abq

11: Updatew Ð w ` α
B
ÿ

b“1

∆b∇Qw pSb, Abq

12: end for
13: end for
14: end while
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Deep Q-Learning Target Network

A Revolution: Google DeepMind

Just to have a clue about how revolutionary it had been
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Deep Q-Learning Target Network

A Revolution: Google DeepMind
DQL could show extraordinary performance

You may also watch the demo of the Breakout game on Youtube
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Deep Q-Learning Target Network

A Revolution: Google DeepMind
DQL was the first universal algorithm that could be applied to any environment
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Deep Q-Learning Target Network

Example: Mountain Car

Let’s try to imagine DQL in the mountain car example with a simple DQN

x1

x2

a1

a2

a3

A more concrete example will be solved in the next Tutorial
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Deep Q-Learning Double DQL

DQL: Bias Problem
Q-learning is known to estimate action-values with bias: take a look at few
examples of DQL algorithm playing Atari games

+ Why is it happening? Is it simply because of TD approach?
– It’s severer than only TD: it comes from themax operator in the update!
+ How does it come?
– Well, It’s best understood through an example
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Deep Q-Learning Double DQL

Bias Problem: Basic Example
Let’s consider a simple example: assume we are dealing with two computers,
namely A and B. These computers are used to run the same program

‚ Computer A runs the program in exactlyXA “ 8 seconds
‚ Computer B runs the program in exactlyXB “ 5 seconds

We however do not know these values: we can only run sample runs
‚ Our time measurement is noisy, i.e., we compute on Computer i

X̂i “ Xi ` ε

ë This error is random and can increase or decreaseXi

Ultimate Goal
We want to compute the maximum runtime between the two computers
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Deep Q-Learning Double DQL

Bias Problem: Basic Example
We have access to noisy samples

X̂
p1q

A , . . . , X̂
pKq

A ,X̂
p1q

B , . . . , X̂
pKq

B

IfK is only moderately large, we could almost surely say that

max
!

X̂
p1q

A , . . . , X̂
pKq

A ,X̂
p1q

B , . . . , X̂
pKq

B

)

ą max tXA, XBu “ 8

‚ Within enough number of samples there is for sure a positive error sample
‚ This error sample renders an over-estimation

A crucial point is that if we repeat this experiment several times, we always get
an over-estimate; therefore,

after averaging over multiple instances, we are still biased!
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Deep Q-Learning Double DQL

Solution to Max-Bias: Double Measurements
There is a very simple and intuitive solution to this problem: we can collect
two sequences of samples

Sequence 1: X̂p1q

A,1 , . . . , X̂
pKq

A,1 ,X̂
p1q

B,1 , . . . , X̂
pKq

B,1

Sequence 2: X̂p1q

A,2 , . . . , X̂
pKq

A,2 ,X̂
p1q

B,2 , . . . , X̂
pKq

B,2

We find the index of the maximizer in Sequence 1, i.e.,

pi, kq “ argmax
!

X̂
p1q

A,1 , . . . , X̂
pKq

A,1 ,X̂
p1q

B,1 , . . . , X̂
pKq

B,1

)

But we take the sample from Sequence 2, i.e.,

X̂max “ X̂
pkq

i,2

This is an unbiased estimator: if we repeat this experiment several times

after averaging over multiple instances, we get close toXA
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Deep Q-Learning Double DQL

DQL with Double Measurements
We can apply this idea to DQL: we train two DQNs simultaneously

‚ We find out the action with maximum value using one DQN
‚ We evaluate the action-value of this action by the other DQN

This way we get an unbiased estimator of the optimal action-value

we refer to this approach as double DQL

Attention
In general this does not mean that we are necessarily reaching to a better
policy: we could have biased estimator and still play optimally!
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Deep Q-Learning Double DQL

Double DQL
Selecting DQN Evaluating DQN

Qw pSb`1,aq

argmax

Qw1

`

S1
b`1,a

˘

At|St

St`1, Rt`1

A1
t|S

1
t

S1
t`1, R

1
t`1

We train two DQNs on two independent experience sets
‚ With the online DQL we find

A‹
t`1 “ argmaxQw pSb`1,aq

‚ With the double DQL we evaluate

yb “ Rb`1 ` γQw1

`

Sb`1, A
‹
t`1

˘
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Deep Q-Learning Double DQL

Double DQL: Sample Results
Let’s take a look back to the earlier examples

Here, blue curves show double DQL
‚ In all examples we are getting less bias as compared to DQL
‚ In two example it helps converging to better policy

ë Alien and Time Pilot
‚ In one example, it reduces bias but does not impact converging policy
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Deep Q-Learning Other Variants

Other Variants
There are various extensions to classic DQL: some famous ones are

‚ Double DQL
ë It tries to reduce the bias of value estimation

‚ Dueling DQL
ë It uses notion of advantage ” difference between action-value and value
ë It helps finding non-valuable actions

‚ Prioritized DQL
ë It gives priority to samples in the experience buffer

‚ Distributed DQL
ë It enables training DQN through pipelining
ë This let training of DQNs for massive problems
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Deep Q-Learning Other Variants

Distributed DQL: Gorila
General Reinforcement Learning Architecture ” Gorila

Gorila is implemented through four main generalization
1 Parallel actors generating acting behavior
2 Parallel DQNs trained by stored experience
3 Distributed storage of experience
4 A distributed DQN that specifies acting behavior policy

Gorila massively parallelize implementation of DQL

this enables implementation of DQL for realistic hard control loops
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Deep Q-Learning Other Variants

Distributed DQL: Gorila
With significantly lower training time, Gorila starts to beat classic DQL
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Deep Q-Learning DQL with Continuous Actions

Dealing with Continuous Actions
Once DQL was established a new question raised
? How can we handle settings with continuous action space?

This is a very practical setting that show up in robotics, autonomous driving, etc

+ What about it? Why should be a challenge to use DQL with continuous
action space?

– Well! How could we maximize action-value in this case?!
Let’s take a look to see the challenge clearly
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Deep Q-Learning DQL with Continuous Actions

DQN: Recalling the Output

Q̂π ps,aq

x psq

x
`

s, a1
˘

qw p¨q q̂π
`

s, a1
˘

...

x
`

s, aM
˘

qw p¨q q̂π
`

s, aM
˘

With continuous actions, we cannot enumerate the output!
+ Why don’t we use action-value approximator of form I?!
– Well! Let’s do this
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Deep Q-Learning DQL with Continuous Actions

Recall: Action-Value Approximator – Form I
This is what we called Form I

x ps, aq qw p¨q q̂π ps, aq

Let’s now see how the DQL algorithm can be applied
ë Let’s consider the vanilla DQL

1: Update policy to π Ð ϵ-GreedypQw pSt,aqq

2: Draw actionAt from π p¨|Stq and observe St,At
Rt`1
ÝÑ St`1

3: ∆ Ð Rt`1 ` γmaxm Qw pSt`1, a
m

q ´ Qw pSt, Atq

4: Updatew Ð w ` α∆∇Qw pSt, Atq

We obviously can replaceQw p¨q with qw p¨q
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Deep Q-Learning DQL with Continuous Actions

DQL with Action-Value Approximator – Form I

1: Update policy to π Ð ϵ-GreedypQw pSt,aqq

2: Draw actionAt from π p¨|Stq and observe St,At
Rt`1
ÝÑ St`1

3: ∆ Ð Rt`1 ` γmaxm Qw pSt`1, a
m

q ´ Qw pSt, Atq

4: Updatew Ð w ` α∆∇Qw pSt, Atq

We can replace these updates with

1: Update policy to π Ð ϵ-Greedypqw pSt, aqq

2: Draw actionAt from π p¨|Stq and observe St,At
Rt`1
ÝÑ St`1

3: ∆ Ð Rt`1 ` γmaxa qw pSt`1, aq ´ qw pSt, Atq

4: Updatew Ð w ` α∆∇qw pSt, Atq

Well! We need to optimize over a continuous variable!
+ Where exactly we need it?
– In lines 1 and 3: once for ϵ-greedy update and once for off-policy control
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Deep Q-Learning DQL with Continuous Actions

DQL with Action-Value Approximator – Form I
This is an essential challenge: we need to optimize over a continuous variable

‚ We may grid the action space
ë It’s computationally expensive: we are back at square one!

‚ We may apply gradient descent
ë It makes a two-tier loop: it’s again computationally expensive!

+ It sounds like impossible!
– Only impossible is impossible

In practice, we solve the target optimization via a DNN!
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Deep Q-Learning DQL with Continuous Actions

Learning Optimal Action

x ps, aq qw p¨q q̂π ps, aq

x psq a‹
θ p¨q

x ps, a‹q q̂π ps, a‹q

a‹ “ argmax qw ps, aq

We could then update in DQL algorithm as

∆ Ð Rt`1 ` γqw pSt`1, a
‹q ´ qw pSt, Atq

and for ϵ-greedy improvement, we could

act a‹ with probability 1 ´ ϵ and random with probability ϵ
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Deep Q-Learning DQL with Continuous Actions

Learning Optimal Action
+ Say we trained the network after some time; then, what do we do?
– We act a‹ for each state s

Critic

qw p¨q

x psq Actora‹
θ p¨q

x ps, a‹q q̂π ps, a‹q

a‹ “ argmax qw ps, aq

This is a particular example if actor-critic algorithm!
ë We will discuss these algorithms
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Deep Q-Learning DQL with Continuous Actions

Solution to Continuous Action: Policy Networks
Our actor learns an optimal greedy policy

x psq a‹ psqa‹
θ p¨q

#

1 a “ a‹ psq

0 a ‰ a‹ psq

This is a simplified form of the so-called policy network

x ps, aq π̂‹ pa|sqπθ p¨q

Policy Network
Policy network is an approximation model that maps state-action features to
the optimal policy
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Deep Q-Learning Policy Networks

Solution to Continuous Action: Policy Networks
+ What is the point in doing DQL anymore when we have a ? We already

learn the optimal policy that we are looking for!
– Great! This is what we do in policy gradient algorithms

Policy networks are used in two sets of deep RL approaches
‚ Policy gradient approaches

ë We do not use a value network and directly approximate optimal policy
ë This is what we study next

‚ Actor-critic approaches
ë We keep the value network to examine the approximated optimal policy
ë This is the most practically-robust approach we can use
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