
Reinforcement Learning
Chapter 4: Function Approximation

Ali Bereyhi
ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Fall 2025

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 1 / 18

mailto:ali.bereyhi@utoronto.ca

Control with Function Approximation

Back to Model-free RL: Control
+ But, we have in general prediction and control problems. In which one are

we going to use function approximation?
– Well, we can use in both

Recall
We have two major problems in model-free RL

‚ Prediction in which for a given policy π we evaluate values by sampling the
environment

‚ Control in which after each interaction, we improve our policy aiming to
converge to the optimal policy

Let’s now ge to the control

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 2 / 18

Control with Function Approximation

Recap: Online Control ϵ-Greedy
We have seen a typical control loop via ϵ-greedy algorithm

via function approximation

X_Control():
1: Initiate two random policies π and π̄
2: while π ‰ π̄ do
3: q̂π “ X_QUpdatepπq and π Ð π̄
4: π̄ “ ϵ-Greedypq̂πq

5: end while

We can realize this loop using function approximation
1 Start with an initial approximator
2 Use the approximator to improve policy via ϵ-Greedy
3 Use SGD to update the approximation model from observation

We need an action-value approximator in this case

let’s formally define the Q-Network then

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 3 / 18

Control with Function Approximation Q-Network

Q-Net ” Action-Value Approximator – Form II

Q-Network
In the context of RL, the action-value approximation model that maps features
to the vector of all action values is often referred to as Q-Net

Qw p¨q Q̂π ps,aq

Q-Net

x psq

Deep Q-Network
If we set Q-Net to be a DNN; then, it is usually called

Deep Q-Network ” DQN

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 4 / 18

Control with Function Approximation Q-Network

Example: MLP as DQN
DQN can be simply an MLP

x1

...

xN

state feature

f

...

f

f

...

f

f

...

f

Q-Values

q̂π
`

s, a1
˘

q̂π
`

s, aM
˘

‚ Give the feature as an input vector
‚ The MLP estimates all action-values

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 5 / 18

Control with Function Approximation Q-Network

Example: CNN as DQN
It can be a convolutional neural network ” CNN

Qw ps,aq

‚ Give the feature as an input tensor, e.g., when feature is a frame
‚ The CNN estimates all action-values

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 6 / 18

Control with Function Approximation Q-Network

Building Control Loop with Q-Net
We can use Q-Net to build a control loop: similar to tabular RL, we can have
on-policy or off-policy approaches

‚ Deep on-policy RL
ë We can use a DQN to realize an on-policy control loop, e.g., SARSA
ë They are less in use as compared to off-policy versions

‚ Deep off-policy RL
ë We may use a DQN to realize an off-policy control loop, e.g., Q-learning
ë Due to some reasons deep off-policy RL is more popular

ë We can use experience replay in this case
ë They are therefore more sample-efficient
ë No worries! We will see these reasons⌣

Let’s start with on-policy algorithms

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 7 / 18

Control with Function Approximation Q-Network

Remark: Value Network
+ But, when I look at internet, I usually see the term value network! Don’t we

have this concept?!
– Sure! We have already worked with value networks

Value Network
Any approximation model that gets features and returns values is a value
function; this value could be a state value or an actio-value

‚ Q-Net is a value network
‚ vw p¨q that we used for prediction was also value network

+ Then, do we have any other sort of networks?!
– Yes! We could have policy networks: we will see them in the next chapter

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 8 / 18

Control with Function Approximation On-Policy Control

Recap: Going On-Policy
Let’s look back at our TD-based prediction algorithm

SGD_TD_QEval(λ):
1: Initiate with some initialw and learning rate α
2: for episode k “ 1 : K do
3: Sample a trajectory S0,A0

R1
ÝÑ S1, A1

R2
ÝÑ ¨ ¨ ¨

RT´1
ÝÝÝÑ ST´1,AT´1

RT
ÝÑ ST

4: for t “ 0 : T ´ 1 do
5: Compute∆t “ Rt`1 ` γvw pSt`1q ´ Qw pSt, Atq # forward propagation

6: Compute∇t “ ∇Qw pSt, Atq # backpropagation

7: Ew Ð λγEw ` ∇t

8: Update weights as
w Ð w ` α∆tEw

9: end for
10: end for

The key point in going on policy is to evaluate vw pSt`1q using our actual policy

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 9 / 18

Control with Function Approximation On-Policy Control

SARSA: Going On-Policy
We can modify line line 5: we compute vw pSt`1q as

vw pSt`1q “

M
ÿ

m“1

π pam|St`1qQw pSt`1, a
mq

In on-policy approach, we act before we update

our policy leads us to next actionAt`1

So, we could move on our policy and write

π pa|St`1q “

#

1 a “ At`1

0 a ‰ At`1

ù vw pSt`1q “ Qw pSt`1, At`1q

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 10 / 18

Control with Function Approximation On-Policy Control

SARSA with Q-Net

SGD_SARSA():
1: Initiate withw and learning rate α
2: for episode “ 1 : K or until π stops changing do
3: Initiate with a random state-action pair pS0, A0q

4: for t “ 0 : T ´ 1 where ST is either terminal or terminated do
5: ActAt and observe St,At

Rt`1
ÝÑ St`1

6: Update policy to π Ð ϵ-GreedypQw pSt, Atqq

7: Draw the new actionAt`1 from π p¨|St`1q and move on policy

St,At
Rt`1
ÝÑ St`1,At`1

8: Set∆ Ð Rt`1 ` γQw pSt`1, At`1q ´ Qw pSt, Atq # forward propagation

9: Updatew Ð w ` α∆∇Qw pSt, Atq # backpropagation

10: end for
11: end for

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 11 / 18

Control with Function Approximation On-Policy Control

SARSA with Q-Net and Eligibility Tracing
We have seen that with function approximation eligibility tracing reduces to

Ew Ð γλEw ` ∇Qw pSt, Atq

Let’s fit it into our SARSA control loop!

Eligibility Tracing 9 Backpropagation
If we use a DQN, we should backpropagate to compute the eligibility tracing:
this point is intuitive as both approaches naturally follow the same logic

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 12 / 18

Control with Function Approximation On-Policy Control

SARSA(λ) with Function Approximation

SGD_SARSA(λ):
1: Initiate withw and learning rate α
2: for episode “ 1 : K or until π stops changing do
3: Initiate with a random state-action pair pS0, A0q

4: for t “ 0 : T ´ 1 where ST is either terminal or terminated do
5: ActAt and observe St,At

Rt`1
ÝÑ St`1

6: Update policy to π Ð ϵ-GreedypQw pSt,aqq

7: Draw the new actionAt`1 from π p¨|St`1q and move on policy

St,At
Rt`1
ÝÑ St`1,At`1

8: Set∆ Ð Rt`1 ` γQw pSt`1, At`1q ´ Qw pSt, Atq # forward propagation

9: Ew Ð λγEw ` ∇Qw pSt, Atq # backpropagation

10: Updatew Ð w ` α∆Ew

11: end for
12: end for

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 13 / 18

Control with Function Approximation Off-Policy Control

Recap: Going Off-Policy
In off-policy control: we behave with a policy π but update by a target policy π̄

‚ We could use importance sampling to evaluate target policy
‚ We mainly focused on Q-learning approach

Q-Learning
Q-learning is an off-policy TD control algorithm, where we sample with ϵ-greedy
policy but update with greedy policy

Key property of Q-learning is that we don’t really need importance sampling: we
could directly update as

q̂π̄ pSt, Atq Ð q̂π̄ pSt, Atq ` α
´

Rt`1 ` γmax
m

q̂π̄ pSt`1,a
mq ´ q̂π̄ pSt, Atq

¯

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 14 / 18

Control with Function Approximation Off-Policy Control

Q-Learning with Q-Net
We can therefore extend out Q-learning algorithm to

SGD_Q-Learning():
1: Initiate withw and learning rate α
2: for episode “ 1 : K or until π stops changing do
3: Initiate with a random state S0

4: for t “ 0 : T ´ 1 where ST is either terminal or terminated do
5: Update policy to π Ð ϵ-GreedypQw pSt,aqq

6: Draw actionAt from π p¨|Stq and observe St,At
Rt`1
ÝÑ St`1

7: ∆ Ð Rt`1 ` γmaxm Qw pSt`1, a
m

q ´ Qw pSt, Atq # forward propagation

8: Updatew Ð w ` α∆∇Qw pSt, Atq # backpropagation

9: end for
10: end for

We could potentially use eligibility tracing as well!

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 15 / 18

Control with Function Approximation Off-Policy Control

Incremental Algorithms: Challenges
What we have developed by now are the so-called incremental approaches

Incremental Algorithms
Incremental algorithms use the actual sample at each time to update the Q-Net

Though easy to implement, incremental approaches are not efficient
1 They are extremely sample-inefficient

ë Once we use a sample, we are over with it
ë But, in deep learning we used to use the same samples several times

ë We make a training loop with multiple epochs
ë In each epoch, we go through the whole dataset

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 16 / 18

Control with Function Approximation Off-Policy Control

Incremental Algorithms: Challenges
Though easy to implement, incremental approaches are not efficient

2 They use samples that are strongly correlated
ë In sample St,At

Rt`1
ÝÑ St`1,At`1 states St and St`1 are closely related

ë If state is the location; then, locations in time t and t ` 1 are very close
ë But, we know that we need independent samples

ë With correlated samples we can easily stick to a local fitting
ë Our Q-Net does not generalize very well

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 17 / 18

Control with Function Approximation Off-Policy Control

Solution: Batch Training
The solution to these challenges is to use batch training

1 Save every sample in a database
ë We can only save the values we need, i.e., estimator values

2 In each iteration sample from database
ë We can reuse (reply) our sampled experiences
ë We can reduce the correlation between succeeding samples

This is what we call experience reply
‚ This needs us to control off-policy

ë We are using samples of previous non-improved policies
ë We want to update the value of a different target policy

‚ This is why deep off-policy algorithms are more sample-efficient

We next study this in details⌣

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 18 / 18

	Control with Function Approximation
	Q-Network
	On-Policy Control
	Off-Policy Control

