Reinforcement Learning

Chapter 4: Function Approximation
Ali Bereyhi
ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Fall 2025

Reinforcement Learning Chapter 4: Function Approximation

mailto:ali.bereyhi@utoronto.ca

Back to Model-free RL: Control

+ But, we have in general prediction and control problems. In which one are
we going to use function approximation?

- Well, we can use in both

Recall
We have two major problems in model-free RL
e Prediction in which for a given policy ™ we evaluate values by sampling the
environment
e Control in which after each interaction, we improve our policy aiming to
converge to the optimal policy

‘ Let’s now ge to the control ‘

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 2/18

Recap: Online Control e-Greedy

We have seen a typical control loop via e-greedy algorithm

X_Control():

1: Initiate two random policies and 7
2: while w # 7 do

I N G
5: end while

We can realize this loop using function approximation

@ Start with an initial approximator

@ Use the approximator to improve policy via e-Greedy

® Use SGD to update the approximation model from observation
We need an action-value approximator in this case

let’s formally define the Q-Network then

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 3/18

Q-Net = Action-Value Approximator - Form |l
Q-Network

In the context of RL, the action-value approximation model that maps features
to the vector of all action values is often referred to as Q-Net

X(s) QW () Qw (S:a)

QR-Net

Deep Q-Network
If we set Q-Net to be a DNN; then, it is usually called

Deep Q-Network = DQN

Reinforcement Learning

Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 4/18

Example: MLP as DQN
DQN can be simply an MLP

state feature . @

® Give the feature as an input vector

® The MLP estimates all action-values

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 5/18

Example: CNN as DQN

It can be a convolutional neural network = CNN

- — Qw (5) a)

¢ Give the feature as an input tensor, e.g., when feature is a frame
e The CNN estimates all action-values

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 6/18

Building Control Loop with Q-Net

We can use Q-Net to build a control loop: similar to tabular RL, we can have
on-policy or off-policy approaches
e Deep on-policy RL
L, We can use a DQN to realize an on-policy control loop, e.g., SARSA
L, They are less in use as compared to off-policy versions
® Deep off-policy RL

L, We may use a DQN to realize an off-policy control loop, e.g., Q-learning
L, Due to some reasons deep off-policy RL is more popular

L, We can use experience replay in this case
L, They are therefore more sample-efficient
L, No worries! We will see these reasons ©

Let’s start with on-policy algorithms

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 7/18

Control with Function Approximation Q-Network

Remark: Value Network

+ But, when | look at internet, | usually see the term value network! Don’t we
have this concept?!

- Sure! We have already worked with value networks

Value Network

Any approximation model that gets features and returns values is a value
function; this value could be a state value or an actio-value

® Q-Net is a value network

vw () that we used for prediction was also value network

—+

Then, do we have any other sort of networks?!

Yes! We could have policy networks: we will see them in the next chapter

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 8/18

Recap: Going On-Policy
Let’s look back at our TD-based prediction algorithm

SGD_TD_QEval(\) :
1: Initiate with some initial w and learning rate o
2: forepisode k =1 : K do
3: Sample a trajectory Sp, Ao Fa, S1, Ay B, B, Sr_1,Ar_1 A, St
4: fort=0:T —1do
5 Compute At = Rt+1 + YUw (St+1) — Qw (St, At) # forward propagation
6: Compute Vt = VQW (St, At) # backpropagation
7: Ew «— MEw + V,
8 Update weights as
W «— W+ aAFE
9: end for
10: end for

The key point in going on policy is to evaluate vy, (S;+1) using our actual policy

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 9/18

SARSA: Going On-Policy

We can modify line line 5: we compute vy, (S;+1) as

St+1 Z ™ m|St+1 Qw (St+17)
m=1

In on-policy approach, we act before we update

our policy leads us to next action A;

So, we could move on our policy and write

1 a=A
7 (alSi11) = {0 " AHi o Vg (S141) = Qw (Sev1, Arg1)
t+

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 10/18

SARSA with Q-Net

SGD_SARSAQ) :

1: Initiate with w and learning rate «

2: forepisode = 1 : K or until 7 stops changing do

3: Initiate with a random state-action pair (So, Ao)

4: fort = 0 : T — 1 where St is either terminal or terminated do

5: Act A; and observe S;, A, Bety Sii1

6: Update policy to m «— e-Greedy(Qw (St, A¢))

7 Draw the new action A1 from 7 (-|S;41) and move on policy

Riya
St7At I St+1,At+1

8: Set A «— Rt+1 + ’VQW (St+1, At+1) — Qw (St, At) # forward propagation
9: Update W «— W + OZAVQW (St, At) # backpropagation
10: end for
11: end for

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 11/18

SARSA with Q-Net and Eligibility Tracing

We have seen that with function approximation eligibility tracing reduces to

LBy «— ’7)‘EW + VC)w (St7 At)

Let’s fit it into our SARSA control loop!
Eligibility Tracing oc Backpropagation

If we use a DQN, we should backpropagate to compute the eligibility tracing:
this point is intuitive as both approaches naturally follow the same logic

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 12/18

SARSA()\) with Function Approximation

SGD_SARSA(M):

1: Initiate with w and learning rate «

2: forepisode = 1 : K or until 7 stops changing do

3: Initiate with a random state-action pair (So, Ao)

4 fort = 0 : T — 1 where St is either terminal or terminated do

5: Act A, and observe S;, A, Bety St+1

6 Update policy to m «— e-Greedy(Qw (S, a))

7 Draw the new action A1 from 7 (-|S;41) and move on policy

Riqq
SuAt I St+1,At+1

8: Set A «— Rt+1 + ’VQW (St+1, At+1) — Qw (St, At) # forward propagation
9: Ew «—)\’)/Ew + VQW (St, At) # backpropagation
10: Update w «<— w + aAFEy

11: end for

12: end for

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 13/18

Recap: Going Off-Policy

In off-policy control: we behave with a policy 7 but update by a target policy
e We could use importance sampling to evaluate target policy
® We mainly focused on Q-learning approach

Q-Learning

Q-learning is an off-policy TD control algorithm, where we sample with e-greedy
policy but update with greedy policy

Key property of Q-learning is that we don’t really need importance sampling: we
could directly update as

Gr (i, Ar) <= dx (St, Ar) + @ Resa +ymax dz (Sp.a™) = dz (i, Ar))

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 14/18

Q-Learning with Q-Net

We can therefore extend out Q-learning algorithm to

SGD_Q-Learning() :
1: Initiate with w and learning rate «
2: forepisode = 1 : K or until 7 stops changing do
3: Initiate with a random state Sy

4 fort = 0 : T — 1 where St is either terminal or terminated do

5 Update policy to m < e-Greedy(Qw (St,a))

é: Draw action A, from 7 (-|S;) and observe S;, A, plad= Stt1

7. A <« Rt+1 + Y maXm Qw (SL+1, (Jm) — Qw (S[,, A/) # forward propagation
8 Update W «— W + CMAVQW (St, At) # backpropagation
9 end for
10: end for

We could potentially use eligibility tracing as well!

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 15/18

Incremental Algorithms: Challenges

What we have developed by now are the so-called incremental approaches

Incremental Algorithms
Incremental algorithms use the actual sample at each time to update the Q-Net

Though easy to implement, incremental approaches are not efficient
@ They are extremely sample-inefficient
L, Once we use a sample, we are over with it
L, But, in deep learning we used to use the same samples several times

L, We make a training loop with multiple epochs
L, In each epoch, we go through the whole dataset

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 16/18

Incremental Algorithms: Challenges

Though easy to implement, incremental approaches are not efficient
@ They use samples that are strongly correlated

L, Insample S;,A; By Sii1,A;.1 states Sy and Sy 1 are closely related
L, If state is the location; then, locations in time t and t + 1 are very close
L, But, we know that we need independent samples
L, With correlated samples we can easily stick to a local fitting
L, Our Q-Net does not generalize very well

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 17/18

Solution: Batch Training

The solution to these challenges is to use batch training
@ Save every sample in a database
L, We can only save the values we need, i.e., estimator values
@ In each iteration sample from database

L, We can reuse (reply) our sampled experiences
L, We can reduce the correlation between succeeding samples

This is what we call experience reply

® This needs us to control off-policy

L, We are using samples of previous non-improved policies
L, We want to update the value of a different target policy

e This is why deep off-policy algorithms are more sample-efficient

We next study this in details ©

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 18/18

	Control with Function Approximation
	Q-Network
	On-Policy Control
	Off-Policy Control

