Reinforcement Learning

Chapter 4: Function Approximation

Ali Bereyhi

ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Fall 2025

Back to Model-free RL

We now get back to model-free RL: this time however

we use a parameterized estimator

This means that

• to estimate the value function, we use

$$\hat{v}_{\mathbf{w}}\left(s\right)$$

to estimate the action-value function, we use

$$\hat{q}_{\mathbf{w}}\left(s,a\right)$$

- - ☐ They could be as simple as linear approximators or advanced like DNNs

Back to Model-free RL

- + But, we have in general prediction and control problems. In which one are we going to use function approximation?
- Well, we can use in both

Recall

We have two major problems in model-free RL

- Prediction in which for a given policy π we evaluate values by sampling the environment
- Control in which after each interaction, we improve our policy aiming to converge to the optimal policy

Let's start with the prediction

Basic Prediction via Approximator

Say we want to evaluate the value function of a policy π : with function approximation we assume that the value approximator is

$$s \longrightarrow v_{\mathbf{w}}(\cdot) \longrightarrow \hat{v}_{\pi}(s)$$

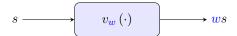
- We sample the environment by policy π

$$S_0, A_0 \xrightarrow{R_1} S_1, A_1 \xrightarrow{R_2} \cdots \xrightarrow{R_{T-1}} S_{T-1}, A_{T-1} \xrightarrow{R_T} S_T$$

- We want to use these samples to train our approximation model

Building Simple Approximator

- + Well you have talked a lot about approximators, but can you give us a concrete example?!
- Sure! Let's look at linear approximator: say our approximator is a linear function of the input
- + Does it mean the following diagram?!



- + But it doesn't seem to work with only one parameter!
- Oops! We haven't yet defined the feature representation of states!

Feature Representation

In general, we could represent a particular state in various forms

Say we have N states s^1, \ldots, s^N : we can represent them by a scalar, e.g.

$$s^n \mapsto \mathbf{x}\left(s^n\right) = n$$

Or a one-sparse vector, i.e.,

$$s^{n} \mapsto \mathbf{x}(s^{n}) = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} \leftarrow \text{ entry } n$$

Feature Representation

Feature Representation of States

Feature representation maps each state into a vector of features that corresponds to that state, i.e.,

$$\mathbf{x}\left(\cdot\right): \mathbb{S} \mapsto \mathbb{R}^{J}$$

for some integer J that is the feature dimension

Example: We can represents the feature by tokenization

$$s^{n} \mapsto \mathbf{x}(s^{n}) = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} \leftarrow \text{ entry } n$$

Feature Representation

Feature Representation of States

Feature representation maps each state into a vector of features that corresponds to that state, i.e.,

$$\mathbf{x}\left(\cdot\right):\mathbb{S}\mapsto\mathbb{R}^{J}$$

for some integer J that is the feature dimension

In practice, we use more advanced problem-specific features

- The state of a robot can be specified by its geometric features
 - → its distance to the edges of the room, its direction, etc
- The state of a computer game is completely explained by its frames
 - we collect all frames from a state to another

Example: Mountain Car

Let's consider the famous mountain car example

- A car is stuck in a valley
 - it can accelerate to left, accelerate to right, or do nothing
- It observes its velocity \boldsymbol{v} and location \boldsymbol{x} on the horizontal axis
 - **→** they are continuous variables

The goal is to train the car to get out of this valley as quick as possible

• The car is rewarded by -1 after each unsuccessful trial

Example: Mountain Car

This car can be in infinite number of states; however, we can represent its state by its velocity and location

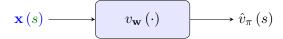
$$\mathbf{x}\left(s\right) = \begin{bmatrix} v \\ x \end{bmatrix}$$

This is much more feasible to work with!

Back to Simple Approximator

- + How is this feature related to our discussion on function approximation?!
- Well! Approximation model maps the features to value

So, in our problem, we in fact assume that



Example: Linear Approximator

Linear approximation model maps the state features to its value as

$$v_{\mathbf{w}}(s) = \mathbf{w}^{\mathsf{T}} \mathbf{x}(s)$$

Example: Mountain Car

In mountain car example, we could have a two-dimensional linear approximator

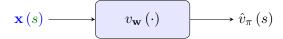
$$v_{\mathbf{w}}(s) = \mathbf{w}^{\mathsf{T}} \mathbf{x}(s) = \begin{bmatrix} w_1 & w_2 \end{bmatrix} \begin{bmatrix} v \\ x \end{bmatrix}$$

= $w_1 v + w_2 x$

Back to Simple Approximator

- + How is this feature related to our discussion on function approximation?!
- Well! Approximation model maps the features to value

So, in our problem, we in fact assume that



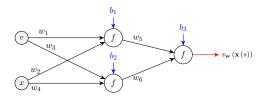
Example: Deep Approximator

Deep approximation model maps the state features to its value via a DNN

$$v_{\mathbf{w}}(s) = \text{DNN}(\mathbf{x}(s)|\mathbf{w})$$

Example: Mountain Car

We may also use a NN to map the feature to its value



Here, the weights are $\mathbf{w} = [w_1, \dots, w_6, b_1, b_2, b_3]^\mathsf{T}$

Training Approximation Model

- + How can we train a given approximation model?
- Let's again get help from a genie

Assume that a genie could tell us the exact value of all states: in this case we want to find ${\bf w}$ such that for each s^n

$$v_{\mathbf{w}}\left(s^{n}\right) \stackrel{!}{=} v_{\pi}\left(s^{n}\right) \iff \left|v_{\mathbf{w}}\left(s^{n}\right) - v_{\pi}\left(s^{n}\right)\right| \stackrel{!}{=} 0$$

This is equivalent to say that

$$\frac{1}{N} \sum_{n=1}^{N} |v_{\mathbf{w}}(s^n) - v_{\pi}(s^n)|^2 \stackrel{!}{=} 0$$

Training Approximation Model

But, we cannot necessarily find such w: we could instead find

$$\mathbf{w}^{\star} = \min_{\mathbf{w}} \frac{1}{N} \sum_{n=1}^{N} |v_{\mathbf{w}}(s^n) - v_{\pi}(s^n)|^2$$

One may also think about a more general weighted average: we can assume that under policy π each state s^n happens with a probability $p_{\pi}(s^n)$ and write

$$\mathbf{w}^{\star} = \min_{\mathbf{w}} \sum_{n=1}^{N} \mathbf{p}_{\pi} \left(s^{n} \right) |v_{\mathbf{w}} \left(s^{n} \right) - v_{\pi} \left(s^{n} \right)|^{2}$$
$$= \min_{\mathbf{w}} \mathbb{E}_{\pi} \left\{ |v_{\mathbf{w}} \left(S \right) - v_{\pi} \left(S \right)|^{2} \right\}$$

We train by minimizing residual sum of squares \equiv least-squares (LS) method

LS Training: Gradient Descent

We use gradient descent to solve this problem: we are minimizing the risk

$$\mathcal{L}(\mathbf{w}) = \mathbb{E}_{\pi} \left\{ |v_{\mathbf{w}}(S) - v_{\pi}(S)|^{2} \right\}$$

GradientDescent():

1: Initiate with some initial ${f w}$ and learning rate η

2: while weights not converged do

3: Compute gradient $\nabla \mathcal{L}(\mathbf{w})$

4: Update weights as $\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla \mathcal{L} \left(\mathbf{w}^{t-1} \right)$

5: end while

Let's compute the gradient: we can use the chain rule

$$\nabla \mathcal{L}\left(\mathbf{w}\right) = \frac{\partial \mathcal{L}}{\partial v_{\mathbf{w}}\left(S\right)} \nabla v_{\mathbf{w}}\left(S\right)$$
$$= 2\mathbb{E}_{\pi} \left\{ \left(v_{\mathbf{w}}\left(S\right) - v_{\pi}\left(S\right)\right) \nabla v_{\mathbf{w}}\left(S\right) \right\}$$

LS Training: Gradient Descent

Now we set the learning rate to $\eta=0.5\alpha$ for some α ; then, we have

$$\mathbf{w}^{(t)} \leftarrow \mathbf{w}^{(t-1)} - \alpha \mathbb{E}_{\pi} \left\{ \left(v_{\mathbf{w}} \left(S \right) - v_{\pi} \left(S \right) \right) \nabla v_{\mathbf{w}} \left(S \right) \right\}$$

$$\leftarrow \mathbf{w}^{(t-1)} + \alpha \mathbb{E}_{\pi} \left\{ \left(v_{\pi} \left(S \right) - v_{\mathbf{w}} \left(S \right) \right) \nabla v_{\mathbf{w}} \left(S \right) \right\}$$

So, we the gradient descent based evaluation reduces to

```
1: Initiate with some initial \mathbf{w}^{(0)} and learning rate \eta

2: while weights not converged do

3: Update weights as \mathbf{w} \leftarrow \mathbf{w} + \alpha \mathbb{E}_{\pi} \left\{ \left( \mathbf{v}_{\pi} \left( \mathbf{S} \right) - \mathbf{v}_{\mathbf{w}} \left( \mathbf{S} \right) \right) \nabla v_{\mathbf{w}} \left( \mathbf{S} \right) \right\}

4: end while
```

- + That's nice! But, how in earth we know $v_{\pi}(S)$?!
- Well! We may use what we learned in model-free RL again!

GD Eval():

The key challenge is to find out an estimator for

$$\mathbb{E}_{\pi} \left\{ \left(\mathbf{v}_{\pi} \left(\mathbf{S} \right) - \mathbf{v}_{\mathbf{w}} \left(\mathbf{S} \right) \right) \nabla v_{\mathbf{w}} \left(\mathbf{S} \right) \right\}$$

We can do it by Monte Carlo: say we have an episodic environment with terminal state and sampled an episode

$$S_0, A_0 \xrightarrow{R_1} S_1, A_1 \xrightarrow{R_2} \cdots \xrightarrow{R_{T-1}} S_{T-1}, A_{T-1} \xrightarrow{R_T} S_T$$

We can convert this trajectory into

$$(S_0, G_0) \to (S_1, G_1) \to \ldots \to (S_{T-1}, G_{T-1})$$

with G_t being the sample return, i.e.,

$$G_t = \sum_{i=0}^{T-t-1} \gamma^i R_{t+1+i}$$

The key challenge is to find out an estimator for

$$\mathbb{E}_{\pi} \left\{ \left(\mathbf{v}_{\pi} \left(\mathbf{S} \right) - \mathbf{v}_{\mathbf{w}} \left(\mathbf{S} \right) \right) \nabla v_{\mathbf{w}} \left(\mathbf{S} \right) \right\}$$

We do know that G_t is an estimator of $v_{\pi}(S_t)$: so we could say

$$\mathbb{E}_{\pi} \left\{ \left(\mathbf{v_{\pi}} \left(\mathbf{S} \right) - v_{\mathbf{w}} \left(\mathbf{S} \right) \right) \nabla v_{\mathbf{w}} \left(\mathbf{S} \right) \right\} \approx \frac{1}{T} \sum_{t=0}^{T-1} \left(\mathbf{G_t} - v_{\mathbf{w}} \left(\mathbf{S_t} \right) \right) \nabla v_{\mathbf{w}} \left(\mathbf{S_t} \right)$$

We can compute this one from our observations!

We can then write this approximate gradient descent approach as

GD_MC_Eval():

- 1: Initiate with some initial ${\bf w}$ and learning rate α
- 2: while weights not converged do
- 3: Sample a trajectory

$$S_0, A_0 \xrightarrow{R_1} S_1, A_1 \xrightarrow{R_2} \cdots \xrightarrow{R_{T-1}} S_{T-1}, A_{T-1} \xrightarrow{R_T} S_T$$

4: Compute the sequence

$$(S_0, G_0) \to (S_1, G_1) \to \ldots \to (S_{T-1}, G_{T-1})$$

5: Update weights as

$$\mathbf{w} \leftarrow \mathbf{w} + \frac{\alpha}{T} \sum_{t=0}^{T-1} \left(\mathbf{G_t} - v_{\mathbf{w}} \left(S_t \right) \right) \nabla v_{\mathbf{w}} \left(S_t \right)$$

6: end while

This is not practical to wait for exact convergence: we try couple of episodes

GD_MC_Eval():

1: Initiate with some initial w and learning rate α

- 2: for episode k = 1 : K do
- 3: Sample a trajectory

$$S_0, A_0 \xrightarrow{R_1} S_1, A_1 \xrightarrow{R_2} \cdots \xrightarrow{R_{T-1}} S_{T-1}, A_{T-1} \xrightarrow{R_T} S_T$$

4: Compute the sequence

$$(S_0, G_0) \to (S_1, G_1) \to \ldots \to (S_{T-1}, G_{T-1})$$

5: Update weights as

$$\mathbf{w} \leftarrow \mathbf{w} + \frac{\alpha}{T} \sum_{t=0}^{T-1} \left(\mathbf{G_t} - v_{\mathbf{w}} \left(S_t \right) \right) \nabla v_{\mathbf{w}} \left(S_t \right)$$

6: end for

- + But, should we really update once an episode?!
- Not really!

We can look at this algorithm as batch training with the batch being

$$(S_0, G_0), (S_1, G_1), \dots, (S_{T-1}, G_{T-1})$$

We can also use mini-batches, and we can reduce the mini-batch size to 1: in this case, the estimator of the gradient will be a single sample, i.e.,

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \left(\mathbf{G_t} - v_{\mathbf{w}} \left(S_t \right) \right) \nabla v_{\mathbf{w}} \left(S_t \right)$$

We can train the approximator via SGD and Monte Carlo

SGD_MC_Eval():

- 1: Initiate with some initial w and learning rate α
- 2: for episode k = 1 : K do
- 3: Sample a trajectory

$$S_0, A_0 \xrightarrow{R_1} S_1, A_1 \xrightarrow{R_2} \cdots \xrightarrow{R_{T-1}} S_{T-1}, A_{T-1} \xrightarrow{R_T} S_T$$

4: Compute the sequence

$$(S_0, G_0) \to (S_1, G_1) \to \ldots \to (S_{T-1}, G_{T-1})$$

- 5: **for** t = 0 : T 1 **do**
- 6: Update weights as

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \left(\mathbf{G_t} - v_{\mathbf{w}} \left(S_t \right) \right) \nabla v_{\mathbf{w}} \left(S_t \right)$$

- 7: end for
- 8: end for

LS Training via Temporal Difference

- + So can't we use also TD to acquire an estimate?
- Sure!

We can evaluate an estimator by TD: say we sample

$$S_0, A_0 \xrightarrow{R_1} S_1, A_1 \xrightarrow{R_2} \cdots \xrightarrow{R_{T-1}} S_{T-1}, A_{T-1} \xrightarrow{R_T} S_T$$

We can then compute an estimator of $v_{\pi}(S_t)$ via TD as

$$G_t^0 = R_{t+1} + \gamma v_{\mathbf{w}} \left(S_{t+1} \right)$$

LS Training via Temporal Difference

We can alternatively train the approximator via temporal difference

```
SGD TD Eval():
 1: Initiate with some initial w and learning rate \alpha
 2: for episode k=1:K do
 3: Sample a trajectory
                            S_0, A_0 \xrightarrow{R_1} S_1, A_1 \xrightarrow{R_2} \cdots \xrightarrow{R_{T-1}} S_{T-1}, A_{T-1} \xrightarrow{R_T} S_T
          for t = 0 : T - 1 do
 4:
 5:
           Update weights as
                                \mathbf{w} \leftarrow \mathbf{w} + \alpha \left( R_{t+1} + \gamma v_{\mathbf{w}} \left( S_{t+1} \right) - v_{\mathbf{w}} \left( S_{t} \right) \right) \nabla v_{\mathbf{w}} \left( S_{t} \right)
          end for
 7: end for
```

You can extend it to TD-n or TD $_{\lambda}$ as well

- These algorithm look like what we had before!
- Well! This is actually an extended version of it!

Let's consider a special case in which

We use tokenization for feature representation

Tokenization

We represent the feature vector as

$$\mathbf{x}(s^n) = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} \leftarrow \text{ entry } n = \mathbf{1}\{s = s^n\}$$

Let's consider a special case in which

- We use tokenization for feature representation
- We use a linear model for approximation

Linear Model

We approximate the value function via a linear transform

$$v_{\mathbf{w}}(s) = \mathbf{w}^{\mathsf{T}} \mathbf{x}(s)$$

With linear model and tokenization, our estimate of value at state s^n is

$$\hat{v}_{\pi}(s^n) = v_{\mathbf{w}}(s^n) = \mathbf{w}^{\mathsf{T}} \mathbf{1} \{s = s^n\} = w_n$$

Also we have

$$\nabla v_{\mathbf{w}}(s^n) = \mathbf{x}(s^n) = \mathbf{1}\{s = s^n\}$$

Let's consider a special case in which

- We use tokenization for feature representation
- 2 We use a linear model for approximation

Let's now look at the SGD update with TD

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \left(R_{t+1} + \gamma v_{\mathbf{w}} \left(S_{t+1} \right) - v_{\mathbf{w}} \left(S_{t} \right) \right) \nabla v_{\mathbf{w}} \left(S_{t} \right)$$

$$\leftarrow \mathbf{w} + \alpha \left(R_{t+1} + \gamma \underbrace{v_{\mathbf{w}} \left(S_{t+1} \right)}_{\hat{v}_{\pi} \left(S_{t+1} \right)} - \underbrace{v_{\mathbf{w}} \left(S_{t} \right)}_{\hat{v}_{\pi} \left(S_{t} \right)} \right) \underbrace{\mathbf{x} \left(S_{t} \right)}_{\mathbf{1} \left\{ s = S_{t} \right\}}$$

Say $S_t = s^n$: then, it is only entry n which gets update

$$w_n \leftarrow w_n + \alpha \left(R_{t+1} + \gamma \hat{v}_{\pi} \left(S_{t+1} \right) - \hat{v}_{\pi} \left(S_t \right) \right)$$

Let's consider a special case in which

- We use tokenization for feature representation
- 2 We use a linear model for approximation

Say $S_t = s^n$: then, it is only entry n which gets updated

$$w_n \leftarrow w_n + \alpha \left(R_{t+1} + \gamma \hat{v}_{\pi} \left(S_{t+1} \right) - \hat{v}_{\pi} \left(S_t \right) \right)$$

and we know that $w_n = \hat{v}_{\pi}\left(s^n\right) = \hat{v}_{\pi}\left(S_t\right)$, so we can write

$$\hat{v}_{\pi}\left(S_{t}\right) \leftarrow \hat{v}_{\pi}\left(S_{t}\right) + \alpha\left(R_{t+1} + \gamma \hat{v}_{\pi}\left(S_{t+1}\right) - \hat{v}_{\pi}\left(S_{t}\right)\right)$$

Bingo! This is the tabular TD update!

Moral of Story

Tabular RL is a special case of RL with function approximation when

- We use tokenization for feature representation
- We use a linear model for approximation

So, we expect learning better when we go for other feature representation and approximation models

- + In practice however we always need action-values! Right?
- Well! We can simply extend everything to state-action pairs

Feature Representation of State-Actions

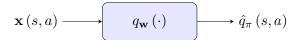
Feature representation maps each state-action pair into a vector of features that correspond to that state and action, i.e.,

$$\mathbf{x}\left(\cdot\right):\mathbb{S}\times\mathbb{A}\mapsto\mathbb{R}^{J}$$

for some integer J that is the feature dimension

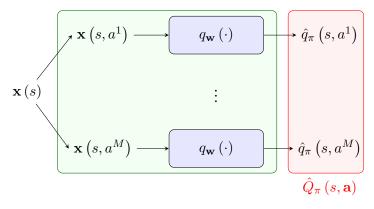
Action-Value Approximator: Form I

We can further consider an approximation model: it maps the feature vector of each state-action pair (s,a) into its action-value



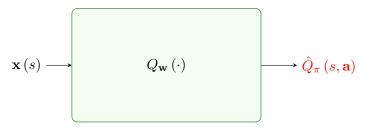
Action-Value Approximator: Form II

We may stack this approximator for various actions: we can look at the end-to-end setting as a general approximator



Action-Value Approximator: Form II

We may stack this approximator for various actions: maybe, we can consider a general approximation model in this case



Let's make an agreement

 $\hat{Q}_{\pi}\left(s,\mathbf{a}\right)$ and $Q_{\mathbf{w}}\left(s,\mathbf{a}\right)$ represent the complete vector of action-values and $\hat{Q}_{\pi}\left(s,a\right)$ and $Q_{\mathbf{w}}\left(s,a\right)$ denote the entry corresponding to a

Training Approximation Model

The LS training can further be applied here: with the help of genie, we train the action-value approximator as

$$\mathbf{w}^{\star} = \min_{\mathbf{w}} \mathbb{E}_{\pi} \left\{ |Q_{\mathbf{w}}(S, A) - Q_{\pi}(S, A)|^{2} \right\}$$

which is iteratively solved via gradient descent using update rule

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \mathbb{E}_{\pi} \left\{ \left(\mathbf{Q}_{\pi} \left(\mathbf{S}, \mathbf{A} \right) - \mathbf{Q}_{\mathbf{w}} \left(\mathbf{S}, \mathbf{A} \right) \right) \nabla \mathbf{Q}_{\mathbf{w}} \left(\mathbf{S}, \mathbf{A} \right) \right\}$$

Again, we could use Monte Carlo or TD to find an estimator of $Q_{\pi}(S, A)$

Say we have sampled a trajectory

$$S_0, A_0 \xrightarrow{R_1} S_1, A_1 \xrightarrow{R_2} \cdots \xrightarrow{R_{T-1}} S_{T-1}, A_{T-1} \xrightarrow{R_T} S_T$$

We can convert this trajectory into a sequence of (S_t, A_t, G_t)

Using Monte Carlo we can update by

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha (\mathbf{G_t} - Q_{\mathbf{w}}(S_t, A_t)) \nabla Q_{\mathbf{w}}(S_t, A_t)$$

Using TD we can update as

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha (R_{t+1} + \gamma v_{\mathbf{w}} (S_{t+1}) - Q_{\mathbf{w}} (S_t, A_t)) \nabla Q_{\mathbf{w}} (S_t, A_t)$$

and we can find $v_{\mathbf{w}}\left(S_{t+1}\right)$ as

$$v_{\mathbf{w}}(s) = \sum_{m=1}^{M} \pi(a^{m}|s) Q_{\mathbf{w}}(s, a^{m})$$

We can use all approaches we developed before

- only difference is that we replace the simple update by gradient descent
- it gets back to tabular RL if we use tokenization and linear approximation

Let's see a simple example: remember the backward view of TD_λ

- we trace the eligibility of each state-action
- we propagate the update to previous state-action pairs

```
ElgTrace(S_t, A_t, E(\cdot) | \lambda):
```

- 1: Eligibility tracing function has NM components, i.e., $E(s, \mathbf{a})$ for all state-action pairs
- 2: **for** all state-action pairs (s, a) **do**
- 3: Update $E(s, \mathbf{a}) \leftarrow \gamma \lambda E(s, \mathbf{a})$
- 4: end for
- 5: Update $E(S_t, A_t) \leftarrow E(S_t, A_t) + 1$

```
ElgTrace(S_t, A_t, E(\cdot) \mid \lambda):
```

- 1: Eligibility tracing function has NM components, i.e., $E(s, \mathbf{a})$ for all state-action pairs
- 2: **for** all state-action pairs (s, a) **do**
- 3: Update $E(s, \mathbf{a}) \leftarrow \gamma \lambda E(s, \mathbf{a})$
- 4: end for
- 5: Update $E(S_t, \mathbf{A_t}) \leftarrow E(S_t, \mathbf{A_t}) + 1$

This was with tabular RL which uses tokenization and linear approximation: let's see if we can represent it in terms of approximation model components

• with tokenization, we have NM-dimensional feature

$$\mathbf{x}\left(s^{n}, a^{m}\right) = \mathbf{1}\left\{s = s^{n}, a = a^{m}\right\}$$

- with linear model, we have w which is of the same dimension
- with linear model, we have

$$\nabla Q_{\mathbf{w}}\left(s,a\right) = \mathbf{x}\left(s,a\right)$$

```
ElgTrace(S_t, A_t, E(\cdot) \mid \lambda):
```

- 1: Eligibility tracing function has NM components, i.e., $E\left(s, a\right)$ for all state-action pairs
- 2: **for** all state-action pairs (s, \mathbf{a}) **do**
- 3: Update $E(s, \mathbf{a}) \leftarrow \gamma \lambda E(s, \mathbf{a})$
- 4: end for
- 5: Update $E(S_t, \mathbf{A_t}) \leftarrow E(S_t, \mathbf{A_t}) + 1$

Let's define a vector $E_{\mathbf{w}}$ which has the NM entries of $E\left(S_t, \mathbf{A_t}\right)$

- we can write the update rule in line 4 as $E_{\mathbf{w}} \leftarrow \gamma \lambda E_{\mathbf{w}}$
- and the update rule in line 5 as

$$E_{\mathbf{w}} \leftarrow E_{\mathbf{w}} + \mathbf{1} \{ s = S_t, a = A_t \}$$

$$\leftarrow E_{\mathbf{w}} + \mathbf{x} (S_t, A_t)$$

$$\leftarrow E_{\mathbf{w}} + \nabla Q_{\mathbf{w}} (S_t, A_t)$$

```
ElgTrace(S_t, A_t, E(\cdot) | \lambda):
```

- 1: Eligibility tracing function has NM components, i.e., $E\left(s, \mathbf{a}\right)$ for all state-action pairs
- 2: **for** all state-action pairs (s, \mathbf{a}) **do**
- 3: Update $E(s, \mathbf{a}) \leftarrow \gamma \lambda E(s, \mathbf{a})$
- 4: end for
- 5: Update $E(S_t, A_t) \leftarrow E(S_t, A_t) + 1$

Merging the two lines, we get into

$$E_{\mathbf{w}} \leftarrow \gamma \lambda E_{\mathbf{w}} + \nabla Q_{\mathbf{w}} \left(S_t, A_t \right)$$

This is the more general form of eligibility tracing

- we can use it for any approximation
- our trace is of the size of the feature vector

LS Training via TD_{λ}

So, we could evaluate via training as

```
SGD TD QEval(\lambda):
 1: Initiate with some initial w and learning rate \alpha
 2: for episode k = 1 : K do
 3: Sample a trajectory
                           S_0 \xrightarrow{A_0} \xrightarrow{R_1} S_1 \xrightarrow{A_1} \xrightarrow{R_2} \cdots \xrightarrow{R_{T-1}} S_{T-1} \xrightarrow{A_{T-1}} \xrightarrow{R_T} S_{T-1}
 4:
           for t = 0 : T - 1 do
 5:
                Compute \Delta = R_{t+1} + \gamma v_{\mathbf{w}} (S_{t+1}) - Q_{\mathbf{w}} (S_t, A_t)
                                                                                                            # forward propagation
               Compute \nabla = \nabla Q_{\mathbf{w}} (S_t, A_t)
                                                                                                                  # backpropagation
           E_{\mathbf{w}} \leftarrow \lambda \gamma E_{\mathbf{w}} + \nabla
 8:
              Update weights as
                                                              \mathbf{w} \leftarrow \mathbf{w} + \alpha \wedge F_{\mathbf{w}}
           end for
10: end for
```

Example: Mountain Car

We can compare tabular RL against the one with function approximation

