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Back to Model-free RL

We now get back to model-free RL: this time however

we use a parameterized estimator

This means that

® to estimate the value function, we use
Ow (8)
® to estimate the action-value function, we use
Gw (s, a)

L, These functions are parameterized by some w
L, They could be as simple as linear approximators or advanced like DNNs
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Back to Model-free RL

+ But, we have in general prediction and control problems. In which one are
we going to use function approximation?

- Well, we can use in both

Recall
We have two major problems in model-free RL
e Prediction in which for a given policy ™ we evaluate values by sampling the
environment
e Control in which after each interaction, we improve our policy aiming to
converge to the optimal policy

‘ Let’s start with the prediction ‘

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 3/43



Model-free with Function Approximation Feature Space

Basic Prediction via Approximator

Say we want to evaluate the value function of a policy 7: with function

approximation we assume that the value approximator is

s vw (+) U

e We sample the environment by policy =
L, We draw sample trajectories using policy 7

Rp—1

(s)

Ry Ro> Rt
So,Ag — 51,44 — -+ —— Sp_1, A1 — Sp

e We want to use these samples to train our approximation model

L. We want to find w that approximates the best v (-)
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Building Simple Approximator

+ Well you have talked a lot about approximators, but can you give us a
concrete example?!

Sure! Let’s look at linear approximator: say our approximator is a linear
function of the input

+ Does it mean the following diagram?!

5 vy (+) ws

+ But it doesn’t seem to work with only one parameter!

Oops! We haven't yet defined the feature representation of states!
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Feature Representation

In general, we could represent a particular state in various forms

Say we have N states s', ..., s™: we can represent them by a scalar, e.g.
s x(s")=n

Or a one-sparse vector, i.e.,

s x(s") = [1] — entryn
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Feature Representation

Feature Representation of States

Feature representation maps each state into a vector of features that
corresponds to that state, i.e.,

x():%$—R’
for some integer J that is the feature dimension

Example: We can represents the feature by tokenization

n n
S r—>X(8)= 1 «— entryn
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Model-free with Function Approximation Feature Space

Feature Representation

Feature Representation of States
Feature representation maps each state into a vector of features that
corresponds to that state, i.e.,
x():%—R’
for some integer J that is the feature dimension

In practice, we use more advanced problem-specific features

e The state of a robot can be specified by its geometric features
L, its distance to the edges of the room, its direction, etc

® The state of a computer game is completely explained by its frames
L, we collect all frames from a state to another
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Model-free with Function Approximation Feature Space

Example: Mountain Car

g !/

Let’s consider the famous mountain car example
e A car is stuck in a valley
L, it can accelerate to left, accelerate to right, or do nothing

® |t observes its velocity v and location x on the horizontal axis
L, they are continuous variables

The goal is to train the car to get out of this valley as quick as possible
® The car is rewarded by -1 after each unsuccessful trial

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 9/43



Example: Mountain Car

N \\\-‘//,,

This car can be in infinite number of states; however, we can represent its state
by its velocity and location

This is much more feasible to work with!
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Model-free with Function Approximation Feature Space

Back to Simple Approximator

+ How is this feature related to our discussion on function approximation?!
- Well! Approximation model maps the features to value

So, in our problem, we in fact assume that

x(s) Vw () Or (s)

Example: Linear Approximator

Linear approximation model maps the state features to its value as

Vw (5) = WTx (s)
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Model-free with Function Approximation

Example: Mountain Car

In mountain car example, we could have a two-dimensional linear approximator

v (5) = WTx (5) = [w1 ws) H

X
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Model-free with Function Approximation Feature Space

Back to Simple Approximator

+ How is this feature related to our discussion on function approximation?!
- Well! Approximation model maps the features to value

So, in our problem, we in fact assume that

x(s) Vw () Or (s)

Example: Deep Approximator

Deep approximation model maps the state features to its value via a DNN

vw (s) = DNN (x (s) |w)
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Model-free with Function Approximation

Example: Mountain Car

We may also use a NN to map the feature to its value

Here, the weights are w = w1, ..., wg, b1, ba, b3
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Training Approximation Model

+ How can we train a given approximation model?
- Let's again get help from a genie

Assume that a genie could tell us the exact value of all states: in this case we
want to find w such that for each s™

Vw (87) = vr (8") o [vw (87) — vz (s™)] = 0

This is equivalent to say that

1 il n ny 2 !
% Dlow (57) = e (572 2 0
n=1
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Training Approximation Model
But, we cannot necessarily find such w: we could instead find

N
* 1
W' =min E 1|vw (s™) — vy (s™)?
n=

One may also think about a more general weighted average: we can assume
that under policy 7 each state s™ happens with a probability p,. (s™) and write

W = min 2 Pr ’Uw (8 ) — Un (Sn)’2
n=1
—mlnEW{\vw ) — vr ( | }

‘ We train by minimizing residual sum of squares = least-squares (LS) method ‘
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LS Training: Gradient Descent

We use gradient descent to solve this problem: we are minimizing the risk

L (w) = Ex {Jvw () — vr (97}

GradientDescent () :

1: Initiate with some initial w and learning rate n
2: while weights not converged do

3:  Compute gradient VL (w)

4:  Update weights as w < w—nVL (w'™!)
5: end while

Let’s compute the gradient: we can use the chain rule

oL

Ovw ()
2B {(vw (5) — v () Vuw (S)}

VL(w) = Vow (5)
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LS Training: Gradient Descent

Now we set the learning rate to n = 0.5« for some «; then, we have

w® — WD B, {(vw (S) — vr (S)) Vo (9)}
— w1 aE, {(vr (S) = vw (S)) Vo (5)}

So, we the gradient descent based evaluation reduces to

GD_Eval():
1: Initiate with some initial w'®) and learning rate
2: while weights not converged do
3:  Update weights as w «— w+aEr {(vr (5) — vw (S)) Vow (S)}
4: end while

+ That’s nice! But, how in earth we know v, (5)?!
- Well! We may use what we learned in model-free RL again!
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LS Training via Monte Carlo

The key challenge is to find out an estimator for

Er {(vx (5) — vw (5)) Vow (5)}

We can do it by Monte Carlo: say we have an episodic environment with
terminal state and sampled an episode

Rl R2 RT—l RT
So,A0 — 51,41 — -+ —— S, Ar_1 — St

We can convert this trajectory into

(S0,Go) = (51,G1) = ... = (S7-1.G71-1)
with GGy being the sample return, i.e.,

T—t—1

Gi= Y ¥Ry
i=0
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Model-free with Function Approximation Least-Squares Training

LS Training via Monte Carlo

The key challenge is to find out an estimator for

Ex {(vr () —vw (9)) Vow (5)}

We do know that G, is an estimator of v (S;): so we could say

Ex {(vz (S) — vw (S)) Vuw (S 2 Gt — vw (St)) Vow (St)

We can compute this one from our observations!
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LS Training via Monte Carlo

We can then write this approximate gradient descent approach as

GD_MC_Eval():
1: Initiate with some initial w and learning rate o
2: while weights not converged do
3:  Sample a trajectory

So,4Ao L, St, A1 RN SN St_1,Ar_1 21, 8
4:  Compute the sequence
(S0,Go) = (51,G1) = ... = (S7—1,Gir—1)

5: Update weights as

H\Q

W «— W+

2 Gt — vw St)) Vow (St)

6: end while
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LS Training via Monte Carlo

This is not practical to wait for exact convergence: we try couple of episodes

GD_MC_Eval():
1: Initiate with some initial w and learning rate o
2: forepisode k = 1 : K do
3:  Sample a trajectory

So,4Ao L, St, A1 Ba,  Bro St_1,Ar_1 21, 8
4:  Compute the sequence
(SO,GO) s (517G1) - ... (ST717GT71)

5: Update weights as

H\Q

W «— W+

2 Gt — vw St)) Vuw (St)

6: end for

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 22/43



LS Training via Monte Carlo

+ But, should we really update once an episode?!
- Not really!

We can look at this algorithm as batch training with the batch being
(S0,Go), (S1,G1) 5+ -+, (S7-1,GT-1)

We can also use mini-batches, and we can reduce the mini-batch size to 1: in
this case, the estimator of the gradient will be a single sample, i.e.,

W — w+a (Gt — vy (St)) Vuw (St)
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LS Training via Monte Carlo

We can train the approximator via SGD and Monte Carlo

SGD_MC_Eval():

1: Initiate with some initial w and learning rate o
2: forepisode k = 1: K do
3: Sample a trajectory

R
SO7A0—>S1,A1 Lo, 2L 50 1LAT 1 21, 5

4: Compute the sequence

(S0,Go) = (S1,G1) = ... > (Sr—1,Gr-1)

5: fort =0:T —1do
6: Update weights as
w — w+a (G — vw (St)) Vow (St)
7:  end for
8: end for

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 24/43



Model-free with Function Approximation Least-Squares Training

LS Training via Temporal Difference

+ So can’t we use also TD to acquire an estimate?
- Sure!

We can evaluate an estimator by TD: say we sample
Rp_
So, A B> 8y, Ay 22 s L 8 Ap o BB 5y

We can then compute an estimator of v (S;) via TD as

G} = Rys1 + ow (St+1)
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LS Training via Temporal Difference

We can alternatively train the approximator via temporal difference

SGD_TD_Eval():

1: Initiate with some initial w and learning rate o
2: forepisode k = 1 : K do
3: Sample a trajectory

Ry Ry Ry Rp
So,Ag — S1, A1 — -+ —— Sr_1,Ar—1 — St

4: fort=0:T —1do
5: Update weights as

W — wHa (Rir1 + 70w (Si41) — vw (St)) Vow (St)

6: end for
7: end for

You can extend it to TD-n or TD, as well
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Back to Tabular RL

+ These algorithm look like what we had before!
- Well! This is actually an extended version of it!

Let’s consider a special case in which
@ We use tokenization for feature representation

Tokenization

We represent the feature vector as

0

x(s")=|1]« etryn=1{s = s"}
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Back to Tabular RL

Let’s consider a special case in which
@ We use tokenization for feature representation
@® We use a linear model for approximation

Linear Model

We approximate the value function via a linear transform

Vw (5) = WTx (s)

With linear model and tokenization, our estimate of value at state s™ is
O (8") = vy (") = W1 {s = s"} = wy,
Also we have
Vow (s") =x(s") =1{s = s"}

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 28/43



Back to Tabular RL

Let’s consider a special case in which
@ We use tokenization for feature representation
@® We use a linear model for approximation

Let’s now look at the SGD update with TD
W — Wha (Ri1 + 70w (St41) — vw (St) Vow (St)
—wha | Rep1 + 90w (Si41) — vw (S8) | x(St)
—_—— —— | —~—

ﬁﬂ'(SH—l) i}ﬂ'(st) 1{3:St}

Say S; = s™: then, it is only entry n which gets update

Wp < Wy + & (Rt-i-l + YOr (St-i-l) — g (St))
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Back to Tabular RL

Let’s consider a special case in which
@ We use tokenization for feature representation
@® We use a linear model for approximation

Say S; = s™: then, it is only entry n which gets updated
Wy, Wn, + & (Rey1 + Y0r (Si1) — Ox (S1))
and we know that w,, = 0 (s") = 0 (St), S0 we can write
r (St) < 0 (St) + @ (Ris1 + 707 (Sp1) — 0x (1))

Bingo! This is the tabular TD update!
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Back to Tabular RL

Moral of Story

Tabular RL is a special case of RL with function approximation when
@ We use tokenization for feature representation
@® We use a linear model for approximation

So, we expect learning better when we go for other feature representation and
approximation models
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Model-free with Function Approximation Action-Value Approximation

Training Action-Value Approximator

+ In practice however we always need action-values! Right?
- Well! We can simply extend everything to state-action pairs

Feature Representation of State-Actions

Feature representation maps each state-action pair into a vector of features
that correspond to that state and action, i.e.,

x():$x AR’

for some integer J that is the feature dimension
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Action-Value Approximator: Form |

We can further consider an approximation model: it maps the feature vector
of each state-action pair (s, a) into its action-value

X (s,a) gw (*) Gr (s,0)
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Model-free with Function Approximation Action-Value Approximation

Action-Value Approximator: Form |l

We may stack this approximator for various actions: we can look at the

end-to-end setting as a general approximator

r

\
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Action-Value Approximator: Form |l

We may stack this approximator for various actions: maybe, we can consider
a general approximation model in this case

( 7

- J

Let’s make an agreement

Ox (s,a) and Q (s, a) represent the complete vector of action-values
and Qr (s,a) and Q (s, a) denote the entry corresponding to a
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Training Approximation Model

The LS training can further be applied here: with the help of genie, we train
the action-value approximator as

w* = minE, {]Qw (S, A) — Q= (S, A)|2}
which is iteratively solved via gradient descent using update rule
w — wHaE; {(Qr (S, 4) — Qw (S, A4)) VQw (S, A)}

Again, we could use Monte Carlo or TD to find an estimator of Q). (S, A)
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LS Training of Action-Value Approximator

Say we have sampled a trajectory

Ry Ry Ry Rp
So,Ag = S1, A1 = -+ —— Sp_1,Ap_1 —5 Sr

We can convert this trajectory into a sequence of (S, A;,G4)
e Using Monte Carlo we can update by

w — wta(Gr — Qw (St, Ar)) VQw (Si, Ar)
e Using TD we can update as
W o WAa(Ri1 + 0w (Si41) = Qw (St, Ar)) VQuw (St At)
and we can find vy (Si+1) as
M
2177 $) Qw (s,a™)
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LS Training of Action-Value Approximator

We can use all approaches we developed before
® only difference is that we replace the simple update by gradient descent
e jt gets back to tabular RL if we use tokenization and linear approximation

Let’s see a simple example: remember the backward view of TD,
® we trace the eligibility of each state-action

® we propagate the update to previous state-action pairs

ElgTrace(S;, Ay, E (1) |M\):

1: Eligibility tracing function has N M components, i.e., E (s, a) for all state-action pairs
2: for all state-action pairs (s, a) do

3:  Update E (s,a) «<— yA\E (s, a)

4: end for

5: Update E (St, At) — F (St, At) +1
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Model-free with Function Approximation Action-Value Approximation

LS Training of Action-Value Approximator

ElgTrace (S, A, E (1) |A):
: Eligibility tracing function has N M components, i.e., E (s, a) for all state-action pairs
: for all state-action pairs (s, a) do
Update E (s,a) «— YAE (s, a)
end for
: Update E (Si, Ay) < E (Si, Ay) +1

[N

[CIENE RN

This was with tabular RL which uses tokenization and linear approximation: let’s
see if we can represent it in terms of approximation model components
e with tokenization, we have N M -dimensional feature

x(s",a™) =1{s=s",a=a"}

® with linear model, we have w which is of the same dimension
® with linear model, we have

VQw (s,a) = x(s,a)
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Model-free with Function Approximation Action-Value Approximation

LS Training of Action-Value Approximator

ElgTrace (S, Ay, E (1) |A):
: Eligibility tracing function has N M components, i.e., E (s, a) for all state-action pairs
: for all state-action pairs (s, a) do
Update E (s,a) < YAE (s, a)
end for
: Update E (S;, Ay) «— E (S, Ay) +1

[N

[CIENE RIS

Let’s define a vector Ey, which has the N M entries of E (S;, A;)
® we can write the update rule in line 4 as Ey, «— YAEw

® and the update rule in line 5 as

EW<—EW+1{5=St,a=At}
<« EW + X(St,At)
— Bw + VQw (S, Ar)
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Model-free with Function Approximation Action-Value Approximation

LS Training of Action-Value Approximator

ElgTrace (S, Ay, E (1) |A):
: Eligibility tracing function has N M components, i.e., E (s, a) for all state-action pairs
: for all state-action pairs (s, a) do
Update E (s,a) < YAE (s, a)
end for
: Update E (S;, Ay) «— E (S, Ay) +1

[N

[CIENE RIS

Merging the two lines, we get into
FEw «— ")/)\EW + VQW (St, At)

This is the more general form of eligibility tracing
® we can use it for any approximation

® our trace is of the size of the feature vector
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LS Training via TD,

So, we could evaluate via training as

SGD_TD_QEval(\) :

1: Initiate with some initial w and learning rate o
2: forepisode k =1 : K do

3:  Sample a trajectory

Rp_1

Ry Ro Rp
So,Ag — S1, A1 — - Sr_1,Ar—1 — St

4: fort=0:T —1do

5: Compute A= Rt+1 + YUw (St+1) — Qw (St, At) # forward propagation
6: Compute V= VQW (St, At) # backpropagation
7: Eyw «— MEw +V

8: Update weights as

W — W+ aAFy

9:  end for
10: end for

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 42/43



Model-free with Function Approximation Action-Value Approximation

Example: Mountain Car

We can compare tabular RL against the one with function approximation

Tabular Function Approximation

value
value

o -
%,
3
3

location location
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