Reinforcement Learning

Chapter 4: Function Approximation

Ali Bereyhi

ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Fall 2025

Review: Where Are We Now?

We need to overcome one last challenge

we need to learn how to deal with large-scale problems

Tabular RL: What We Had Already

What we have studied up to now is usually called tabular RL

- + Why we call it tabular?
- Because we think of value and action-value function as a table

Let's consider a mode-free control loop with finite number of states and actions

- We initiate all action-values with zero
- But, we do know that these action-values are some specific values
 - → We are dealing with a table of unknowns
- We try estimating them from samples

Tabular RL: Schematic

	a^1	a^2	 a^M
s^1	$\hat{q}_{\pi}\left(s^{1},a^{1}\right)$	$\hat{q}_{\pi}\left(s^{1},a^{2}\right)$	
s^2			
:			
s^N			$\hat{q}_{\pi}\left(s^{N},a^{M}\right)$

Q-table

$$\begin{array}{c|c} s^1 & \hat{v}_{\pi} \left(s^1 \right) \\ s^2 & \hat{v}_{\pi} \left(s^2 \right) \\ \vdots & \vdots \\ s^N & \hat{v}_{\pi} \left(s^N \right) \end{array}$$

value-table

Computational Complexity of Tabular RL

A tabular approach needs estimation of NM values from samples

- Say we use Monte-Carlo

sample pairs in all episodes pprox CNM

Same thing with temporal difference

Moral of Story

In tabular RL methods, the number of required sample interactions with the environment scales with number of states and number of actions

Complexity Examples: Backgammon

There are roughly 10^{20} possible states for backgammon

• Say we can get over with each state-action pair and update in only 1 Picosec = 10^{-12} sec; then, we need

$$\#$$
 time $\approx 10^8 CM$ sec $\approx 3.2 CM$ years

Complexity Examples: Chess

In the fun part of Assignment 1, you saw that Shannon found out about roughly 10^{120} possible states for chess, and later on some people came out with some approximations for legal positions: let's take Tromp's number, i.e., $\approx 4 \times 10^{44}$

Say again we need only 1 Picosec per step; then, we need

time
$$\approx 4 \times 10^{32} CM$$
 sec $\approx 12 \times 10^{24} CM$ years

Milky Way is about 13.6 billion years old!

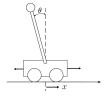
Complexity Examples: Game Go

There are roughly 10^{170} possible states for board game Go

Say again we need only 1 picosec

time pprox do we really need computing it? \odot

Computational Complexity: Continuous State Space



We saw the Cart-Pole problem: if we want to put it into a tabular form

- We need to put it into a table
- This grows exponentially large in number of state parameters!

Computational Complexity of Tabular RL

In most interesting problems, we are dealing with scaling problem

- We have an exponentially large number of states
- We cannot even visit a subset of them!
- Our tabular RL algorithms will not give us any meaningful results!
- + What then?! Should we always play 4×4 Frozen Lake with RL?!
- No! We try to approximate our table from our limited observations

Let's start with a simple case: say we want to evaluate a policy, i.e.,

We are given with a policy π and want to find some estimate $\hat{v}_{\pi}\left(\cdot\right)$

In the tabular RL, we assume that

$$v_{\pi}\left(s^{1}\right) = v^{1} \qquad \dots \qquad v_{\pi}\left(s^{N}\right) = v^{N}$$

for some unknown v^1, \ldots, v^N and try to estimate them

Let us now approach the problem differently: we assume that

$$v_{\pi}\left(s\right) = f\left(s, \mathbf{w}\right)$$

for some weights in ${f w}$ and a known function $f\left(\right)$

- f() is a approximation model that we assume for the value function
- w contains a set of learnable parameters
- + How on earth we know such a thing?!
- We don't really know it! We just assume it; however, sometimes it really makes sense

If we assume an approximation model: we use our observations to find weight vector \mathbf{w}^* that fits this approximator best to our observations. We then set

$$\hat{v}_{\pi}\left(s\right) = f\left(s, \mathbf{w}^{\star}\right)$$

- + How is it better than tabular then?!
- Well! For lots of reasons
- 1 We can use every single sample to update the estimate for all states
 - $\,\,\,\,\,\,\,\,\,\,\,$ We use samples to fit ${\bf w}$: this impacts on the whole value function
- 2 We get some updating estimates for states that have not been visited
 - \downarrow If we get the right w: we get the estimator for all states
- **3** We can capture the impact of one state on the others
 - \downarrow If we update w after seeing S_t : we change estimated values of all states

- + But how can we find such approximators?!
- There are various types of them
- Linear function approximators
- Deep neural networks (DNNs)
- Eigen-transforms, e.g., Fourier or Wavelets
- . . .

In this course, we are focusing only on parametric approximators which include

- Linear function approximators
- DNNs

Because they are differentiable: we will see why this is important!

But before using them, let's look at them and understand how they work

Function Approximation: Formulation

In function approximation, we have

A set of sample input-outputs of a function that we do not know

$$\mathbb{D} = \{(x_i, y_i) : i = 1, \dots, I\}$$

- \downarrow x_i is the input and y_i is the output
- We assume an approximating model for this unknown function

$$\hat{\boldsymbol{y}} = \boldsymbol{f}\left(\boldsymbol{x}|\mathbf{w}\right)$$

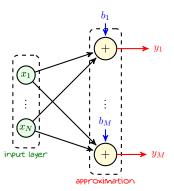
- \downarrow In this approximator \mathbf{w} is learnable, i.e., we are free to tune it as we wish
- → We treat output of this approximator as estimate of function outputs

Example: Linear Function Approximation

A simple example of a function approximator is the linear approximator

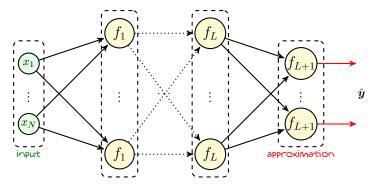
$$\hat{m{y}} = \mathbf{W} m{x} + \mathbf{b}$$

- **W** is the matrix of weights
- **b** is the vector of biases



Example: Deep Neural Networks

A deep neural network is also a parameterized approximator



Example: Deep Neural Networks

- Why should we rely on these approximators?
- They are known to be very powerful

Universal Approximation Theorem

Given a family for neural networks: for any function q from its function space, there exists a sequence of configurations that approximates q arbitrarily precise

Function Approximation: Formulation

With parametric approximators: we want to find weight \mathbf{w} so that we have

a good approximator: it fits best the dataset, i.e.,

$$\hat{\boldsymbol{y}}_i = f\left(\boldsymbol{x}_i|\mathbf{w}\right) \approx \boldsymbol{y_i}$$

- \downarrow We need to define a notion for \approx
- ullet an approximator that generalizes: if we get a new sample input $x_{
 m new},$ we somehow can make sure that

$$\hat{\boldsymbol{y}}_{\mathrm{new}} = f\left(\boldsymbol{x}_{\mathrm{new}}|\mathbf{w}\right) \approx g\left(\boldsymbol{x}_{\mathrm{new}}\right)$$

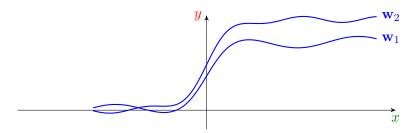
→ We should find a way to check this

Visualizing Function Approximation

Let's assume one-dimensional inputs and outputs: this assumption helps us visualize the function approximator

$$\mathbf{y} = f\left(x|\mathbf{w}\right)$$

With scalar input, we can visualize the model as



As learnable parameters change, approximator sketches different functions

Training: Empirical Risk Minimization

Empirical Risk

Let w includes all learnable parameters, and the dataset be

$$\mathbb{D} = \{(\boldsymbol{x}_i, \boldsymbol{y_i}) : i = 1, \dots, I\}$$

for loss function \mathcal{L} , the empirical risk is defined as

$$\hat{R}(\mathbf{w}) = \frac{1}{I} \sum_{i=1}^{I} \mathcal{L}\left(f\left(x_{i}|\mathbf{w}\right), \mathbf{y}_{i}\right)$$

The training is performed by minimizing the empirical risk

$$\mathbf{w}^{\star} = \underset{\mathbf{w}}{\operatorname{argmin}} \hat{R}\left(\mathbf{w}\right) = \underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{I} \sum_{i=1}^{I} \mathcal{L}\left(f\left(x_{i} \middle| \mathbf{w}\right), \mathbf{y}_{i}\right)$$
 (Training)

Gradient Descent

Let's use gradient descent for function approximation: we want to minimize

$$\hat{R}(\mathbf{w}) = \frac{1}{I} \sum_{i=1}^{I} \mathcal{L}(f(x_i|\mathbf{w}), \mathbf{y_i})$$

```
GradientDescent():

1: Initiate with some initial \mathbf{w}^{(0)} and set a learning rate \eta

2: while weights not converged do

3: for i=1,\ldots,I do

4: Compute gradient for \nabla_i = \nabla \mathcal{L}\left(f\left(x_i|\mathbf{w}^{(t-1)}\right), \mathbf{y}_i\right)

5: Update gradient as \nabla \hat{R}(\mathbf{w}^{(t-1)}) \leftarrow \nabla \hat{R}(\mathbf{w}^{(t-1)}) + \nabla_i/I

6: end for

7: Update weights as \mathbf{w}^{(t)} \leftarrow \mathbf{w}^{(t-1)} - \eta \nabla \hat{R}(\mathbf{w}^{(t-1)})

8: end while
```

We call this form of gradient descent full-batch which can be too complex

Stochastic Gradient Descent

We use gradient descent for function approximation: we want to minimize

$$\hat{R}(\mathbf{w}) = \frac{1}{I} \sum_{i=1}^{I} \mathcal{L}\left(f\left(x_{i}|\mathbf{w}\right), \mathbf{y}_{i}\right)$$

```
SGD():
```

- 1: Initiate with some initial $\mathbf{w}^{(0)}$ and set a learning rate η
- 2: while weights not converged do
- 3: **for** a random subset of batch b = 1, ..., B do
- 4: Compute gradient for $\nabla_b = \nabla \mathcal{L}\left(f\left(x_b|\mathbf{w}^{(t-1)}\right), \mathbf{y_b}\right)$
- 5: Update gradient as $\nabla \hat{R}(\mathbf{w}^{(t-1)}) \leftarrow \nabla \hat{R}(\mathbf{w}^{(t-1)}) + \nabla_b I$
- 6: end for
- 7: Update weights as $\mathbf{w}^{(t)} \leftarrow \mathbf{w}^{(t-1)} \eta \nabla \hat{R}(\mathbf{w}^{(t-1)}) \leftarrow \text{unBiased estimator}$
- 8: end while

This is what we call stochastic mini-batch gradient descent