Reinforcement Learning

Chapter 4: Function Approximation
Ali Bereyhi
ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Fall 2025

Reinforcement Learning Chapter 4: Function Approximation

mailto:ali.bereyhi@utoronto.ca

Review: Where Are We Now?

e A ')
Model-gased RL Model-free RL
Bellman Equation on-policy methods
value iteration temporal difference
policy iteration Monte Carlo
SARSA

off-policy methods

Q-learning

We need to overcome one last challenge

we need to learn how to deal with large-scale problems

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 2/23

Tabular RL: What We Had Already

‘ What we have studied up to now is usually called tabular RL

+ Why we call it tabular?
- Because we think of value and action-value function as a table

Let’s consider a mode-free control loop with finite number of states and actions
e We initiate all action-values with zero
L, We initiate a table of zeros
® But, we do know that these action-values are some specific values
L, We are dealing with a table of unknowns

e We try estimating them from samples

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 3/23

RL with Function Approximation

Tabular RL: Schematic

al (12 aM
st | dr (styal) | Gr (st a?)
82
sV gr (s, aM)
QR—tarle

value—tagle

Reinforcement Learning Chapter 4: Function Approximation

Computational Complexity of Tabular RL

A tabular approach needs estimation of /N A/ values from samples
® Say we use Monte-Carlo

L, We need to visit all the state-action pairs enough times
L, Say enough is C for us; then, we need

4k sample pairs in all episodes ~ C'IN M
e Same thing with temporal difference

Moral of Story

In tabular RL methods, the number of required sample interactions with the
environment scales with number of states and number of actions

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025

5/23

RL with Function Approximation Complexity of Tabular RL

Complexity Examples: Backgammon

There are roughly 10%° possible states for backgammon

® Say we can get over with each state-action pair and update in only 1
Picosec = 10™'2 sec; then, we need

4 time ~ 103C'M sec ~ 3.2C M years

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025

6/23

RL with Function Approximation Complexity of Tabular RL

Complexity Examples: Chess

In the fun part of Assignment 1, you saw that Shannon found out about roughly
10120 possible states for chess, and later on some people came out with some
approximations for legal positions: let’s take Tromp’s number, i.e., ~ 4 x 10**

e Say again we need only 1 Picosec per step; then, we need

4 time ~ 4 x 10320 M sec ~ 12 x 10**C'M vyears

\ Milky Way is about 13.6 billion years old!

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 7/23

RL with Function Approximation Complexity of Tabular RL

Complexity Examples: Game Go

There are roughly 1017° possible states for board game Go
e Say again we need only 1 picosec

4t time &~ do we really need computing it? ©

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 8/23

RL with Function Approximation Complexity of Tabular RL

Computational Complexity: Continuous State Space

— T

We saw the Cart-Pole problem: if we want to put it into a tabular form
e We need to put it into a table

L, We have to make a discrete grid of states
L, Say we have L state parameters and we grid each one with B bins

L, We have B" grid points in total
® This grows exponentially large in number of state parameters!

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 9/23

Computational Complexity of Tabular RL

In most interesting problems, we are dealing with scaling problem
® We have an exponentially large number of states
® We cannot even visit a subset of them!
® Qur tabular RL algorithms will not give us any meaningful results!

+ What then?! Should we always play 4 x 4 Frozen Lake with RL?!
- No! We try to approximate our table from our limited observations

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 10/23

Approximating Value Function

Let’s start with a simple case: say we want to evaluate a policy, i.e.,

We are given with a policy m and want to find some estimate v, (-)

In the tabular RL, we assume that
VUr (81) =t U (SN) =UN

1

for some unknown v', ..., v and try to estimate them

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025

11/283

Approximating Value Function

Let us now approach the problem differently: we assume that
(%S (S) = f (S,W)

for some weights in w and a known function f ()
e f () is a approximation model that we assume for the value function

® w contains a set of learnable parameters

+ How on earth we know such a thing?!
- We don't really know it! We just assume it; however, sometimes it really
makes sense

© A. Bereyhi 2024 - 2025 12/23

Reinforcement Learning Chapter 4: Function Approximation

Approximating Value Function

If we assume an approximation model: we use our observations to find weight
vector w* that fits this approximator best to our observations. We then set

b () = f (5, W)

+ How is it better than tabular then?!

- Well! For lots of reasons

@ We can use every single sample to update the estimate for all states
L, We use samples to fit w: this impacts on the whole value function

® We get some updating estimates for states that have not been visited
L, If we get the right w: we get the estimator for all states

® We can capture the impact of one state on the others
L, If we update w after seeing S;: we change estimated values of all states

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 13/23

Approximating Value Function

+ But how can we find such approximators?!

- There are various types of them

® [inear function approximators
e Deep neural networks (DNNs)
¢ FEigen-transforms, e.g., Fourier or Wavelets

In this course, we are focusing only on parametric approximators which include
® [inear function approximators
e DNNs

Because they are differentiable: we will see why this is important!

‘ But before using them, let’s look at them and understand how they work

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 14/23

Function Approximation: Formulation

In function approximation, we have
® A set of sample input-outputs of a function that we do not know

D= {(xz,y,):i=1,...,1}

L. x; is the input and y, is the output
L, Let’s denote the unknown function with g (-), i.e., y;, = g (x;)

® We assume an approximating model for this unknown function

Y= f(xfw)

L, In this approximator w is learnable, i.e., we are free to tune it as we wish
L, We treat output of this approximator as estimate of function outputs

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025

15/23

Example: Linear Function Approximation

A simple example of a function approximator is the linear approximator

y=Wx+Db

e ‘W is the matrix of weights
® b is the vector of biases

input layer

approximation

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 16/23

Example: Deep Neural Networks

A deep neural network is also a parameterized approximator

-——-— -———

_ e e e m e — =

aPProximation

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 17/23

Example: Deep Neural Networks

+ Why should we rely on these approximators?
- They are known to be very powerful

Universal Approximation Theorem

Given a family for neural networks: for any function g from its function space,
there exists a sequence of configurations that approximates g arbitrarily precise

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 18/23

Function Approximation: Formulation

With parametric approximators: we want to find weight w so that we have
® g good approximator: it fits best the dataset, i.e.,

Y, = [(z|w) ~ y,

L, We need to define a notion for ~

® an approximator that generalizes: if we get a new sample input x,,.,, we
somehow can make sure that

Ynew = [(Tnew|W) ~ g (Tnew)

L, We should find a way to check this

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 19/23

RL with Function Approximation Fundamentals

Visualizing Function Approximation

Let's assume one-dimensional inputs and outputs: this assumption helps us

visualize the function approximator

y = f(z|w)
With scalar input, we can visualize the model as

Yy W2

ya

As learnable parameters change, approximator sketches different functions

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025

20/23

RL with Function Approximation Fundamentals

Training: Empirical Risk Minimization

Empirical Risk

Let w includes all learnable parameters, and the dataset be

D = {(wlayl)lzlavj}

for loss function L, the empirical risk is defined as
1 d
= f Z mL’W 7y7)
The training is performed by minimizing the empirical risk

w

I
. 1
w* = argmin R (w) = argml 7. Z f(zilw),y;) (Training)

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 21/23

Gradient Descent

Let's use gradient descent for function approximation: we want to minimize

1 I
ITZ I (zilw),vi)

GradientDescent () :
1: Initiate with some initial w'®) and set a learning rate
2: while weights not converged do
3: fori=1,...,1do
4 Compute gradient for V; = VL (f (wi|w(t71)) 7yi)
5 Update gradient as VR(w 1) — VR(w= 1) + v, /I
6: end for .
7: Update weights as w® «— w1 —pVR(w(t~1)
8: end while

We call this form of gradient descent full-batch which can be too complex

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 22/23

Stochastic Gradient Descent

We use gradient descent for function approximation: we want to minimize

1 I
272 mL’W 7y7)

SGD() :

1: Initiate with some initial w'®) and set a learning rate
2: while weights not converged do
3: for a random subset of batchb = 1,..., B do

4 Compute gradient for V, = VL (f (:cb|w)) yb)

5 Update gradient as VR(w* 1) — VR(w™D) + v, /T

6: end for .

7: Update weights as w® «— w*=1) —VR(w™1) — ungiased estimator
8: end while

This is what we call stochastic mini-batch gradient descent

Reinforcement Learning Chapter 4: Function Approximation © A. Bereyhi 2024 - 2025 23/23

	RL with Function Approximation
	Complexity of Tabular RL
	Function Approximator
	Fundamentals
	Review: Function Optimization

