Reinforcement Learning
Chapter 3: Model-free RL

Ali Bereyhi

ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Fall 2025

Reinforcement Learning Chapter 3: Model-free RL

mailto:ali.bereyhi@utoronto.ca

TD-Based Control Loop

Control Loop via Temporal Difference

+ But still we are not fully online! We need to wait till end of each episode!
- Well! That's right! But, we could use TD!

Using TD in the control loop will make our algorithm fully online
¢ We update values after each state-action pair
e We then improve the policy

We should yet use c-greedy improvement to keep exploration

Reinforcement Learning Chapter 3: Model-free RL © A. Bereyhi 2024 - 2025

2/29

SARSA: State-Action-Reward State-Action

SARSA = State-Action Reward State-Action
SARSA algorithms use TD along with e-greedy update for the control loop

In general, we can develop various forms of SARSA
® We may use TD-0 for updating action-values
L, This is the basic SARSA

® We may use TD-n for updating action-values
L, This is n-SARSA

® We may use TD), for updating action-values
L, This is SARSA())

Reinforcement Learning Chapter 3: Model-free RL © A. Bereyhi 2024 - 2025 3/29

SARSA: First Try

Let’s try to make a simple TD-based control loop

TD_Control():
1: Initiate estimator as g (s,a) = 0 for all states and actions
2: for episode = 1 : K or until 7 stops changing do
3: Initiate with a random state-action pair (So, Ao)
4: fort = 0:T — 1thatis either terminal or terminated do
5 Act A, and observe

Riyq
Sz,At I St+1

6: Update policy to m «— e-Greedy(jx)

7: Draw the new action A1 from 7 (-|St+1)

8: Compute 9 (Si41) from G (Si+1,a) and w (+|Si41)

9: Set G «— Rt+1 + ’Yﬁw (St+l)
10: Update G- (S¢, At) < = (St, At) + (G — G (St, Ar))
11: end for
12: end for

Reinforcement Learning Chapter 3: Model-free RL © A. Bereyhi 2024 - 2025 4/29

SARSA: Going On-Policy

In line 8 of our control algorithm: we compute v (S;+1) as

w (St41) = Z 7 (a™]S¢41) G (St41,a™)
m=1

But, we do know that
@ our estimates G, (S;1,a"") are not that good, and also
@ our policy has led use to next action A;, 1

So, we could move on our policy and write

1 a=Am

7 (alSi1) = {0 o A/ X v U (Sp41) = G (Sev1, Avgr)
t+

‘ We call this approach on-policy, since move on our policy ‘

Reinforcement Learning Chapter 3: Model-free RL © A. Bereyhi 2024 - 2025

5/29

SARSA: Basic Algorithm

SARSAQ) :
1: Initiate estimator as § (s, a) = O for all states and actions
2: for episode = 1 : K or until 7 stops changing do
3: Initiate with a random state-action pair (So, Ao)
4: fort = 0 : T — 1 that is either terminal or terminated do
5: Act A; and observe

Riqq
St7At I St+1

6: Update policy to m «— e-Greedy(jx)
7 Draw the new action A, from 7 (-|S;+1) and move on policy
R
Si,Ar =5 Sii1, A

8: Set G — Ri+1 + YGr (St41, Atg1)

9: Update (jﬂ (St, At) «— qAﬂ- (St, At) + Oé(G — qw (St, At))
10: end for
11: end for

Reinforcement Learning Chapter 3: Model-free RL © A. Bereyhi 2024 - 2025 6/29

SARSA: Deeper Return Samples

We can use a longer trajectory while we learn on-policy, i.e.,
@ S
G" = Z Rt+i+1 + fquW (St+n+17 At+n+1)
R Z=0

‘ This will however add extra delay! ‘

As a practice, you could

€

S

+2

re-write the basic SARSA with n-return ©

-

Atnt1

Reinforcement Learning Chapter 3: Model-free RL © A. Bereyhi 2024 - 2025 7/29

g
SARSA(\):Tracing Eligibility of State-Action Pairs

We can extend SARSA to the case with A-return: we have two options
® the case with forward-view
L, We know this is not practical! So, let’s skip the details
¢ the case with backward-view and eligibility tracing
L, Let’s look into this one

We first extend eligibility tracing to the case with state-action pairs

ElgTrace(S;, Ay, E (1) |A\):

1: Eligibility tracing function has N M components, i.e., E (s, a) for all state-action pairs
2: for all state-action pairs (s, a) do

3: Update E (s,a) «— yAE (s, a)

4: end for

5: Update E (St, At) — F (St, At) +1

Reinforcement Learning Chapter 3: Model-free RL © A. Bereyhi 2024 - 2025 8/29

SARSA: Alternative via TD-\

SARSA(A) :

1: Initiate G- (s,a) = 0and E (s, a) = O for all states and actions

2: for episode = 1 : K or until 7 stops changing do

3: Initiate with a random state-action pair (So, Ao)

4 fort = 0 : T — 1 that is either terminal or terminated do

5 E () < ElgTrace(S:, Ay, E () |\)

6: Act A, and observe R;11 and Sy

7: Update policy to m < e-Greedy(jx)

8 Draw the new action A, 1 from 7 (-|S¢41) and move on policy

Riqq
SmAt - St+1 7At+1

9: SetA<—Rt+1 +’y(j7((St+1,At+1) —ljw (St,At)
10: for all state-action pairs (s, a) do

11: Update § (s, a) < = (s,a) + aAE (s,a)
12: end for

13: end for

14: end for

Reinforcement Learning Chapter 3: Model-free RL © A. Bereyhi 2024 - 2025 9/29

Going Off-Policy

Let's think about a fundamental question: while sampling the environment
with a specific policy m, can we estimate the values of another policy 7?

+ Why should this be a fundamental question?
- Well! There are several reasons
L, Maybe we sampled environment with our bad policy: can’t we use our
sample again?
L, Maybe we are looking at other players: can’t we learn something about the
environment from their samples?

L, Maybe they are good players: can’t we use this fact to improve our policy?
L, Maybe they are bad players: can’t we use this fact to avoid doing mistakes?

This is the idea of off-policy control

\ Let’s start with some baiscs \

Reinforcement Learning Chapter 3: Model-free RL © A. Bereyhi 2024 - 2025 10/29

Importance Sampling

Consider following problem: we have random variable X drawn as X ~ p (z)
whose mean is

pp = Ep {X} =ZP($)5U

We want to know how would be the expectation if we had X ~ ¢ (z): we write

This gives us possibility to

estimate E, { X } using samples drawn from p (x)

Reinforcement Learning Chapter 3: Model-free RL © A. Bereyhi 2024 - 2025 11/29

Importance Sampling

Say we have drawn K samples from p (x), i.e., we have
X17X25"' aXK

We can use Monte-Carlo to estimate f1,, as
9
ﬂp = 7 Xk
Ko
We can also use Monte-Carlo to estimate /., as
K
. 1
Hq = 7= Z
Ko

We call this method importance sampling

q (Xk)
P(Xk)Xk

Reinforcement Learning Chapter 3: Model-free RL © A. Bereyhi 2024 - 2025 12/29

N bl oy Conto
Off-Policy Control via Importance Sampling

Now, let’s get back to our problem: assume we have played with policy = and
collected K sample trajectories of length T" all started at state Sy = s, i.e.,

s = So [K], 40 [k] 2B 51 [k] .4, (k] 2B B gk

for k = 1 : K; then, we could write

) 1 &
i () = £ 2, G 1K

This is the basic Monte-Carlo

Reinforcement Learning Chapter 3: Model-free RL © A. Bereyhi 2024 - 2025 13/29

Off-Policy Control via Importance Sampling
But now, we want to use samples to evaluate another policy 7

s = So [k], 40 (k] 2B 51 [k] .4, (k] 2B -) g k)

We could also use importance sampling to write

. 1 L {same action sequence with T}

O (s) = K kz—:ll Pr {same action sequence with 7} G [k]
_ 1 5 T (Ao [k]ISo [k]) - 7 (A1 [k]|Sr_1 [K])
=& 2w (A0 RS0 TR~ (e RS (R ©

Reinforcement Learning Chapter 3: Model-free RL © A. Bereyhi 2024 - 2025 14/29

Off-Policy Control via Importance Sampling

We can further update the estimate in an online fashion from
R R
SpAr =5 Spi1,Ap =5 - S

by online averaging as

So, we are evaluating 7 via Monte-Carlo
off our policy 7

This is off-policy control

Reinforcement Learning Chapter 3: Model-free RL © A. Bereyhi 2024 - 2025 15/29

Off-Policy Control via Importance Sampling

We can further apply off-policy control via TD

62 (S1) — 9x (S1) + (% (Rusn + s (Stan)) — br <St))

Note that for action-values estimate
Ry does not depend any more on policy as we know action A;
Therefore, we have for action-value update

7 (Ae]Sy)
™

Gr (S, Ar) < Gz (S, Ay) + a (Rt+1 + v Oz (St41) — G (S, At))

Reinforcement Learning Chapter 3: Model-free RL © A. Bereyhi 2024 - 2025 16/29

Q-Learning

Q-Learning

Q-learning is an off-policy TD control algorithm, where we sample with e-greedy
policy but update the action-values to evaluate greedy policy

This means in Q-learning = is e-greedy policy and 7 is greedy. Let’s consider
basic TD evaluation: so, we can write

Gr (St, At) < Gz (St, At) + a(G — Gz (S, At))
where G should be
G = Riy1 + 70z (St+1)
Since we sample by e-greedy policy m, we use importance sampling and write

7 (A¢|St) .

G =Ry + ’}/ﬂ_(A—t’St)Uir (St+1)

Reinforcement Learning Chapter 3: Model-free RL © A. Bereyhi 2024 - 2025 17/29

Q-Learning
But, we really don’t need importance sampling: we can simply observe that

7 (Ste1) = Z (St41,a™) T (a™|St41) = mrgxﬁfr (St41,a™)

and we do know that

ﬁ'(AﬂSt) _

——— oy =1{A4: = 7% (St
(LIS { + = argmax g (¢ a)}

So, we could directly update as
G (St, At) < Gr (S, Ar) + 04<Rt+1 +ymax gz (St41,0™) = Gr (S, At))

This concludes Q-learning algorithm

Reinforcement Learning Chapter 3: Model-free RL © A. Bereyhi 2024 - 2025 18/29

Q-Learning: Basic Algorithm

Q-Learning() :
1: Initiate estimator as §. (s, a) = O for all states and actions
2: forepisode = 1 : K or until 7 stops changing do
3: Initiate with a random state Sy
4 fort = 0 : T — 1 that is either terminal or terminated do
5: Update policy to < e-Greedy(g«)
6 Draw action A, from 7 (-|S;) and observe

Riqq
St,At I St+1

7 Set G < Rit1 + ymaxm Gu (Siq1,a™)

8: Update (}* (St,At) <—lj* (St,At) +04(G—(?* (St,At))
9: end for

10: end for

Reinforcement Learning Chapter 3: Model-free RL © A. Bereyhi 2024 - 2025 19/29

Example: Cliff Walking

T
sug-optimal

reward = -

optimal

reward = -IOO

Let’s compare SARSA to Q-Learning algorithm!

Reinforcement Learning Chapter 3: Model-free RL

Example: Cliff Walking

Sarsa
25

Sum of _50]

rewards Q-learning

during

episode . |

-100 T T T T 1
0 100 200 300 400 500

Episodes

Don't Mistake!

Q-learning collects less reward since it goes off-policy; however, it estimates
optimal action-values: at some point it can start playing optimally

Reinforcement Learning Chapter 3: Model-free RL © A. Bereyhi 2024 - 2025

21/29

Convergence of SARSA

Recall: GLIE Algorithms

A GPI-type control loop is GLIE, if for any state-action pair (s, a), we have the

following asymptotic properties
@ The number of visits to all state-action pair grows large

lim C = 0

Kl—I>noo K (37 CL)

@ The improved policy in last episode converges to greedy policy
1 m = argmax ¢, (s,a™)
lim 7 (a™]s) = m
K—w

0 m # argmax g, (s,a™)
m

GLIE control algorithms converge to optimal policy

Reinforcement Learning Chapter 3: Model-free RL © A. Bereyhi 2024 - 2025

22/29

Convergence of SARSA

+ But do we really have large number of episodes with SARSA?

- Not necessarily! We may have only one infinitely long trajectory
+ What should we do then?

- We can simply treat it as a large number of episodes of length 1

In (basic) SARSA, we only need one step in the trajectory

Riy1
S, Ay — St

We could hence think of it as one episode
@ each time step t we update the action-values
@ each time step we improve the policy

Reinforcement Learning Chapter 3: Model-free RL © A. Bereyhi 2024 - 2025 23/29

Convergence of SARSA

Modification: GLIE Algorithms

An online control loop is GLIE, if we have asymptotically in time ¢

@ The number of visits to all state-action pair grows large
tli,% Ct (s,a) =
® The improved policy converges to greedy policy
1 m = argmaxqr, (s,a™)
m

lim 7 (a™|s) =
t—00 0 m# argmax g, (Sa am)
m

Reinforcement Learning Chapter 3: Model-free RL © A. Bereyhi 2024 - 2025

24/29

Convergence of SARSA: Make it GLIE

+ Can we guarantee that both conditions hold with SARSA?

- The second one is easy: we need to scale e down with ¢, e.g., e, = 1/t
+ What about the first condition?

- We should scale the step-size o according to Robbins-Monro

Robbins-Monro Sequence

Sequence ay is Robbins-Monro if we have
o0 o0
Yoay=o0 and > af <o
t=0 t=0

For instance, oy = 1/t is a Robbins-Monro sequence

Reinforcement Learning Chapter 3: Model-free RL © A. Bereyhi 2024 - 2025 25/29

Convergence of SARSA

Convergence of SARSA

SARSA online control loop converges to the optimal action-values if
@ Step-size is scheduled by a Robbins-Monro sequence
@ Exploration factor € decays in time

In practice however
® cis a hyperparameter

L, We know that we should schedule it
L, How we should do the scheduling? This is hyperparameter tuning

® «is a hyperparameter: some people call it learning rate
L, Its scheduling is again hyperparameter tuning

Reinforcement Learning Chapter 3: Model-free RL © A. Bereyhi 2024 - 2025 26/29

Convergence of Q-Learning

Convergence of Q-Learning

Q-learning online control loop with exploration (non-zero ¢€) converges to the
optimal action-values as t — oo

+ That’s it?
- Yes!

Since we are evaluating off-policy, we don’t care about behaving policy

Reinforcement Learning Chapter 3: Model-free RL

© A. Bereyhi 2024 - 2025 27/29

Q-Learning vs SARSA

+ So! Does it mean that Q-learning is always better?
- Not always!
In general Q-learning has several benefits
e Minimal convergence requirements
® |t converges faster to the optimal policy
L, If we want to make SARSA that fast, we may get to a sub-optimal policy
¢ |t has more flexibility and sample-efficiency
But, SARSA also has some benefits

® |t s better suited for online control

L, Our behaving policy is the one going towards optimal one
L, In Q-learning, the behaving policy is not the optimal one

® |t has lower complexity
L, We just deal with one policy

Reinforcement Learning Chapter 3: Model-free RL © A. Bereyhi 2024 - 2025 28/29

End of Story!

e A ')
Model-gased RL Model-free RL
Bellman Equation on-policy methods
value iteration temporal difference
poliey iteration Monte Carlo
SARSA

off-policy methods

Q-learning

I would strongly suggest to start with programming part of Assignment 2!

‘ There you solve Froozen Lake with SARSA and Q-Learning

Reinforcement Learning Chapter 3: Model-free RL © A. Bereyhi 2024 - 2025 29/29

	TD-Based Control Loop
	SARSA
	Off-Policy Control

	Final Remarks

