# Reinforcement Learning

Chapter 3: Model-free RL

Ali Bereyhi

ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Fall 2025

#### Classical RL Methods: Recall

Ultimate goal in an RL problem is to find the optimal policy

As mentioned, we have two major challenges in this way

- 1 We need to compute values explicitly
- 2 We often deal with settings with huge state spaces?

In this part of the course, we are going to handle the first challenge

- Previous chapter \( \square \) Model-based methods
- This chapter 

   Model-free methods

#### Finally We Got Serious: Model-free RL

In model-free methods

we do not have an analytic model for the behavior of environment

We intend to compute values from real data collected from environment

Model-Based RL
Bellman Equation
value iteration
policy iteration

Model-free RL
on-policy methods
temporal difference
Monte Carlo
SARSA
off-policy methods
Q-learning

#### Model-free RL in Nutshell

- + If this is the typical case in RL problems, why did we spend so much time on learning MDPs and finding optimal policy there?
- Well! We need all those things, since we are going to do the same thing here only without explicit model

In a nutshell, we are going to find a way to apply

Generalized Policy Iteration  $\equiv$  GPI

But, now without knowing the transition-rewarding function

Let's take a look back at GPI

#### **Generalized Policy Iteration**

We wrote the pseudo-code for GPI as below

```
GenPolicyItr():

1: Initiate two random policies \pi and \bar{\pi}

2: while \pi \neq \bar{\pi} do

3: v_{\pi} = \text{GenPolicyEval}(\pi) and \pi \leftarrow \bar{\pi}

4: \bar{\pi} = \text{PolicyImprov}(v_{\pi})

5: end while
```

Let's recall where we had to use environment's model

- 1 In policy evaluation phase when we compute values via Bellman equations
- 2 In policy improvement when we compute action-values out of values

How can we do these tasks without knowing transition-rewarding model?

### **Computing Statistics from Data**

Let's start with a very simple problem: assume we have an unknown signal generator which returns signals at random; this generator is connected to a device and we can only see the output of this device, i.e., we see

$$Y = f\left(X\right)$$

where X is the random signal and  $f(\cdot)$  denotes transform by the device

We want to know the expected output of our device, i.e.,

$$\mu_Y = \mathbb{E}\left\{Y\right\} = \mathbb{E}\left\{f\left(X\right)\right\}$$

If we knew the model of the generator's model, we could write

$$\mu_{Y} = \mathbb{E}\left\{f\left(X\right)\right\} = \sum_{\substack{x \in X \\ \text{all outcomes}}} f\left(x\right) \underbrace{p\left(x\right)}_{\text{model}}$$

#### Monte-Carlo Method

Now what can we do if we don't know the model

- + Well! Shouldn't we evaluate it by a simple numerical simulation?
- Exactly! This is what we call it Monte-Carlo method

In Monte-Carlo method, we sample our device K times independently as

$$Y_1, Y_2, \ldots, Y_K$$

Then we estimate the expected value as

$$\hat{\mu}_Y = \frac{1}{K} \sum_{k=1}^K Y_k$$

#### Monte-Carlo Method

- + Why does Monte-Carlo work?
- Simply because of central limit theorem

Since the sequence  $Y_1,Y_2,\ldots,Y_K$  contains independent samples of identical process, we could say that

$$\hat{\mu}_Y \sim \mathcal{N}\left(\mu_Y, \frac{\sigma^2}{K}\right)$$

when K is large enough: so we could think of it as

$$\hat{\mu}_Y \approx \mu_Y + \frac{\varepsilon}{\sqrt{K}}$$

for some random error term  $\varepsilon$ : this error vanishes as K goes large

## Computing Values via Monte-Carlo

- + But, how can we apply this idea to RL? I don't see any connection!
- Well! Think of rewards and transitions as random signal and value function as device! We only need to take enough samples from the environment

Let's start with a very simple task: we want to compute the value of state s for policy  $\pi$  in an episodic environment. Monte-Carlo suggest that

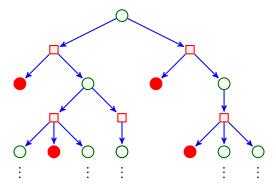
- 1 We start at state s and play with policy  $\pi$  until we meet terminal state: say it happens at time T
- 2 We compute the sample return as  $G[1] = R_1 + \gamma R_2 + \cdots + \gamma^{T-1} R_T$
- $oldsymbol{3}$  We repeat this for K episodes and each episode, we collect  $G\left[k\right]$

Then, we could estimate the value of state s as

$$\hat{v}_{\pi}\left(s\right) = \frac{1}{K} \sum_{k=1}^{K} G\left[k\right]$$

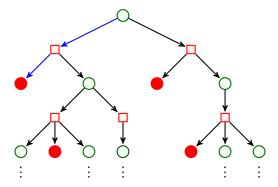
## Values via Monte-Carlo: Trajectory Sampling

We can look at this approach as estimating values from sample trajectories: with known model, we can compute values by averaging over possible trajectories



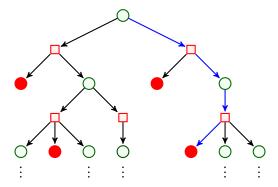
## Values via Monte-Carlo: Trajectory Sampling

We can look at this approach as estimating values from sample trajectories: without known model, we can sample them and estimate values from them



## Values via Monte-Carlo: Trajectory Sampling

We can look at this approach as estimating values from sample trajectories: without known model, we can sample them and estimate values from them



## Computing Values via Monte-Carlo: Algorithm I

#### Let's put our estimation approach into an algorithm

```
MC_verI(\pi,s):

1: Initiate estimator of value as \hat{v}_{\pi}(s) = 0

2: for episode = 1 : K do

3: Initiate with state S_0 = s and act via policy \pi(a|s)

4: Sample a trajectory

S_0, A_0 \xrightarrow{R_1} S_1, A_1 \xrightarrow{R_2} \cdots \xrightarrow{R_{T-1}} S_{T-1}, A_{T-1} \xrightarrow{R_T} S_T: \text{ terminal}

5: Compute sample return G = R_1 + \gamma R_2 + \cdots + \gamma^{T-1} R_T

6: Update estimate of value as \hat{v}_{\pi}(s) \leftarrow \hat{v}_{\pi}(s) + G/K

7: end for
```

## Computing Values via Monte-Carlo

- + But, doesn't that take too long to compute a single value?
- Yes! This is in general a problem; however, in our naive algorithm it is too much delayed!

In our algorithm, we need to wait till very end of K episodes to access an estimate, but we rather prefer to have a bad estimate which gradually improves over episodes

We could use the idea of online averaging  $\equiv$  incremental averaging

Let's find out what it is!

### **Online Averaging**

Say, we want to compute the average of K samples: we could write

$$\begin{split} \eta_K &= \frac{1}{K} \sum_{k=1}^K G_k = \frac{1}{K} \left( \sum_{k=1}^{K-1} G_k + G_K \right) \\ &= \left( 1 - \frac{1}{K} \right) \eta_{K-1} + \frac{G_K}{K} \\ &= \eta_{K-1} + \frac{1}{K} \left( G_K - \eta_{K-1} \right) \end{split}$$

But, we can define the previous average as

$$\eta_{K-1} = \frac{1}{K-1} \sum_{k=1}^{K-1} G_k \leadsto \sum_{k=1}^{K-1} G_k = (K-1) \eta_{K-1}$$

## Online Averaging: Geometric Weights

#### Online Averaging

We can update the average in online fashion as

$$\eta_K = \eta_{K-1} + \frac{1}{K} \Delta_K$$

where  $\Delta_K = G_K - \eta_{K-1}$  is the deviation in K-th episode

The above expression is given for uniform averaging weights, i.e., all samples have same weights: in more general form, we usually update

$$\eta_K = \eta_{K-1} + \alpha \Delta_K$$

for some  $0 < \alpha \le 1$  that can be fixed or scaled with K

- if it is fixed  $\equiv$  computing weighted average with geometric weights
- if it is scaled linearly with  $K \equiv$  computing linear averaging

## Computing Values via Monte-Carlo: Algorithm II

Let's modify our earlier algorithm with online averaging

```
MC_verII(\pi, s):

1: Initiate estimator of value as \hat{v}_{\pi}(s) = 0

2: for episode = 1 : K do

3: Initiate with state S_0 = s and act via policy \pi(a|s)

4: Sample a trajectory

S_0, A_0 \xrightarrow{R_1} S_1, A_1 \xrightarrow{R_2} \cdots \xrightarrow{R_{T-1}} S_{T-1}, A_{T-1} \xrightarrow{R_T} S_T: \text{terminal}

5: Compute sample return G = R_1 + \gamma R_2 + \cdots + \gamma^{T-1} R_T

6: Update estimate of value as \hat{v}_{\pi}(s) \leftarrow \hat{v}_{\pi}(s) + \alpha(G - \hat{v}_{\pi}(s))

7: end for
```

Now after each episode, we have an estimate of value function at state  $\boldsymbol{s}$ 

## Computing Values via Monte-Carlo: Improve Efficiency

In our algorithm: we go through the whole trajectory to compute the value on the state we started with! This does not sound sample efficient!

- + Well! What can we do more?! It seems to be the case!
- Not really! We can estimate values of other states down the trajectory!

In the following sample trajectory

$$S_0, A_0 \xrightarrow{R_1} S_1, A_1 \xrightarrow{R_2} \cdots \xrightarrow{R_{T-1}} S_{T-1}, A_{T-1} \xrightarrow{R_T} S_T$$

it's not only  $S_0$  whose sample return can be computed! We can also compute sample returns of  $S_1,\ldots,S_{T-1}$ 

# All-Visit Monte-Carlo: Algorithm III

This concludes a policy evaluation algorithm based on Monte-Carlo

```
MC Eval(\pi):
 1: Initiate estimator of value as \hat{v}_{\pi}(s^n) = 0 for n = 1:N
 2: for episode = 1: K do
 3:
        Initiate with a random state S_0 and act via policy \pi (a|s)
        Sample a trajectory
 4:
                S_0, A_0 \xrightarrow{R_1} S_1, A_1 \xrightarrow{R_2} \cdots \xrightarrow{R_{T-1}} S_{T-1}, A_{T-1} \xrightarrow{R_T} S_T: terminal
 5:
        Initiate with G=0
        for t = T - 1 : 0 do
             Update current return G \leftarrow R_{t+1} + \gamma G
             Update estimate of value as \hat{v}_{\pi}(S_t) \leftarrow \hat{v}_{\pi}(S_t) + \alpha(G - \hat{v}_{\pi}(S_t))
 8:
 9:
        end for
10: end for
```

## All-Visit Monte-Carlo: Convergence

It's intuitive to say this algorithm converges to true values after lots of episodes

#### Asymptotic Convergence of Monte-Carlo

Let  $\mathcal{C}_K\left(s\right)$  denote number of visits at state s during K Monte-Carlo episodes. Assume that the random state initialization is distributed such that  $\mathcal{C}_K\left(s^n\right)$  grows large as K increases for n=1:N, i.e.,

$$\lim_{K\to\infty} \mathcal{C}_K\left(s^n\right) = \infty$$

Then, as  $K \to \infty$  the estimator of value function converges to its exact expression, i.e.,

$$\hat{v}_{\pi}\left(s\right) \xrightarrow{K\uparrow\infty} v_{\pi}\left(s\right)$$

for any state s

#### Example: Dummy Grid World with Random Walk



Let's get back to our dummy world: we now use Monte-Carlo method to compute the values for uniform random policy, i.e.,

$$\pi\left(\mathbf{a}|s\right) = \frac{1}{4}$$

for all actions and states. From Bellman equations, we have

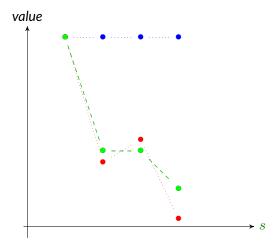
$$v_{\pi}(0) = 1$$

$$v_{\pi}(1) = -4.5$$

$$v_{\pi}(0) = 1$$
  $v_{\pi}(1) = -4.5$   $v_{\pi}(2) = -4.5$   $v_{\pi}(3) = -6$ 

$$v_{\pi}(3) = -6$$

# Example: Dummy Grid World with Random Walk



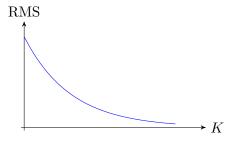
## Typical Behavior: Variation Against Number of Episodes

We can compute the error of our estimation in each episode

RMS = 
$$\sqrt{\sum_{n=1}^{N} |\hat{v}_{\pi}(s^n) - v_{\pi}(s^n)|^2}$$

if we know the true value function, e.g., our random walk example

If we plot it against K; then, we see



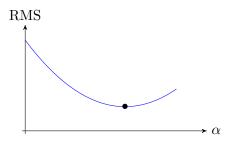
### Typical Behavior: Variation Against Averaging Coefficient

We can compute the error of our estimation in each episode

RMS = 
$$\sqrt{\sum_{n=1}^{N} |\hat{v}_{\pi}(s^n) - v_{\pi}(s^n)|^2}$$

if we know the true value function, e.g., our random walk example

If we plot it against  $\alpha$ ; then, we could see a minimum



#### Monte-Carlo Method: Action-Values

- + Now that we have Monte-Carlo algorithm, can we use it in GPI?
- Not yet! Remember that we need action-values for policy improvement

In GPI, we used to use Bellman equation for this

$$\begin{aligned} q_{\pi}\left(s, \underline{a}\right) &= \bar{\mathcal{R}}\left(s, \underline{a}\right) + \gamma \mathbb{E}\left\{v_{\pi}\left(\bar{S}\right) \middle| s, \underline{a}\right\} \\ &= \mathbb{E}\left\{R_{t+1} \middle| S_{t} = s, \underline{A_{t}} = \underline{a}\right\} + \gamma \mathbb{E}\left\{v_{\pi}\left(S_{t+1}\right) \middle| S_{t} = s, \underline{A_{t}} = \underline{a}\right\} \\ &= \sum_{\ell=1}^{L} \sum_{n=1}^{N} \left(r^{\ell} + \gamma v_{\pi}\left(s^{n}\right)\right) \underbrace{p(r^{\ell}, s^{n} \middle| s, \underline{a})}_{\text{transition-rewarding model}} \end{aligned}$$

But, now we cannot use it anymore!

Maybe, we cause Monte-Carlo method to estimate action-values directly

#### All-Visit Monte-Carlo: Action-Values

```
MC_QEval(\pi):
 1: Initiate estimator as \hat{q}_{\pi}(s^n, a^m) = 0 for n = 1 : N and m = 1 : M
 2: for episode = 1: K do
 3:
        Initiate with a random state-action pair (S_0, A_0) and act via policy \pi(a|s)
        Sample a trajectory
 4:
                S_0, A_0 \xrightarrow{R_1} S_1, A_1 \xrightarrow{R_2} \cdots \xrightarrow{R_{T-1}} S_{T-1}, A_{T-1} \xrightarrow{R_T} S_T: terminal
 5:
        Initiate with G=0
 6:
        for t = T - 1 : 0 do
            Update current return G \leftarrow R_{t+1} + \gamma G
            Update \hat{q}_{\pi}(S_t, A_t) \leftarrow \hat{q}_{\pi}(S_t, A_t) + \alpha(G - \hat{q}_{\pi}(S_t, A_t))
 8:
 9:
        end for
10: end for
```

We can now apply GPI using the Monte-Carlo method!

### Policy Iteration with Monte-Carlo

We can use Monte-Carlo method to compute the action-values

We then improve in each iteration by selecting best action for each state
 This is what we typically call greedy improvement

```
\begin{array}{c} \operatorname{MC\_PolicyItr}(): \\ 1: \text{ Initiate two random policies } \pi \text{ and } \overline{\pi} \\ 2: \text{ $\mathbf{while}} \ \pi \neq \overline{\pi} \ \mathbf{do} \\ \vdots \ 3: \quad \hat{q}_{\pi} = \operatorname{MC\_QEval}(\pi) \ \text{and } \pi \leftarrow \overline{\pi} \\ \vdots \ 4: \quad \overline{\pi} = \operatorname{Greedy}(\bar{q}_{\pi}) \\ \vdots \ 5: \text{ end while} \\ \end{array}
```

# Policy Iteration with Monte-Carlo

Algorithmically, we can write the greedy update as

```
Greedy (\hat{q}_{\pi}):

1: for n=1:N do

2: Improve the by taking deterministically the best action
\bar{\pi}\left(a^{m}|s^{n}\right) = \begin{cases} 1 & m = \operatorname*{argmax} \hat{q}_{\pi}\left(s^{n}, a^{m}\right) \\ 0 & m \neq \operatorname*{argmax} \hat{q}_{\pi}\left(s^{n}, a^{m}\right) \end{cases}
3: end for
```

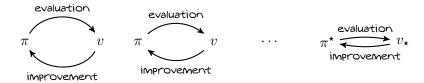
This is however not the best we could do!

We are going to have a whole lecture about it

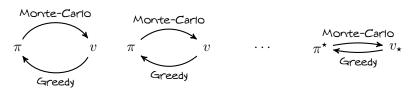
Stay tuned! We get back to this point in Section 4

#### **GPI** with Monte-Carlo

For any GPI, we said that we can think of

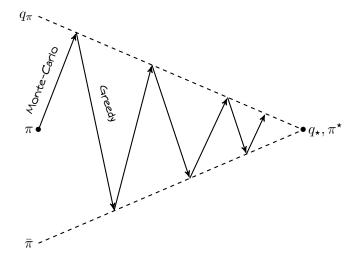


With Monte-Carlo evaluation, we can show this procedure as



#### **GPI** with Monte-Carlo

Another way to visualize this procedure is to think of following diagram



### Non-Episodic Monte-Carlo: Terminating Trajectory

- + We only discussed episodic scenarios! Don't we use model-free RL in non-episodic environment?
- Sure we do! But, Monte-Carlo is not the best approach

A basic idea in this case is to terminate sample trajectories

$$S_0, A_0 \xrightarrow{R_1} S_1, A_1 \xrightarrow{R_2} \cdots \xrightarrow{R_{T-1}} S_{T-1}, A_{T-1} \xrightarrow{R_T} S_T$$

- With long enough T and  $\gamma < 1$  the very later terms are ineffective
- But, we cannot use all the states in the trajectories

$$G_{T-1} = R_T + \underbrace{\gamma R_{T+1} + \cdots}_{\text{we terminated them}}$$

## Terminating Monte-Carlo

```
TerminMC_Eval(\pi):
 1: Initiate estimator of value as \hat{v}_{\pi}(s^n) = 0 for n = 1:N
 2: Choose very large T and W that satisfy W < T
 3: for episode = 1: K do
        Initiate with a random state S_0 and act via policy \pi(a|s)
 5:
        Sample a trajectory and terminate after T time steps
              S_0, A_0 \xrightarrow{R_1} S_1, A_1 \xrightarrow{R_2} \cdots \xrightarrow{R_{T-1}} S_{T-1}, A_{T-1} \xrightarrow{R_T} S_T: terminated
 6:
        Initiate with G=0
        for t = T - 1 : 0 do
 8:
            Update current return G \leftarrow R_{t+1} + \gamma G
 9:
            if t < T - W then
                Update estimate of value as \hat{v}_{\pi}(S_t) \leftarrow \hat{v}_{\pi}(S_t) + \alpha(G - \hat{v}_{\pi}(S_t))
10:
11:
            end if
12:
        end for
13: end for
```