
ECE 1508: Reinforcement Learning
Chapter 2: Model-based RL

Ali Bereyhi
ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Fall 2025

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 1 / 48

mailto:ali.bereyhi@utoronto.ca

Dynamic Programming

Last Piece: Dynamic Programming
Right now, we know what to do when we know MDP of environment

1 We can find optimal values from Bellman optimality equations
2 We could then find the optimal action-values
3 We finally get the optimal policy from optimal action-values

The only remaining challenge is to find

an algorithmic approach to solve Bellman optimality equations

We complete this last piece using

Dynamic Programming ” DP

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 2 / 48

Dynamic Programming

Dynamic Programming: Basic Idea
Assume, we want to solve the problem of

x “ f pxq

for some function f pxq

We could solve it via direct approach:
1 Rewrite is as f pxq ´ x “ 0

2 Solve it via classic algorithms
ë Reduce it to a known form, e.g., a polynomial
ë Solve it via an iterative method, e.g., Newton-Raphson or method of intervals

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 3 / 48

Dynamic Programming

Dynamic Programming: Basic Idea
Assume, we want to solve the problem of

x “ f pxq

for some function f pxq

We could also solve it by recursion:
1 Start with an x0 and set x1 “ f

`

x0
˘

2 Until xk`1 « xk , we do
ë Update recursively as xk`1 “ f

`

xk
˘

ë Set k Ð k ` 1

Under some conditions on f p¨q, this approach can converge

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 4 / 48

Dynamic Programming

Dynamic Programming: Example
We want to solve

x “
´1

2 ` x

1 Start with an x0 “ 0

2 We now get into the recursion loop
ë x1 “ f

`

x0
˘

“ ´ 1
2

ë x2 “ f
`

x1
˘

“ ´ 2
3

ë x3 “ f
`

x2
˘

“ ´ 3
4

ë ¨ ¨ ¨

ë xk “ f
`

xk´1
˘

“ ´ k
k`1

We asymptotically converge to x8 “ ´1 which is the solution
ë Note that we always converge no matter which point we start

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 5 / 48

Dynamic Programming

Dynamic Programming: Example
Now, let’s write the same equation in a different recursive form

x “
´1 ´ x2

2

1 Start with an x0 “ 0

2 We get into recursion loop
ë x1 “ f

`

x0
˘

“ ´0.5

ë x2 “ f
`

x1
˘

“ ´0.625
ë ¨ ¨ ¨

ë x8 “ ´1

1 Start with an x0 “ 5

2 We get into recursion loop
ë x1 “ f

`

x0
˘

“ ´13

ë x2 “ f
`

x1
˘

“ ´85
ë ¨ ¨ ¨

ë x8 “ ´8

We can now diverge if we start with a wrong initial point!

Not all recursive forms are always converging!

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 6 / 48

Dynamic Programming

Dynamic Programming: Applications to Our Problem
Our problem has a similar form: we need to solve Bellman equations

which are recursive equations

So, we could use DP to find the solution
There are two major DP approaches

‚ Policy Iteration that uses recursion to iterate between
ë Policy Evaluation
ë Policy Improvement

‚ Value Iteration which applies recursion on optimal Bellman equation
Let’s look at these two approaches in detail

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 7 / 48

Dynamic Programming Policy Evaluation

Policy Evaluation: Step I
The first step is policy evaluation: we can formulate this problem as follows

Ultimate Goal of Policy Evaluation
Given a policy π, we intend to evaluate values of all states by recursion

Before we start, let’s recap a few definitions: recall expected policy reward

R̄π psq “

M
ÿ

m“1

R̄ pam, sqπ pam|sq

For sake of compactness, we use the following notation

R̄π psq “ Eπ

␣

R̄ pA, sq |s
(

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 8 / 48

Dynamic Programming Policy Evaluation

Policy Evaluation: Step I
Similarly, we define the notation

Eπ

␣

vπ
`

S̄
˘

|s, a
(

“

N
ÿ

n“1

vπ psnq p psn|s, aq

and also denote its expected form over the action set by

Eπ

␣

vπ
`

S̄
˘

|s
(

“

N
ÿ

n“1

vπ psnq pπ psn|sq

“

M
ÿ

m“1

N
ÿ

n“1

vπ psnq p psn|s, amq

looooooooooooomooooooooooooon

π pam|sq

“

M
ÿ

m“1

Eπ

␣

vπ
`

S̄
˘

|s, am
(

π pam|sq

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 9 / 48

Dynamic Programming Policy Evaluation

Policy Evaluation: Step I
We can then write the Bellman equations compactly as

vπ psq “ R̄π psq ` γEπ

␣

vπ
`

S̄
˘

|s
(

for value function and also as

qπ ps, aq “ R̄ ps, aq ` γEπ

␣

vπ
`

S̄
˘

|s, a
(

for action-value function

Now, we are ready to evaluate a policy by recursion

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 10 / 48

Dynamic Programming Policy Evaluation

Policy Evaluation: Value Computation via Recursion
Recall our perspective on value computation:

values areN unknowns thatwewant to compute fromBellman equations

Now, if someone claims that the values
vπ psnq “ vn

for n “ 1 : N are values of policy π, can we confirm it?
+ Shouldn’t we simply use Bellman Equation?!
– Exactly!

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 11 / 48

Dynamic Programming Policy Evaluation

Policy Evaluation: Value Computation via Recursion
We could confirm

vπ psnq “ vn

by writing first finding for every state s

Eπ

␣

vπ
`

S̄
˘

|s
(

“

N
ÿ

n“1

vπ psnq pπ psn|sq

“

N
ÿ

n“1

M
ÿ

m“1

vπ psnq p psn|s, amqπ pam|sq

“

N
ÿ

n“1

M
ÿ

m“1

vn
loomoon

claimed value

p psn|s, amq
looooomooooon

transition model

π pam|sq
looomooon

policy

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 12 / 48

Dynamic Programming Policy Evaluation

Policy Evaluation: Value Computation via Recursion
We could confirm

vπ psnq “ vn

by writing first finding for every state s

Eπ

␣

vπ
`

S̄
˘

|s
(

“ computed from vn ’s :“ F ptv1, . . . , vNu, sq

and then checking if

vπ psnq “ vn “ R̄π psnq ` γEπ

␣

vπ
`

S̄
˘

|sn
(

“ R̄π psnq ` γF ptv1, . . . , vNu, sq

holds for all n “ 1 : N

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 13 / 48

Dynamic Programming Policy Evaluation

Policy Evaluation: Value Computation via Recursion
If it happens that the claimed vπ p¨q is not a valid claim; then, we get out of
Bellman equation

v̄π psnq “ v̄n “ R̄π psnq ` γEπ

␣

vπ
`

S̄
˘

|sn
(

which is different from the claimed vπ p¨q, i.e., vn ‰ v̄n

Policy Evaluation
We iterate this procedure until we can confirm, i.e., we

1 set vπ p¨q Ð v̄π p¨q

2 repeat the same procedure and compute new v̄π p¨q

We stop when vπ p¨q “ v̄π p¨q, or at least it happens approximately

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 14 / 48

Dynamic Programming Policy Evaluation

Policy Evaluation

Recursion Loop

PolicyEval
`

π, v0π
˘

:
1: Initiate values with v0π and set k “ 0
2: Make sure that v0π psq “ 0 for terminal states s
3: Choose a small threshold ϵ and initiate∆ “ `8 # stopping criteria
4: for n “ 1 : N do
5: Compute R̄π psnq “ Eπ

␣

R̄ psn, aq
(

average rewards
6: end for
7: while∆ ą ϵ do
8: for n “ 1 : N do
9: Update vk`1

π psnq “ R̄π psnq ` γEπ

␣

vkπ
`

S̄
˘

|sn
(

DP update
10: end for
11: ∆ “ maxn|vk`1

π psnq ´ vkπ psnq| # check convergence
12: Update k Ð k ` 1
13: end while

Attention
We should make sure that terminal states are all initiated with zero value

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 15 / 48

Dynamic Programming Policy Evaluation

Example: Dummy Grid World

Let’s try with our dummy grid world: we saw that

R̄π p0q “ 0 R̄π p1q “ ´1 R̄π p2q “ ´1 R̄π p3q “ ´1

Now let’s evaluate its values by recursion: we first note that, if we have

Eπ

!

vkπ
`

S̄
˘

|0
)

“ vkπ p0q Eπ

!

vkπ
`

S̄
˘

|1
)

“ vkπ p0q

Eπ

!

vkπ
`

S̄
˘

|2
)

“ vkπ p0q Eπ

!

vkπ
`

S̄
˘

|3
)

“ vkπ p2q

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 16 / 48

Dynamic Programming Policy Evaluation

Example: Dummy Grid World

PolicyEval
`

π, v0π
˘

:
1: Initiate values with v0π p1q, v0π p2q and v0π p3q at random and set v0π p0q “ 0
2: Set ϵ “ 0.001, and initiate∆ “ 1000 # stopping criteria
3: while∆ ą ϵ do
4: Update vk`1

π p1q “ ´1 ` vkπ p0q # DP update
5: Update vk`1

π p2q “ ´1 ` vkπ p0q # DP update
6: Update vk`1

π p3q “ ´1 ` vkπ p2q # DP update
7: ∆ “ maxsPt1,2,3u|vk`1

π psq ´ vkπ psq| # check convergence
8: Update k Ð k ` 1
9: end while

It converges after only one recursion!
Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 17 / 48

Dynamic Programming Policy Improvement

Policy Improvement
Let us know recall optimality constraint: with optimal policy, we have

v‹ psq “ max
m

q‹ ps, amq

which can be achieved by policy

π‹ pam|sq “

$

&

%

1 m “ argmax
m

q‹ ps, amq

0 m ‰ argmax
m

q‹ ps, amq

This means that if π is not optimal, we would have

π pam|sq ‰

$

&

%

1 m “ argmax
m

qπ ps, amq

0 m ‰ argmax
m

qπ ps, amq

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 18 / 48

Dynamic Programming Policy Improvement

Policy Improvement
In other words, if we change our policy to

π̄ pam|sq “

$

&

%

1 m “ argmax
m

qπ ps, amq

0 m ‰ argmax
m

qπ ps, amq

Then, it should give us better values, i.e., π̄ ě π!
+ Are you sure?! I don’t see it immediately
– We can actually show it!

This is what we call policy improvement theorem

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 19 / 48

Dynamic Programming Policy Improvement

Policy Improvement
Policy Improvement
Given (deterministic) policy πk , we can always design a better policy πk`1 by
setting it to

πk`1 pam|sq “

$

&

%

1 m “ argmax
m

qπk ps, amq

0 m ‰ argmax
m

qπk ps, amq

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 20 / 48

Dynamic Programming Policy Improvement

Policy Improvement
PolicyImprovpvπq:
1: for n “ 1 : N do
2: form “ 1 : M do
3: Compute R̄ psn, am

q

4: qπ psn, am
q “ R̄ psn, am

q ` γEπ

␣

vπ
`

S̄
˘

|sn, am
(

action-values
5: end for
6: Compute an improved policy as # policy improvement

π̄ pam
|snq “

$

&

%

1 m “ argmax
m

qπ psn, am
q

0 m ‰ argmax
m

qπ psn, am
q

7: end for

Attention
Here, we do no recursion

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 21 / 48

Dynamic Programming Policy Improvement

Example: Dummy Grid World

Let’s try dummy grid world with above non-optimal policy: here, we have

vπ p0q “ 0 vπ p1q “ ´3 vπ p2q “ ´1 vπ p3q “ ´2

We now look at acion-values at the problematic state s “ 1

qπ p1, 0q “ ´1
qπ p1, 1q “ ´3
qπ p1, 2q “ ´3.5
qπ p1, 3q “ ´3.5

ù ´3 “ vπ p1q ‰max
a

qπ p1, aq “ ´1

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 22 / 48

Dynamic Programming Policy Improvement

Example: Dummy Grid World

Now if we improve the policy, we get

π̄ pa|1q “

$

&

%

1 m “ argmax
m

qπ p1, aq

0 m ‰ argmax
m

qπ p1, aq
“

#

1 a “ 0

0 a ‰ 0

which is actually optimal

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 23 / 48

Dynamic Programming Policy Iteration

Policy Iteration: Improving Policy by Recursion
Looking at the policy improvement theorem, we see

If we plug in πk “ π‹ into algorithm; then, after policy improvement
ë we get πk`1 “ π‹

ë say we evaluate values for πk`1 “ π‹ and plug back to algorithm
ë we get πk`2 “ π‹

ë say we evaluate values for πk`2 “ π‹ and plug back to algorithm
ë . . .

So, optimal policy is a fixed-point for this recursion

Policy Iteration
We can start with an arbitrary policy π0 and keep doing the above recursion
until we see that πk`1 “ πk which indicates that we reached optimal policy

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 24 / 48

Dynamic Programming Policy Iteration

Policy Iteration

Recursion

Recursion

PolicyItr():
1: Initiate with random vπ psq for all non-terminal states s
2: Set vπ psq “ 0 for terminal states s
3: Initiate two random policies π and π̄
4: while π ‰ π̄ do
5: vπ “ PolicyEvalpπ, vπq and π Ð π̄
6: π̄ “ PolicyImprovpvπq

7: end while

Note that this is a nested recursive computation
‚ There is a loop for recursion inside the algorithm in which

ë at each iteration we evaluate the policy recursively
‚ But, we initiate each policy evaluation loop with the values of last iteration

ë this can improve the convergence speed

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 25 / 48

Dynamic Programming Value Iteration

Back-Tracking by Recursion
+ But wait a Moment! We already talked about back-tracking optimal policy

from Bellman optimality equation! Don’t we implement that?!
– Sure! We can do the same thing by recursion

We follow the same idea but we use recursion
1 We can find optimal values from Bellman optimality equations

ë This is where we use recursion
2 We could then find the optimal action-values
3 We finally get the optimal policy from optimal action-values

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 26 / 48

Dynamic Programming Value Iteration

Recall: Back-Tracking from Optimal Values

OptimBackTrack():
1: Solve Bellman equations # we use recursion
2: for n “ 1 : N do
3: form “ 1 : M do
4: Set q‹ psn, am

q “ R̄ psn, am
q ` γE

␣

v‹

`

S̄
˘

|sn, am
(

action-values
5: end for
6: Compute optimal policy via optimality constraint

π‹
pam

|sq “

$

&

%

1 m “ argmax
m

q‹ ps, am
q

0 m ‰ argmax
m

q‹ ps, am
q

7: end for

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 27 / 48

Dynamic Programming Value Iteration

Recursion with Bellman Optimality
Recall Bellman optimality equation

v‹ psq “ max
m

`

R̄ ps, amq ` γE
␣

v‹

`

S̄
˘

|s, am
(˘

We can again solve it by recursion: we start with some v0‹ p¨q and then for
every state s and action am, we compute

E
!

vk‹
`

S̄
˘

|s, am
)

“

N
ÿ

n“1

vk‹ psnq
loomoon

last computed value

p psn|s, amq
looooomooooon

transition model

We then update the optimal value function as

vk`1
‹ psq “ max

m

´

R̄ ps, amq ` γE
!

vk‹
`

S̄
˘

|s, am
)¯

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 28 / 48

Dynamic Programming Value Iteration

Value Iteration vs Policy Iteration
Before we complete the value iteration algorithm: it is interesting to put its
recursion next to the one used for policy evaluation

With optimality equation, we iterate as

vk`1
‹ psq “ max

m

”

R̄ ps, amq ` γE
!

vk‹
`

S̄
˘

|s, am
)ı

With Bellman equation for a given policy π, we iterate as

vk`1
π psq “ R̄π psq ` γEπ

!

vkπ
`

S̄
˘

|s
)

“

M
ÿ

m“1

´

R̄ ps, amq ` γE
!

vkπ
`

S̄
˘

|s, am
)¯

π pam|sq

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 29 / 48

Dynamic Programming Value Iteration

Value Iteration vs Policy Iteration
With optimality equation, we iterate as

vk`1
‹ psq “ max

m

”

R̄ ps, amq ` γE
!

vk‹
`

S̄
˘

|s, am
)ı

With Bellman equation for a given policy π, we iterate as

vk`1
π psq “

M
ÿ

m“1

´

R̄ ps, amq ` γE
!

vkπ
`

S̄
˘

|s, am
)¯

π pam|sq

This indicates that for both recursive loops
‚ we computeM values per iteration per state

ë in policy iteration, we compute the average of theseM via π
ë in value iteration, we take the largest among theseM values

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 30 / 48

Dynamic Programming Value Iteration

Value Iteration

Recursion

ValueItr():
1: Initiate with random v0‹ psq for all states, and set v0‹ psq “ 0 for terminal states
2: Choose a small threshold ϵ, initiate∆ “ `8 and k “ 0
3: while∆ ą ϵ do
4: for n “ 1 : N do
5: form “ 1 : M do
6: Compute q‹ psn, am

q “ R̄ psn, am
q ` γE

!

vk‹
`

S̄
˘

|sn, am
)

7: end for
8: Update vk`1

π psnq “ maxm q‹ psn, am
q # DP update

9: end for
10: Set∆ “ maxn|vk`1

π psnq ´ vkπ psnq| and k Ð k ` 1
11: end while
12: Compute an optimal policy as

π̄ pam
|sq “

$

&

%

1 m “ argmax
m

q‹ ps, am
q

0 m ‰ argmax
m

q‹ ps, am
q

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 31 / 48

Dynamic Programming Value Iteration

Example: Dummy Grid World

You may try policy and value iteration for this problem at home!

Easy as Pie⌣

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 32 / 48

Dynamic Programming Value Iteration

Example: A Bit Larger Grid World1

board ” states

moves ” actions

Let’s do a bit of more serious example: we are now in a 4 ˆ 4 grid world
‚ We have two terminal states shown in gray
‚ Each move we do gets a -1 reward

ë We also get -1 reward if we hit a corner
ë We get zero reward at terminal state

In simple words: we are looking for shortest path to the corners
1This example is taken from Sutton and Barto’s Book; Example 4.1 in Chapter 4

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 33 / 48

Dynamic Programming Value Iteration

Example: A Bit Larger Grid World

initial policy initial values

Let’s first try policy iteration: we start with
‚ a uniform random policy π0

‚ all values being zero, i.e., v0π0 psq “ 0 for all s

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 34 / 48

Dynamic Programming Value Iteration

Example: A Bit Larger Grid World
Recall policy iteration:

Recursion

Recursion

PolicyItr():
1: Initiate with random vπ psq for all non-terminal states s
2: Set vπ psq “ 0 for terminal states s
3: Initiate two random policies π and π̄
4: while π ‰ π̄ do
5: vπ “ PolicyEvalpπ, vπq and π Ð π̄
6: π̄ “ PolicyImprovpvπq

7: end while

We should start with v0π0 p¨q and do the red recusion first
‚ at the end of this recursion we have evaluated the random policy

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 35 / 48

Dynamic Programming Value Iteration

Example: A Bit Larger Grid World

v0π0 v1π0 v2π0

v3π0

¨ ¨ ¨

v8
π0

We now have evaluated the value of random policy vπ0 “ v8
π0

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 36 / 48

Dynamic Programming Value Iteration

Example: A Bit Larger Grid World
Recall policy iteration:

Recursion

Recursion

PolicyItr():
1: Initiate with random vπ psq for all non-terminal states s
2: Set vπ psq “ 0 for terminal states s
3: Initiate two random policies π and π̄
4: while π ‰ π̄ do
5: vπ “ PolicyEvalpπ, vπq and π Ð π̄
6: π̄ “ PolicyImprovpvπq

7: end while

Next, we do the outer recusion recursion, i.e.,
‚ we improve the policy

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 37 / 48

Dynamic Programming Value Iteration

Example: A Bit Larger Grid World

π0

Ð

π1

We improve policy by taking actions with maximal action-values
‚ if we have multiple maximal action-values we can behave randomly

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 38 / 48

Dynamic Programming Value Iteration

Example: A Bit Larger Grid World
Recall policy iteration:

Recursion

Recursion

PolicyItr():
1: Initiate with random vπ psq for all non-terminal states s
2: Set vπ psq “ 0 for terminal states s
3: Initiate two random policies π and π̄
4: while π ‰ π̄ do
5: vπ “ PolicyEvalpπ, vπq and π Ð π̄
6: π̄ “ PolicyImprovpvπq

7: end while

We now start with v0π1 “ vπ0 “ v8
π0 and do the red recusion again

‚ at the end of this recursion we have evaluated the new policy π1

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 39 / 48

Dynamic Programming Value Iteration

Example: A Bit Larger Grid World

v0π1

¨ ¨ ¨

v`8

π1

After evaluating policy π1 as vπ1 “ v8
π1 , we do the next improvement

π1

Ð

π2 “ π1

Well π2 “ π1 and we should stop!

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 40 / 48

Dynamic Programming Value Iteration

Example: A Bit Larger Grid World

initial values

Now we try value iteration: for start, we only need an initial value, so we set
‚ all values being zero, i.e., v0‹ psq “ 0 for all s

We keep recursion until we find the optimal values

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 41 / 48

Dynamic Programming Value Iteration

Example: A Bit Larger Grid World

v0‹

¨ ¨ ¨

v`8
‹

Now, we back-track the optimal policy π‹

π‹

Ñ action-values

q‹

Ñ

v‹

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 42 / 48

Final Points

Complexity of Policy and Value Iteration
+ It seems that value iteration has less complexity!
– Well, it is not in order, but yes! It usually converge faster

In our example with policy iteration, we had to evaluate two policies
‚ once for π0 and once for π1

‚ say the first recursion tookK1 iterations and the second tookK2

ë the total number of iterations is thenK1 ` K2

ë in practice, it often happens thatK2 ! K1

ë because we already start from good values with v0π1 “ v`8

π0

With value iteration, we had to only evaluate optimal policy
‚ say it takesK‹ iterations: there is no reason thatK‹ be same asK1 orK2

ë each evaluation has a different initial and converging point
ë in practice, it often happens thatK‹ ą K1 andK‹"K2

ë so it might be thatK‹ « K1 ` K2

ë but usually withmultiple policy improvements, we seeK‹ ă K1 ` K2 ` . . .

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 43 / 48

Final Points

Complexity of Policy and Value Iteration
+ If so, why should we use policy iteration?!
– Well, not all problems are like a dummy grid world

In practice, it might be computationally hard to get very close to optimal values
‚ in this case, we take non-converged values

ë we consider them estimates of optimal values
‚ in value iteration we approximate optimal policy with on these estimates

ë this might be a loose estimate
If we do the same approximative computation with policy iteration

‚ we often end up with a better policy

Moral of Story
While value iteration typically show faster convergence, policy iteration can give
better policies after convergence

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 44 / 48

Final Points Generalized Policy Iteration

Generalized Policy Iteration
In practice, we can terminate or change the order of computation in policy
iteration to reduce its complexity: for instance, we could have

changed

GenPolicyItr():
1: Initiate with random vπ psq for all non-terminal states s
2: Set vπ psq “ 0 for terminal states s
3: Initiate two random policies π and π̄
4: while π ‰ π̄ do
5: vπ “ TerminPolicyEvalpπ, vπq and π Ð π̄
6: π̄ “ PolicyImprovpvπq

7: end while

where TerminPolicyEvalpπ, vπq evaluates policy π from starting value
function vπ with a terminating recursion loop

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 45 / 48

Final Points Generalized Policy Iteration

Generalized Policy Iteration: Terminating Evaluation

changed

TerminPolicyEval
`

π, v0π
˘

:
1: Initiate values with v0π and set k “ 0
2: Make sure that v0π psq “ 0 for terminal states s
3: Choose a small threshold ϵ and initiate∆ “ `8 # stopping criteria
4: for n “ 1 : N do
5: Compute R̄π psnq “ Eπ

␣

R̄ psn, aq
(

average response
6: end for
7: while∆ ą ϵ and k ă K do
8: for n “ 1 : N do
9: Update vk`1

π psnq “ R̄π psnq ` γEπ

␣

vkπ
`

S̄
˘

|sn
(

DP update
10: end for
11: ∆ “ maxn|vk`1

π psnq ´ vkπ psnq| # check convergence
12: Update k Ð k ` 1
13: end while

Obviously, TerminPolicyEvalpπ, vπq does not return the exact values of the
policy π, but only an estimate of them

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 46 / 48

Final Points Generalized Policy Iteration

Generalized Policy Iteration
We can come up with various such ideas: these variants are often called

Generalized Policy Iteration ” GPI

These approaches all rely on

back-and-forth computation of policies and values

π v

evaluation

improvement

π v

evaluation

improvement

¨ ¨ ¨ π‹ v‹

evaluation

improvement

If designed properly, they all converge to optimal policy and optimal values

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 47 / 48

Final Points Generalized Policy Iteration

Some Final Remarks
+ We know the algorithms now, but how can we guarantee that they

converge? You showed us an simple example that recursion could simply
diverge!

– Well, we can show that what we discussed in this chapter converge: it
comes from the nice properties of Bellman equations

ë There are several proofs; for instance see a proof in Tom Mitchell’s notes

When it comes to practice, most known algorithms are proved to converge to
optimal policy and optimal values; however, note that

‚ Convergence guarantee is different from the speed of convergence
ë An algorithm might converge, but very slow

‚ If you deal with an unknown algorithm; then, you should make sure that it
converges to optimal policy and optimal values

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 48 / 48

https://www.andrew.cmu.edu/course/10-703/slides/lecture4_valuePolicyDP-9-10-2018.pdf

	Dynamic Programming
	Policy Evaluation
	Policy Improvement
	Policy Iteration
	Value Iteration

	Final Points
	Generalized Policy Iteration

