ECE 1508: Reinforcement Learning
Chapter 2: Model-based RL

Ali Bereyhi

ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Fall 2025

Reinforcement Learning Chapter 2: Model-based RL

mailto:ali.bereyhi@utoronto.ca

Last Piece: Dynamic Programming

Right now, we know what to do when we know MDP of environment
@ We can find optimal values from Bellman optimality equations
@® We could then find the optimal action-values

® We finally get the optimal policy from optimal action-values

The only remaining challenge is to find

‘ an algorithmic approach to solve Bellman optimality equations

We complete this last piece using

Dynamic Programming = DP

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 2/48

Dynamic Programming

Dynamic Programming: Basic Idea

Assume, we want to solve the problem of

z = f(2)

for some function f ()

We could solve it via direct approach:
@ Rewriteisas f () —xz =0
® Solve it via classic algorithms

L, Reduce it to a known form, e.g., a polynomial
L, Solve it via an iterative method, e.g., Newton-Raphson or method of intervals

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 3/48

Dynamic Programming

Dynamic Programming: Basic Idea

Assume, we want to solve the problem of

z = f(2)

for some function f ()

We could also solve it by recursion:
@ Start with an 2° and set 2! = f (2°)
@ Until %! ~ 2%, we do

L, Update recursively as z**1 = f (%)
L Setk —k+1

Under some conditions on f (-), this approach can converge

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025

4/48

Dynamic Programming

Dynamic Programming: Example

We want to solve

-1
e 24+
@ Start withan 2° = 0
@® We now get into the recursion loop
ot = () =
L oa?=f(at) =3
L oat = f(a?) =1
L
Lok = f(F) = iy
We asymptotically converge to * = —1 which is the solution

L, Note that we always converge no matter which point we start

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 5/48

Dynamic Programming

Dynamic Programming: Example

Now, let's write the same equation in a different recursive form

—1—22
€rT = ———
2
@ Start withan 2° = 0 @ Start withan 2° = 5
@® We get into recursion loop @® We get into recursion loop
Lozt = f(2%) =-0.5 Lozt = f(2°) =-13
L z? = f(2') = —0.625 L a2 =f(2') = -85
L z%*° =-1 L 2® = —w

We can now diverge if we start with a wrong initial point!

‘ Not all recursive forms are always converging!

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025

6/48

Dynamic Programming

Dynamic Programming: Applications to Our Problem

Our problem has a similar form: we need to solve Bellman equations
which are recursive equations

So, we could use DP to find the solution

There are two major DP approaches

® Policy Iteration that uses recursion to iterate between

L, Policy Evaluation
L, Policy Improvement

® Value Iteration which applies recursion on optimal Bellman equation
Let’s look at these two approaches in detail

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 7/48

Policy Evaluation: Step |

The first step is policy evaluation: we can formulate this problem as follows

Ultimate Goal of Policy Evaluation

Given a policy 7, we intend to evaluate values of all states by recursion

Before we start, let’s recap a few definitions: recall expected policy reward
— M —
Rr(s) = Z R (a™,s)m (a™|s)
m=1

For sake of compactness, we use the following notation

Rr(s) =E- {R(4,s)]s}

Reinforcement Learning Chapter 2: Model-based RL

© A. Bereyhi 2024 - 2025 8/48

. Ll R Potc Bcuation
Policy Evaluation: Step |

Similarly, we define the notation

N
Ex {vr (5) |s,a} = Z (s"]s,a)

and also denote its expected form over the action set by

E- (v (9)])

I
]
5
—

s") pr (s"]s)

M N
= 3 Doe (M) p (sl) w (@)

)

M —
Z Ex {vr (S) |s,a™}w (a]s)

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025

9/48

Policy Evaluation: Step |
We can then write the Bellman equations compactly as
Ur () = R () + vEx {vx (5) |5}
for value function and also as
qr (3,a) = R (s,a) + vE, {Uﬂ- (5’)]s,a}

for action-value function

‘ Now, we are ready to evaluate a policy by recursion ‘

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 10/48

Dynamic Programming Policy Evaluation

Policy Evaluation: Value Computation via Recursion

Recall our perspective on value computation:

‘ values are N unknowns that we want to compute from Bellman equations

Now, if someone claims that the values

vr (") = vy,

forn = 1: N are values of policy 7, can we confirm it?

+ Shouldn’t we simply use Bellman Equation?!
- Exactly!

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 11/48

Policy Evaluation: Value Computation via Recursion

We could confirm
vr (") = vy,

by writing first finding for every state s

N M
=YY e p(lsa™) w(@s)
claimed value transition model policy

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025

12/48

Dynamic Programming Policy Evaluation

Policy Evaluation: Value Computation via Recursion
We could confirm

vr (") = vy,

by writing first finding for every state s

Ex {vr () |s} = computed srom vy's := F ({v1,...,un}, 5)
and then checking if
Ur (8") = vy = R (s") +Ex {UW (5‘) |3n}
Ry (") +vF ({v1,...,un},8)

holds foralln =1: N

Reinforcement Learning Chapter 2: Model-based RL

© A. Bereyhi 2024 - 2025 13/48

Dynamic Programming Policy Evaluation

Policy Evaluation: Value Computation via Recursion

If it happens that the claimed v, (-) is not a valid claim; then, we get out of
Bellman equation

Ur (Sn) =Up = RW (Sn) +Ex {UW (5) |Sn}
which is different from the claimed v, (-), i.e., v, # vy,

Policy Evaluation

We iterate this procedure until we can confirm, i.e., we
@ setv, (-) — s (+)
@ repeat the same procedure and compute new v (-)

We stop when v, (-) = 0y (-), or at least it happens approximately

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 14/48

Policy Evaluation

PolicyEval(m,vY):

: Initiate values with v2 and set k = 0

: Make sure that v2 (s) = 0 for terminal states s

: Choose a small threshold € and initiate A = +o0
forn =1: N do

while A > ¢ do
forn =1: N do
Update vF+! (s™)
end for
A = max, |[vFT? (s") —
Updatek — k + 1
: end while

stopping criteria

average rewards

Attention

We should make sure that terminal states are all initiated with zero value

Reinforcement Learning Chapter 2: Model-based RL

© A. Bereyhi 2024 - 2025

15/48

Example: Dummy Grid World

7
1]

Let’s try with our dummy grid world: we saw that

R.(0)=0 R,()=-1 R2)=-1 R.(3)=-1
Now let’s evaluate its values by recursion: we first note that, if we have

Ex {vk (5) 0} = vk (0) Ex {vk (5) 11}

Ex {vk () 12} = ok (0) Er {vk () I3} = ok (2)

Il
<
B
—~~
(=)
S~—

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 16/48

Example: Dummy Grid World

-
\ 0 i <~ _
PolicyEval (7r, v?r) :

1: Initiate values with v2 (1), v3 (2) and v2 (3) at random and set v (0) = 0
2: Set e = 0.001, and initiate A = 1000 # stopping criteria
3: while A > edo

4: Update v5' (1) = —1 + vk (0) # DP update
5: Update vE*! (2) = —1 + vF (0) # DP update
6 Update vE™* (3) = —1 4 v% (2) # DP update
70 A =maxeeqr 25 [vh T (s) — vk (s)] # check convergence
8: Updatek «— k+1

9: end while

It converges after only one recursion!

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 17/48

Dynamic Programming Policy Improvement

Policy Improvement

Let us know recall optimality constraint: with optimal policy, we have
Vs (5) = max g (s,a™)
m

which can be achieved by policy

1 m = argmaxq, (s,a™)

7 (a"|s) = m
0 m # argmax g, (s,a™)
m

This means that if 7 is not optimal, we would have

1 m = argmax g, (s,a™)
m

W(a7n|8) #

0 m # argmax g, (s,a"™)
m

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 18/48

Policy Improvement
In other words, if we change our policy to
1 m = argmax gy, (s,a™)
m

7 (am|s) =
(@”ls) 0 m # argmax g, (s,a"™)
m

Then, it should give us better values, i.e., 7 > !

+ Are you sure?! | don’t see it immediately
- We can actually show it!

This is what we call policy improvement theorem

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 19/48

Policy Improvement

Policy Improvement

Given (deterministic) policy 7%, we can always design a better policy 7%*+1 by
setting it to

1 m = argmaxq.x (s,a")
ﬂ_k-i-l (am|8) _ m

0 m # argmaxq, (s,a™)
m

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 20/48

Dynamic Programming Policy Improvement

Policy Improvement

PolicyImprov(vy):
1: forn =1: N do
2: form=1:]_/[do
3 Compute R (s",a™) -
4: qr (s",a™) = R(s",a™) + 1Ex {vx () |s",a™} # action-values
5 end for
6 Compute an improved policy as # policy improvement
1 m = argmaxg. (s",a™)
T (a"|s") = " nom
0 m # argmaxqx (s",a"™)
7: end for
Attention

Here, we do no recursion

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 21/48

Example: Dummy Grid World

7

¢\«

Let’s try dummy grid world with above non-optimal policy: here, we have

We now look at acion-values at the problematic state s = 1

qr (1,0) =

g (1,1) = L B
gr (1,2) = —35 3 = vr (1) # maxgr (1,0) = ~1
qn (1,3) —3.5

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025

22/48

Example: Dummy Grid World

ZEAmZA

¢l<~ ¢\<—

Now if we improve the policy, we get

7 (all) =

1 m = argmaxq; (1,a _
gu qr (): 1 a=
0 a#0

0 m # argmaxq, (1,a)
m

which is actually optimal

Reinforcement Learning Chapter 2: Model-based RL

Policy Iteration: Improving Policy by Recursion

Looking at the policy improvement theorem, we see

If we plug in 7% = 7* into algorithm:; then, after policy improvement

L, weget tFtl = 7

L, say we evaluate values for 7%+

L, we get 7h+2 = 7*
L, say we evaluate values for T++

Lo...

L — 7* and plug back to algorithm

2 — 7* and plug back to algorithm

So, optimal policy is a fixed-point for this recursion
Policy Iteration

We can start with an arbitrary policy 7° and keep doing the above recursion
until we see that 7%+ = 7% which indicates that we reached optimal policy

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 24/48

Policy Iteration

PolicyItr():

1: Initiate with random v (s) for all non-terminal states s
2: Set vy (s) = 0 for terminal states s
3: Initiate two random policies 7 and 7

__

ot __ U = St e
6 T= PollcyImprov(v,r) .

!

' 7. end while R.ecursion

Note that this is a nested recursive computation

e There is a loop for recursion inside the algorithm in which
L, at each iteration we evaluate the policy recursively

® But, we initiate each policy evaluation loop with the values of last iteration
L, this can improve the convergence speed

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 25/48

Dynamic Programming Value lteration

Back-Tracking by Recursion

+ But wait a Moment! We already talked about back-tracking optimal policy
from Bellman optimality equation! Don’t we implement that?!

- Sure! We can do the same thing by recursion

We follow the same idea but we use recursion
@ We can find optimal values from Bellman optimality equations
L, This is where we use recursion

@® We could then find the optimal action-values
® We finally get the optimal policy from optimal action-values

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 26/48

Recall: Back-Tracking from Optimal Values

Opt imBackTrack() :

2 forn =1: N do

3: form =1: M do
4 Set g, (s",a™) = R(s",a™) + ~1E {vs (§) |s",a™} # action-values
5: end for

6 Compute optimal policy via optimality constraint

1 m = argmaxg. (s,a™)

ﬂ'* a'ln/ s —
(a™s) 0 m # argmaxq. (s,a™)

7: end for

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 27/48

Recursion with Bellman Optimality

Recall Bellman optimality equation

v (8) = max (R (s,a™) + 7vE {v. () [s,a™})

m

We can again solve it by recursion: we start with some v? (-) and then for
every state s and action o', we compute

E{ol (S) [s, " | = 2 ok (s") p(s"]s,a")
— N—_—— ﬁ_/
Iast computed value +transition model

We then update the optimal value function as

v (s) = max (7_3 (s,a™) +~E {v,’f (S) s, am})

m

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025

28/48

Dynamic Programming Value lteration

Value lIteration vs Policy Iteration

Before we complete the value iteration algorithm: it is interesting to put its

recursion next to the one used for policy evaluation

With optimality equation, we iterate as

vF L () = max [ﬁ (s,a"™) +~E {v'f (S) s, am}]

m

With Bellman equation for a given policy w, we iterate as

VEF (5) = Ry (5) + 1Ex {0k (S) Is

——

=
~

(7@ (s,a™) +~E {v,’f. (S) |s, am}> 7 (a™]s)

1

m

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025

29/48

Dynamic Programming Value lteration

Value lIteration vs Policy Iteration

With optimality equation, we iterate as

oA (5) = max [7@ (s,a™) +~E {vf (S)|s, am}]

m

With Bellman equation for a given policy , we iterate as

M

ot (s) = Z (7@ (s,a™) +~E {vﬁ (S) s, am}> m (a™|s)

m=

This indicates that for both recursive loops
e we compute M values per iteration per state

L, in policy iteration, we compute the average of these M via
L, in value iteration, we take the largest among these M values

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025

30/48

Value lteration

ValuelItr():

1: Initiate with random v? (s) for all states, and set v? (s) = O for terminal states
2: Choose a small threshold e, initiate A = +coand k = 0

__

| 3: while A > ¢ do :
VARSI |
1 153 form =1: M do X
ii 6 Compute g, (s™,a™) =R (s",a™) + ~E {v* (S) s ,am} :3
/7. ___endfor __ . !
1 8 Update vE*! (s™) = max,, g (s™, a™) # DP update
L9 end for 1
110: Set A = max, [vFT! (s") —oF (s")|and k «— k + 1 . }
'11: end while R ecursion I

12: Compute an optimal policy as

1 m = argmaxg, (s,a”)
7 (a™]s) = m

0 m # argmaxq. (s,a™)
m

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 31/48

Example: Dummy Grid World

7R
|

You may try policy and value iteration for this problem at home!

Easy as Pie ©

Reinforcement Learning Chapter 2: Model-based RL

Dynamic Programming Value lteration

Example: A Bit Larger Grid World*

0 1 2 3
4 5 6 7
8 9 10 (11
12 183 [14 |15

BOard = states

+

Mmoves = actions

Let’s do a bit of more serious example: we are now in a 4 x 4 grid world

® We have two terminal states shown in gray

e Fach move we do gets a -1 reward

L, We also get -1 reward if we hit a corner
L, We get zero reward at terminal state

In simple words: we are looking for shortest path to the corners

YThis example is taken from Sutton and Barto’s Book; Example 4.1 in Chapter 4

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025

33/48

Example: A Bit Larger Grid World

Tl 0.0] 0.0] 0.0] 0.0

i o A e A 0.0 0.0] 0.0 0.0

Tl rrrrEr 0.0] 0.0] 0.0] 0.0

N e N e A 0.0] 0.0] 0.0] 0.0
initial policy initial values

Let’s first try policy iteration: we start with
* a uniform random policy 7°

e all values being zero, i.e., v, (s) = 0 forall s

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025

34/48

Example: A Bit Larger Grid World

Recall policy iteration:

PolicyItr():

1: Initiate with random v () for all non-terminal states s
2: Set vy (s) = 0 for terminal states s
3: Initiate two random policies 7 and 7

3 !
| 6 7 =PolicyImprov(v,) }
|

| 7: end while Recursion

We should start with v", (-) and do the red recusion first

e at the end of this recursion we have evaluated the random policy

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 35/48

Example: A Bit Larger Grid World

0.0/ 0.0 0.0] 0.0 0.0|-1.0[-1.0|-1.0 0.0{-1.7|-2.0[-2.0
0.0 0.0 0.0] 0.0 -1.0[-1.0|-1.0[-1.0 -1.7|-2.0[-2.0[-2.0
0.0 0.0 0.0] 0.0 -1.0[-1.0|-1.0[-1.0 -2.0[-2.0[-2.0[-1.7
0.0 0.0{ 0.0] 0.0 -1.0[-1.0-1.0] 0.0 -2.0[-2.0[-1.7] 0.0
0.0[-2.4/-2.9/-3.0 0.0{-14.|-20.|-22.
-2.4{-2.9|-3.0[-2.9 N -14.]-18.|-20.[-20.
-2.9|-3.0[-2.9|-2.4 -20./-20.|-18.[-14.
-3.0[-2.9-2.4] 0.0 -22.[-20.-14. 0.0

We now have evaluated the value of random policy v, .0 = ,U;%

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025

36/48

Example: A Bit Larger Grid World

Recall policy iteration:

PolicyItr():

1: Initiate with random v () for all non-terminal states s
2: Set vy (s) = 0 for terminal states s
3: Initiate two random policies 7 and 7

| 6. 7 = PolicyImprov(v,)

| 7: end while Recursion

Next, we do the outer recusion recursion, i.e.,
® we improve the policy

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 37/48

Example: A Bit Larger Grid World

N
v
N
03
Y
v

3

P s e s le s ¢ S
l € > |€ >|€ > |€ >

«—
t R Pk N
€ >

«—
"N
A4
"N
A
N
A 4

t ol ‘_l
Ll p
L - -

N
v
N
03
N
04

3
)

We improve policy by taking actions with maximal action-values
* if we have multiple maximal action-values we can behave randomly

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 38/48

Example: A Bit Larger Grid World

Recall policy iteration:

PolicyItr():

1: Initiate with random v () for all non-terminal states s
2: Set vy (s) = 0 for terminal states s
3: Initiate two random policies 7 and 7

3 !
| 6 7 =PolicyImprov(v,) }
|

| 7: end while Recursion

We now | start with v°, = v_o = v% | and do the red recusion again
s 7" s

e at the end of this recursion we have evaluated the new policy 7!

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 39/48

Example: A Bit Larger Grid World

0.0[-14.]-20.[-22. 0.0(-1.0|-2.0(-3.0

-14.(-18.[-20.[-20. . -1.0(-2.0]-3.0{-2.0

-20.(-20.[-18.|-14. -2.0[-3.0(-2.0(-1.0

-22.1-20.1-14.] 0.0 -3.0|-2.0{-1.0| 0.0
00, e

g

After evaluating policy 7' as v,1 = v, we do the next improvement

"Hal] o TE |
"5l el "S5l el
[N N RN [N N RN

Well 72 = 7! and we should stop!

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025

40/48

Example: A Bit Larger Grid World

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Now we try value iteration: for start, we only need an initial value, so we set

initial values

e all values being zero, i.e., v (s) = 0 forall s

We keep recursion until we find the optimal values

Reinforcement Learning Chapter 2: Model-based RL

© A. Bereyhi 2024 - 2025

41/48

Dynamic Programming Value lteration

Example: A Bit Larger Grid World

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0

v,

Now, we back-track the optimal policy 7

0.0

-1.0

-2.0

-3.0

-1.0

-2.0

-3.0

-2.0

-2.0

-3.0

-2.0

-1.0

-3.0

-2.0

-1.0

0.0

Reinforcement Learning Chapter 2: Model-based RL

Vs

—

action-values

—

0.0]-1.0

-2.0

-3.0

-1.0(-2.0

-3.0

-2.0

-2.0(-3.0

-2.0

-1.0

-3.0|-2.0

-1.0

0.0

a
r

© A. Bereyhi 2024 - 2025

ANEEL

42/48

Complexity of Policy and Value Iteration

+ It seems that value iteration has less complexity!

- Well, it is not in order, but yes! It usually converge faster

In our example with policy iteration, we had to evaluate two policies
e once for 7° and once for 7'

¢ say the first recursion took K iterations and the second took Ko

L, the total number of iterations is then K1 + Ko

L, in practice, it often happens that Ko « K
L, because we already start from good values with vgl = v;gﬁ

With value iteration, we had to only evaluate optimal policy
® say it takes K, iterations: there is no reason that K, be same as K1 or K5
L, each evaluation has a different initial and converging point
L, in practice, it often happens that K, > K; and K,>» Ky
L, so it might be that K, ~ K1 + Ko
L, but usually withmultiple policy improvements, we see K, < K1 + Ko + ...

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 43/48

Complexity of Policy and Value Iteration

+ If so, why should we use policy iteration?!
- Well, not all problems are like a dummy grid world

In practice, it might be computationally hard to get very close to optimal values
® in this case, we take non-converged values
L, we consider them estimates of optimal values

® in value iteration we approximate optimal policy with on these estimates
L, this might be a loose estimate

If we do the same approximative computation with policy iteration
* we often end up with a better policy

Moral of Story

While value iteration typically show faster convergence, policy iteration can give
better policies after convergence

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 44/48

Generalized Policy Iteration

In practice, we can terminate or change the order of computation in policy
iteration to reduce its complexity: for instance, we could have

GenPolicyItr():

1: Initiate with random v () for all non-terminal states s
2: Set v (s) = 0 for terminal states s
3: Initiate two random policies and 7

__

\"6: 7 =PolicyImprov(v,) 0
' 7: end while

where TerminPolicyEval(w, v,) evaluates policy m from starting value
function v, with a terminating recursion loop

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 45/48

Reinforcement Learning Chapter 2: Model-based RL

Final Points Generalized Policy Iteration

Generalized Policy Iteration: Terminating Evaluation

TerminPolicyEval (7r, vg) :
: Initiate values with v2 and set k = 0
: Make sure that v2 (s) = 0 for terminal states s

112: Update k — k + 1
1 13: end while

—-——

1
2
3: Choose a small threshold € and initiate A = + o0 # stopping criteria
4: forn =1: N do
5 Compute R (s") = Ex {R (s",a)} # average response
endfor
11 7: while A > eand k < K do chanaed
8 forn=1:Ndo T TTTTTToTooTTTTTTmTTTToo ‘
L 9: Update vit* (s™) = Ry (s™) + vEx {vk (S) [s"} # DP update !
110: end for
111: A= max, [vEF (s™) — vk (s™)|

!

!

!

check convergence
!

|

!

Obviously, TerminPolicyEval(mw, v,) does not return the exact values of the

policy 7, but only an estimate of them

© A. Bereyhi 2024 - 2025

46/48

Generalized Policy Iteration

We can come up with various such ideas: these variants are often called
Generalized Policy Iteration = GPI
These approaches all rely on

back-and-forth computation of policies and values

evaluation

evaluation
/\ 7 ™\ evaluation
™ v T v s T > Usx
_/ S~ improvement
. improvement
improvement

If designed properly, they all converge to optimal policy and optimal values

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025

47/48

Final Points Generalized Policy Iteration

Some Final Remarks

+ We know the algorithms now, but how can we guarantee that they
converge? You showed us an simple example that recursion could simply
diverge!

- Well, we can show that what we discussed in this chapter converge: it
comes from the nice properties of Bellman equations

L, There are several proofs; for instance see a proof in Tom Mitchell’s notes

When it comes to practice, most known algorithms are proved to converge to
optimal policy and optimal values; however, note that
e Convergence guarantee is different from the speed of convergence
L, An algorithm might converge, but very slow
¢ [f you deal with an unknown algorithm; then, you should make sure that it
converges to optimal policy and optimal values

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 48/48

https://www.andrew.cmu.edu/course/10-703/slides/lecture4_valuePolicyDP-9-10-2018.pdf

	Dynamic Programming
	Policy Evaluation
	Policy Improvement
	Policy Iteration
	Value Iteration

	Final Points
	Generalized Policy Iteration

