ECE 1508: Reinforcement Learning

Chapter 2: Model-based RL

Ali Bereyhi

ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Fall 2025

Last Piece: Dynamic Programming

Right now, we know what to do when we know MDP of environment

- 1 We can find optimal values from Bellman optimality equations
- 2 We could then find the optimal action-values
- 3 We finally get the optimal policy from optimal action-values

The only remaining challenge is to find

an algorithmic approach to solve Bellman optimality equations

We complete this last piece using

Dynamic Programming \equiv DP

Dynamic Programming: Basic Idea

Assume, we want to solve the problem of

$$x = f(x)$$

for some function f(x)

We could solve it via direct approach:

- **1** Rewrite is as f(x) x = 0
- 2 Solve it via classic algorithms
 - ⇒ Reduce it to a known form, e.g., a polynomial
 - Solve it via an iterative method, e.g., Newton-Raphson or method of intervals

Dynamic Programming: Basic Idea

Assume, we want to solve the problem of

$$x = f\left(x\right)$$

for some function f(x)

We could also solve it by recursion:

- **1** Start with an x^0 and set $x^1 = f(x^0)$
- **2** Until $x^{k+1} \approx x^k$, we do

 - \rightarrow Set $k \leftarrow k+1$

Under some conditions on $f(\cdot)$, this approach can converge

Dynamic Programming: Example

We want to solve

$$x = \frac{-1}{2+x}$$

- **1** Start with an $x^0 = 0$
- 2 We now get into the recursion loop

We asymptotically converge to $x^{\infty} = -1$ which is the solution

Note that we always converge no matter which point we start

Dynamic Programming: Example

Now, let's write the same equation in a different recursive form

$$x = \frac{-1 - x^2}{2}$$

- **1** Start with an $x^0 = 0$
- 2 We get into recursion loop

$$\Rightarrow x^{\infty} = -1$$

1 Start with an
$$x^0 = 5$$

We get into recursion loop

$$\Rightarrow x^{1} = f(x^{0}) = -13$$

$$\Rightarrow x^{2} = f(x^{1}) = -85$$

$$\Rightarrow \cdots$$

 $\rightarrow x^{\infty} = -\infty$

We can now diverge if we start with a wrong initial point!

Not all recursive forms are always converging!

Dynamic Programming: Applications to Our Problem

Our problem has a similar form: we need to solve Bellman equations

which are recursive equations

So, we could use DP to find the solution

There are two major DP approaches

- Policy Iteration that uses recursion to iterate between
- Value Iteration which applies recursion on optimal Bellman equation

Let's look at these two approaches in detail

Policy Evaluation: Step I

The first step is *policy evaluation*: we can formulate this problem as follows

Ultimate Goal of Policy Evaluation

Given a policy π , we intend to evaluate values of all states by recursion

Before we start, let's recap a few definitions: recall expected policy reward

$$\bar{\mathcal{R}}_{\pi}(s) = \sum_{m=1}^{M} \bar{\mathcal{R}}(a^{m}, s) \pi(a^{m}|s)$$

For sake of compactness, we use the following notation

$$\bar{\mathcal{R}}_{\pi}(s) = \mathbb{E}_{\pi} \left\{ \bar{\mathcal{R}}(A, s) | s \right\}$$

Policy Evaluation: Step I

Similarly, we define the notation

$$\mathbb{E}_{\pi} \left\{ v_{\pi} \left(\bar{S} \right) | s, \mathbf{a} \right\} = \sum_{n=1}^{N} v_{\pi} \left(s^{n} \right) p \left(s^{n} | s, \mathbf{a} \right)$$

and also denote its expected form over the action set by

$$\mathbb{E}_{\pi} \left\{ v_{\pi} \left(\bar{S} \right) | s \right\} = \sum_{n=1}^{N} v_{\pi} \left(s^{n} \right) p_{\pi} \left(s^{n} | s \right)$$

$$= \sum_{m=1}^{M} \sum_{n=1}^{N} v_{\pi} \left(s^{n} \right) p \left(s^{n} | s, a^{m} \right) \pi \left(a^{m} | s \right)$$

$$= \sum_{m=1}^{M} \mathbb{E}_{\pi} \left\{ v_{\pi} \left(\bar{S} \right) | s, a^{m} \right\} \pi \left(a^{m} | s \right)$$

Policy Evaluation: Step I

We can then write the Bellman equations compactly as

$$v_{\pi}(s) = \bar{\mathcal{R}}_{\pi}(s) + \gamma \mathbb{E}_{\pi} \left\{ v_{\pi}(\bar{S}) | s \right\}$$

for value function and also as

$$q_{\pi}\left(s, \mathbf{a}\right) = \bar{\mathcal{R}}\left(s, \mathbf{a}\right) + \gamma \mathbb{E}_{\pi}\left\{v_{\pi}\left(\bar{S}\right) | s, \mathbf{a}\right\}$$

for action-value function

Now, we are ready to evaluate a policy by recursion

Recall our perspective on value computation:

values are N unknowns that we want to compute from Bellman equations

Now, if someone claims that the values

$$v_{\pi}\left(s^{n}\right) = v_{n}$$

for n = 1 : N are values of policy π , can we confirm it?

- + Shouldn't we simply use Bellman Equation?!
- Exactly!

We could confirm

$$v_{\pi}\left(s^{n}\right) = v_{n}$$

by writing first finding for every state s

$$\begin{split} \mathbb{E}_{\pi} \left\{ v_{\pi} \left(\bar{S} \right) | s \right\} &= \sum_{n=1}^{N} v_{\pi} \left(s^{n} \right) p_{\pi} \left(s^{n} | s \right) \\ &= \sum_{n=1}^{N} \sum_{m=1}^{M} v_{\pi} \left(s^{n} \right) p \left(s^{n} | s, a^{m} \right) \pi \left(a^{m} | s \right) \\ &= \sum_{n=1}^{N} \sum_{m=1}^{M} \underbrace{v_{n}}_{\text{claimed value-transition model policy}} \underbrace{p \left(s^{n} | s, a^{m} \right)}_{\text{policy}} \underbrace{\pi \left(a^{m} | s \right)}_{\text{policy}} \end{split}$$

We could confirm

$$v_{\pi}\left(s^{n}\right) = v_{n}$$

by writing first finding for every state s

$$\mathbb{E}_{\pi}\left\{v_{\pi}\left(\bar{S}\right)|s
ight\}=$$
 computed from v_{n} 's $\coloneqq F\left(\left\{v_{1},\ldots,v_{N}
ight\},s
ight)$

and then checking if

$$v_{\pi}(s^{n}) = v_{n} = \bar{\mathcal{R}}_{\pi}(s^{n}) + \gamma \mathbb{E}_{\pi} \left\{ v_{\pi}(\bar{S}) \mid s^{n} \right\}$$
$$= \bar{\mathcal{R}}_{\pi}(s^{n}) + \gamma F\left(\left\{ v_{1}, \dots, v_{N} \right\}, s \right)$$

holds for all n = 1:N

If it happens that the claimed $v_{\pi}\left(\cdot\right)$ is not a valid claim; then, we get out of Bellman equation

$$\bar{v}_{\pi}\left(s^{n}\right) = \bar{v}_{n} = \bar{\mathcal{R}}_{\pi}\left(s^{n}\right) + \gamma \mathbb{E}_{\pi}\left\{v_{\pi}\left(\bar{S}\right)|s^{n}\right\}$$

which is different from the claimed $v_{\pi}\left(\cdot\right)$, i.e., $v_{n}\neq\bar{v}_{n}$

Policy Evaluation

We iterate this procedure until we can confirm, i.e., we

- **2** repeat the same procedure and compute new $ar{v}_{\pi}\left(\cdot\right)$

We stop when $v_{\pi}\left(\cdot\right)=\bar{v}_{\pi}\left(\cdot\right)$, or at least it happens approximately

Policy Evaluation

```
PolicyEval(\pi, v_{\pi}^0):
  1: Initiate values with v_{\pi}^{0} and set k=0
  2: Make sure that v_{\pi}^{0}(s) = 0 for terminal states s
  3: Choose a small threshold \epsilon and initiate \Delta = +\infty
                                                                                 # stopping criteria
  4: for n = 1 : N do
      Compute \bar{\mathcal{R}}_{\pi}\left(s^{n}\right)=\mathbb{E}_{\pi}\left\{\bar{\mathcal{R}}\left(s^{n},a\right)\right\}
                                                                                     # average rewards
  6: end for
  7: while \Delta > \epsilon do
  8: for n = 1 : N do
  9: Update v_{\pi}^{k+1}(s^n) = \bar{\mathcal{R}}_{\pi}(s^n) + \gamma \mathbb{E}_{\pi} \{v_{\pi}^k(\bar{S}) | s^n \}
                                                                                               # DP update
10: end for
11: \Delta = \max_{n} |v_{\pi}^{k+1}(s^{n}) - v_{\pi}^{k}(s^{n})|
                                                                                  # check convergence
12: Update k \leftarrow k+1
                                                                                      Recursion Loop
13: end while
```

Attention

We should make sure that terminal states are all initiated with zero value

Example: Dummy Grid World

Let's try with our dummy grid world: we saw that

$$\bar{\mathcal{R}}_{\pi}(0) = 0$$
 $\bar{\mathcal{R}}_{\pi}(1) = -1$ $\bar{\mathcal{R}}_{\pi}(2) = -1$ $\bar{\mathcal{R}}_{\pi}(3) = -1$

Now let's evaluate its values by recursion: we first note that, if we have

$$\mathbb{E}_{\pi} \left\{ v_{\pi}^{k} \left(\bar{S} \right) | 0 \right\} = v_{\pi}^{k} \left(0 \right) \qquad \qquad \mathbb{E}_{\pi} \left\{ v_{\pi}^{k} \left(\bar{S} \right) | 1 \right\} = v_{\pi}^{k} \left(0 \right)$$

$$\mathbb{E}_{\pi} \left\{ v_{\pi}^{k} \left(\bar{S} \right) | 2 \right\} = v_{\pi}^{k} \left(0 \right) \qquad \qquad \mathbb{E}_{\pi} \left\{ v_{\pi}^{k} \left(\bar{S} \right) | 3 \right\} = v_{\pi}^{k} \left(2 \right)$$

Example: Dummy Grid World


```
\begin{array}{lll} \operatorname{PolicyEval} \left( \pi, v_{\pi}^{0} \right) : \\ 1: & \operatorname{Initiate values with } v_{\pi}^{0} \left( 1 \right), v_{\pi}^{0} \left( 2 \right) \text{ and } v_{\pi}^{0} \left( 3 \right) \text{ at random and set } v_{\pi}^{0} \left( 0 \right) = 0 \\ 2: & \operatorname{Set} \epsilon = 0.001, \text{ and initiate } \Delta = 1000 & \# \text{ stopping criteria} \\ 3: & \operatorname{while } \Delta > \epsilon \text{ do} \\ 4: & \operatorname{Update } v_{\pi}^{k+1} \left( 1 \right) = -1 + v_{\pi}^{k} \left( 0 \right) & \# \text{ DP update} \\ 5: & \operatorname{Update } v_{\pi}^{k+1} \left( 2 \right) = -1 + v_{\pi}^{k} \left( 0 \right) & \# \text{ DP update} \\ 6: & \operatorname{Update } v_{\pi}^{k+1} \left( 3 \right) = -1 + v_{\pi}^{k} \left( 2 \right) & \# \text{ DP update} \\ 7: & \Delta = \max_{s \in \{1,2,3\}} |v_{\pi}^{k+1} \left( s \right) - v_{\pi}^{k} \left( s \right)| & \# \text{ check convergence} \\ 8: & \operatorname{Update } k \leftarrow k + 1 \end{array}
```

It converges after only one recursion!

9: end while

Let us know recall optimality constraint: with optimal policy, we have

$$v_{\star}\left(s\right) = \max_{\mathbf{m}} q_{\star}\left(s, \mathbf{a}^{\mathbf{m}}\right)$$

which can be achieved by policy

$$\pi^{\star} (\mathbf{a}^{m} | s) = \begin{cases} 1 & m = \underset{m}{\operatorname{argmax}} q_{\star} (s, \mathbf{a}^{m}) \\ 0 & m \neq \underset{m}{\operatorname{argmax}} q_{\star} (s, \mathbf{a}^{m}) \end{cases}$$

This means that if π is **not** optimal, we would have

$$\pi\left(\mathbf{a}^{m}|s\right) \neq \begin{cases} 1 & m = \underset{m}{\operatorname{argmax}} q_{\pi}\left(s, \mathbf{a}^{m}\right) \\ 0 & m \neq \underset{m}{\operatorname{argmax}} q_{\pi}\left(s, \mathbf{a}^{m}\right) \end{cases}$$

In other words, if we change our policy to

$$\bar{\pi} \left(\boldsymbol{a^m} \middle| s \right) = \begin{cases} 1 & m = \underset{m}{\operatorname{argmax}} q_{\pi} \left(s, \boldsymbol{a^m} \right) \\ 0 & m \neq \underset{m}{\operatorname{argmax}} q_{\pi} \left(s, \boldsymbol{a^m} \right) \end{cases}$$

Then, it should give us better values, i.e., $\bar{\pi} \ge \pi!$

- + Are you sure?! I don't see it immediately
- We can actually show it!

This is what we call policy improvement theorem

Policy Improvement

Given (deterministic) policy π^k , we can always design a better policy π^{k+1} by setting it to

$$\pi^{k+1} \left(\mathbf{a}^{m} | s \right) = \begin{cases} 1 & m = \underset{m}{\operatorname{argmax}} q_{\pi^{k}} \left(s, \mathbf{a}^{m} \right) \\ 0 & m \neq \underset{m}{\operatorname{argmax}} q_{\pi^{k}} \left(s, \mathbf{a}^{m} \right) \end{cases}$$

```
PolicyImprov(v_{\pi}):
 1: for n = 1 : N do
           for m=1:M do
 3:
       Compute \bar{\mathcal{R}}(s^n, \boldsymbol{a^m})
                     q_{\pi}(s^{n}, \mathbf{a}^{m}) = \bar{\mathcal{R}}(s^{n}, \mathbf{a}^{m}) + \gamma \mathbb{E}_{\pi} \left\{ v_{\pi}(\bar{S}) | s^{n}, \mathbf{a}^{m} \right\} # action-values
 4:
 5:
         end for
 6:
               Compute an improved policy as
                                                                                                                                     # policy improvement
                                                 \bar{\pi} \left( \boldsymbol{a}^{m} \middle| \boldsymbol{s}^{n} \right) = \begin{cases} 1 & m = \underset{m}{\operatorname{argmax}} q_{\pi} \left( \boldsymbol{s}^{n}, \boldsymbol{a}^{m} \right) \\ 0 & m \neq \underset{m}{\operatorname{argmax}} q_{\pi} \left( \boldsymbol{s}^{n}, \boldsymbol{a}^{m} \right) \end{cases}
  7: end for
```

Attention

Here, we do no recursion

Example: Dummy Grid World

Let's try dummy grid world with above non-optimal policy: here, we have

$$v_{\pi}(0) = 0$$
 $v_{\pi}(1) = -3$ $v_{\pi}(2) = -1$ $v_{\pi}(3) = -2$

We now look at acion-values at the problematic state s=1

$$q_{\pi}(1, 0) = -1$$

 $q_{\pi}(1, 1) = -3$
 $q_{\pi}(1, 2) = -3.5$ \longrightarrow $-3 = v_{\pi}(1) \neq \max_{a} q_{\pi}(1, a) = -1$
 $q_{\pi}(1, 3) = -3.5$

Example: Dummy Grid World

Now if we improve the policy, we get

$$\bar{\pi} (\boldsymbol{a}|1) = \begin{cases} 1 & m = \underset{m}{\operatorname{argmax}} q_{\pi} (1, \boldsymbol{a}) \\ 0 & m \neq \underset{m}{\operatorname{argmax}} q_{\pi} (1, \boldsymbol{a}) \end{cases} = \begin{cases} 1 & a = 0 \\ 0 & a \neq 0 \end{cases}$$

which is actually optimal

Policy Iteration: Improving Policy by Recursion

Looking at the policy improvement theorem, we see

So, optimal policy is a fixed-point for this recursion

Policy Iteration

We can start with an arbitrary policy π^0 and keep doing the above recursion until we see that $\pi^{k+1} = \pi^k$ which indicates that we reached optimal policy

Policy Iteration

```
PolicyItr():

1: Initiate with random v_{\pi}(s) for all non-terminal states s

2: Set v_{\pi}(s) = 0 for terminal states s

3: Initiate two random policies \pi and \bar{\pi}

4: while \bar{\pi} \neq \bar{\pi} do

5: v_{\pi} = \text{PolicyEval}(\bar{\pi}, v_{\pi}) and \bar{\pi} \leftarrow \bar{\pi} Recursion

6: \bar{\pi} = \text{PolicyImprov}(v_{\pi})

7: end while
```

Note that this is a nested recursive computation

- There is a loop for recursion inside the algorithm in which
 - □ at each iteration we evaluate the policy recursively
- But, we initiate each policy evaluation loop with the values of last iteration

Back-Tracking by Recursion

- + But wait a Moment! We already talked about back-tracking optimal policy from Bellman optimality equation! Don't we implement that?!
- Sure! We can do the same thing by recursion

We follow the same idea but we use recursion

- 1 We can find optimal values from Bellman optimality equations
- 2 We could then find the optimal action-values
- 3 We finally get the optimal policy from optimal action-values

Recall: Back-Tracking from Optimal Values

```
OptimBackTrack():
1: Solve Bellman equations
                                                 # we use recursion
 2: for n = 1 : N do
 3:
        for m=1:M do
              Set q_{\star}(s^n, \mathbf{a}^m) = \bar{\mathcal{R}}(s^n, \mathbf{a}^m) + \gamma \mathbb{E}\left\{v_{\star}(\bar{S}) | s^n, \mathbf{a}^m\right\} # action-values
 4:
 5:
        end for
 6:
          Compute optimal policy via optimality constraint
                                   \pi^{\star} (a^{m}|s) = \begin{cases} 1 & m = \underset{m}{\operatorname{argmax}} q_{\star} (s, a^{m}) \\ 0 & m \neq \underset{m}{\operatorname{argmax}} q_{\star} (s, a^{m}) \end{cases}
 7: end for
```

Recursion with Bellman Optimality

Recall Bellman optimality equation

$$v_{\star}(s) = \max_{m} \left(\bar{\mathcal{R}}(s, \mathbf{a}^{m}) + \gamma \mathbb{E} \left\{ v_{\star}(\bar{S}) | s, \mathbf{a}^{m} \right\} \right)$$

We can again solve it by recursion: we start with some $v^0_{\star}(\cdot)$ and then for every state s and action a^m , we compute

$$\mathbb{E}\left\{v_{\star}^{k}\left(\bar{S}\right)|s,a^{m}\right\} = \sum_{n=1}^{N} \underbrace{v_{\star}^{k}\left(s^{n}\right)}_{\text{last computed value}} \underbrace{p\left(s^{n}|s,a^{m}\right)}_{\text{transition model}}$$

We then update the optimal value function as

$$v_{\star}^{k+1}\left(s\right) = \max_{\mathbf{m}} \left(\bar{\mathcal{R}}\left(s, \mathbf{a}^{\mathbf{m}}\right) + \gamma \mathbb{E}\left\{v_{\star}^{k}\left(\bar{S}\right) | s, \mathbf{a}^{\mathbf{m}}\right\}\right)$$

Value Iteration vs Policy Iteration

Before we complete the value iteration algorithm: it is interesting to put its recursion next to the one used for policy evaluation

With optimality equation, we iterate as

$$v_{\star}^{k+1}\left(s\right) = \max_{\mathbf{m}}\left[\bar{\mathcal{R}}\left(s, \mathbf{a}^{\mathbf{m}}\right) + \gamma \mathbb{E}\left\{v_{\star}^{k}\left(\bar{S}\right) \middle| s, \mathbf{a}^{\mathbf{m}}\right\}\right]$$

With Bellman equation for a given policy π , we iterate as

$$v_{\pi}^{k+1}(s) = \bar{\mathcal{R}}_{\pi}(s) + \gamma \mathbb{E}_{\pi} \left\{ v_{\pi}^{k}(\bar{S}) | s \right\}$$
$$= \sum_{m=1}^{M} \left(\bar{\mathcal{R}}(s, a^{m}) + \gamma \mathbb{E} \left\{ v_{\pi}^{k}(\bar{S}) | s, a^{m} \right\} \right) \pi \left(a^{m} | s \right)$$

Value Iteration vs Policy Iteration

With optimality equation, we iterate as

$$v_{\star}^{k+1}\left(s\right) = \max_{\mathbf{m}}\left[\bar{\mathcal{R}}\left(s, \mathbf{a}^{\mathbf{m}}\right) + \gamma \mathbb{E}\left\{v_{\star}^{k}\left(\bar{S}\right) | s, \mathbf{a}^{\mathbf{m}}\right\}\right]$$

With Bellman equation for a given policy π , we iterate as

$$v_{\pi}^{k+1}(s) = \sum_{m=1}^{M} \left(\bar{\mathcal{R}}(s, \boldsymbol{a}^{m}) + \gamma \mathbb{E}\left\{ v_{\pi}^{k}(\bar{S}) | s, \boldsymbol{a}^{m} \right\} \right) \pi(\boldsymbol{a}^{m} | s)$$

This indicates that for both recursive loops

- we compute M values per iteration per state
 - $\,\,\,\,\,\,\,\,\,\,\,\,$ in policy iteration, we compute the average of these M via π
 - \downarrow in value iteration, we take the largest among these M values

Value Iteration

```
ValueItr():
   1: Initiate with random v_{\star}^{0}(s) for all states, and set v_{\star}^{0}(s) = 0 for terminal states
   2: Choose a small threshold \epsilon, initiate \Delta = +\infty and k = 0
   3: while \Delta > \epsilon do
  4: for n = 1 : N do
5: \quad for \, \overline{m} = \overline{1} : \overline{M} \, d\overline{o}
  6: Compute q_{\star}\left(s^{n}, \boldsymbol{a^{m}}\right) = \bar{\mathcal{R}}\left(s^{n}, \boldsymbol{a^{m}}\right) + \gamma \mathbb{E}\left\{v_{\star}^{k}\left(\bar{S}\right) | s^{n}, \boldsymbol{a^{m}}\right\}
        end for
        Update v_{\pi}^{k+1}(s^n) = \max_{m} q_{\star}(s^n, \mathbf{a}^m)
                                                                                                                                # DP update
         end for
          Set \Delta = \max_n |v_{\pi}^{k+1}(s^n) - v_{\pi}^k(s^n)| and k \leftarrow k+1
10:
11: end while
 12: Compute an optimal policy as
                                          \bar{\pi}\left(a^{m}|s\right) = \begin{cases} 1 & m = \underset{m}{\operatorname{argmax}} q_{\star}\left(s, a^{m}\right) \\ 0 & m \neq \underset{m}{\operatorname{argmax}} q_{\star}\left(s, a^{m}\right) \end{cases}
```

Example: Dummy Grid World

You may try policy and value iteration for this problem at home!

Easy as Pie ©

Example: A Bit Larger Grid World¹

 $Board \equiv states$

Let's do a bit of more serious example: we are now in a 4×4 grid world

- We have two terminal states shown in gray
- Each move we do gets a -1 reward

In simple words: we are looking for shortest path to the corners

¹This example is taken from Sutton and Barto's Book; Example 4.1 in Chapter 4

Example: A Bit Larger Grid World

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

initial policy

initial values

Let's first try policy iteration: we start with

- a uniform random policy π^0
- all values being zero, i.e., $v_{\pi^0}^0\left(s
 ight)=0$ for all s

Example: A Bit Larger Grid World

Recall policy iteration:

```
PolicyItr():

1: Initiate with random v_{\pi}(s) for all non-terminal states s

2: Set v_{\pi}(s) = 0 for terminal states s

3: Initiate two random policies \pi and \bar{\pi}

4: while \pi \neq \bar{\pi} do

5: v_{\pi} = \text{PolicyEval}(\pi, v_{\pi}) and \pi \leftarrow \bar{\pi} Recursion

6: \bar{\pi} = \text{PolicyImprov}(v_{\pi})

7: end while
```

We should start with $v_{\pi^0}^0\left(\cdot\right)$ and do the red recusion first

• at the end of this recursion we have evaluated the random policy

Example: A Bit Larger Grid World

0.0	0.0	0.0	0.0		
0.0	0.0	0.0	0.0		
0.0	0.0	0.0	0.0		
0.0	0.0	0.0	0.0		

0.0	-1.0	-1.0	-1.0	
-1.0	-1.0	-1.0	-1.0	
-1.0	-1.0	-1.0	-1.0	
-1.0	-1.0	-1.0	0.0	
$v_{\pi^0}^1$				

0.0	-1.7	-2.0	-2.0	
-1.7	-2.0	-2.0	-2.0	
-2.0	-2.0	-2.0	-1.7	
-2.0	-2.0	-1.7	0.0	
2				

We now have evaluated the value of random policy $v_{\pi^0} = v_{\pi^0}^\infty$

Recall policy iteration:

```
PolicyItr():

1: Initiate with random v_{\pi}(s) for all non-terminal states s

2: Set v_{\pi}(s) = 0 for terminal states s

3: Initiate two random policies \pi and \bar{\pi}

4: while \pi \neq \bar{\pi} do

5: v_{\pi} = \text{PolicyEval}(\pi, v_{\pi}) and \pi \leftarrow \bar{\pi} Recursion

6: \bar{\pi} = \text{PolicyImprov}(v_{\pi})

7: end while
```

Next, we do the outer recusion recursion, i.e.,

we improve the policy

We improve policy by taking actions with maximal action-values

• if we have multiple maximal action-values we can behave randomly

Recall policy iteration:

```
PolicyItr():

1: Initiate with random v_{\pi}(s) for all non-terminal states s

2: Set v_{\pi}(s) = 0 for terminal states s

3: Initiate two random policies \pi and \bar{\pi}

4: while \pi \neq \bar{\pi} do

5: v_{\pi} = \text{PolicyEval}(\pi, v_{\pi}) and \pi \leftarrow \bar{\pi} Recursion

6: \bar{\pi} = \text{PolicyImprov}(v_{\pi})

7: end while
```

```
We now start with v_{\pi^1}^0=v_{\pi^0}=v_{\pi^0}^\infty and do the red recusion again
```

• at the end of this recursion we have evaluated the new policy π^1

0.0	-14.	-20.	-22.		
-14.	-18.	-20.	-20.		
-20.	-20.	-18.	-14.		
-22.	-20.	-14.	0.0		
$v_{\pi^{1}}^{0}$					

. . .

0.0	-1.0	-2.0	-3.0		
-1.0	-2.0	-3.0	-2.0		
-2.0	-3.0	-2.0	-1.0		
-3.0	-2.0	-1.0	0.0		
v+∞					

 $v_{\pi^1}^{+\infty}$

After evaluating policy π^1 as $v_{\pi^1} = v_{\pi^1}^{\infty}$, we do the next improvement

Well $\pi^2 = \pi^1$ and we should stop!

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

initial values

Now we try value iteration: for start, we only need an initial value, so we set

• all values being zero, i.e., $v_{\star}^{0}\left(s\right)=0$ for all s

We keep recursion until we find the optimal values

. . .

 0.0
 -1.0
 -2.0
 -3.0

 -1.0
 -2.0
 -3.0
 -2.0

 -2.0
 -3.0
 -2.0
 -1.0

 -3.0
 -2.0
 -1.0
 0.0

 $v_{\star}^{+\infty}$

Now, we back-track the optimal policy π^*

action-values

 q_{\star}

Complexity of Policy and Value Iteration

- + It seems that value iteration has less complexity!
- Well, it is not in order, but yes! It usually converge faster

In our example with policy iteration, we had to evaluate two policies

- once for π^0 and once for π^1
- say the first recursion took K_1 iterations and the second took K_2
 - \downarrow the total number of iterations is then $K_1 + K_2$
 - $\,\,\,\,\,\,\,\,\,\,$ in practice, it often happens that $K_2 \ll K_1$
 - \downarrow because we already start from good values with $v_{\pi^1}^0 = v_{\pi^0}^{+\infty}$

With value iteration, we had to only evaluate optimal policy

- say it takes K_{\star} iterations: there is no reason that K_{\star} be same as K_1 or K_2
- $\,\,\,\,\,\,\,\,\,\,$ in practice, it often happens that $K_\star > K_1$ and $K_\star \gg K_2$
 - ightharpoonup so it might be that $K_{\star} \approx K_1 + K_2$
 - \downarrow but usually withmultiple policy improvements, we see $K_{\star} < K_1 + K_2 + \dots$

Complexity of Policy and Value Iteration

- + If so, why should we use policy iteration?!
- Well, not all problems are like a dummy grid world

In practice, it might be computationally hard to get very close to optimal values

- in this case, we take non-converged values
 - \downarrow we consider them estimates of optimal values
- in value iteration we approximate optimal policy with on these estimates
 - this might be a loose estimate

If we do the same approximative computation with policy iteration

we often end up with a better policy

Moral of Story

While value iteration typically show faster convergence, policy iteration can give better policies after convergence

Generalized Policy Iteration

In practice, we can terminate or change the order of computation in policy iteration to reduce its complexity: for instance, we could have

```
GenPolicyItr():

1: Initiate with random v_{\pi}(s) for all non-terminal states s

2: Set v_{\pi}(s) = 0 for terminal states s

3: Initiate two random policies \pi and \bar{\pi}

4: while \pi \neq \bar{\pi} do

5: v_{\pi} = \text{TerminPolicyEval}(\pi, v_{\pi}) and \pi \leftarrow \text{Changed}

6: \bar{\pi} = \text{PolicyImprov}(v_{\pi})

7: end while
```

where TerminPolicyEval (π, v_{π}) evaluates policy π from starting value function v_{π} with a terminating recursion loop

Generalized Policy Iteration: Terminating Evaluation

```
TerminPolicyEval(\pi, v_{\pi}^{0}):
  1: Initiate values with v_{\pi}^{0} and set k=0
  2: Make sure that v_{\pi}^{0}(s) = 0 for terminal states s
  3: Choose a small threshold \epsilon and initiate \Delta = +\infty
                                                                                 # stopping criteria
  4: for n = 1 : N do
     Compute \bar{\mathcal{R}}_{\pi}\left(s^{n}\right)=\mathbb{E}_{\pi}\left\{\bar{\mathcal{R}}\left(s^{n},a\right)\right\}
                                                                                   # average response
  6: end for
  7: while \Delta > \epsilon and k < K do
 8: for n = 1 : N do
 9: Update v_{\pi}^{k+1}(s^n) = \bar{\mathcal{R}}_{\pi}(s^n) + \gamma \mathbb{E}_{\pi} \{v_{\pi}^k(\bar{S}) | s^n\}
                                                                                             # DP update
10: end for
11: \Delta = \max_{n} |v_{\pi}^{k+1}(s^{n}) - v_{\pi}^{k}(s^{n})|
                                                                                 # check convergence
12:
        Update k \leftarrow k+1
13: end while
```

Obviously, TerminPolicyEval (π, v_{π}) does not return the exact values of the policy π , but only an estimate of them

Generalized Policy Iteration

We can come up with various such ideas: these variants are often called

Generalized Policy Iteration \equiv GPI

These approaches all rely on

back-and-forth computation of policies and values

If designed properly, they all converge to optimal policy and optimal values

Some Final Remarks

- + We know the algorithms now, but how can we guarantee that they converge? You showed us an simple example that recursion could simply diverge!
- Well, we can show that what we discussed in this chapter converge: it comes from the nice properties of Bellman equations

When it comes to practice, most known algorithms are proved to converge to optimal policy and optimal values; however, note that

- Convergence guarantee is different from the speed of convergence
- If you deal with an unknown algorithm; then, you should make sure that it converges to optimal policy and optimal values