ECE 1508: Reinforcement Learning

Chapter 2: Model-based RL

Ali Bereyhi

ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Fall 2025

Bellman Equation: Backup Diagram

Bellman equation gives an

interesting visualization for values and action-values

which can be shown in the so-called backup diagram

For simplicity, we consider $\gamma=1$ in the backup diagram

- Each circle node is a state and carries the value of the state
- Each square node is an action and carries the action-value of the pair
- Each edge is a transition and carries a probability
- As we pass from leaves to root
 - Value of each node multiplies to its probability on the edge
 - They add up when they meet at a parent node
 - → This makes the value of the parent node

Let's look at it part by part: first we pass from leaves to action parent

$$q_{\pi}\left(s, \mathbf{a}\right) = \bar{\mathcal{R}}\left(s, \mathbf{a}\right) + \sum_{n=1}^{N} v_{\pi}\left(s^{n}\right) p\left(s^{n} | s, \mathbf{a}\right)$$

Then, we pass from action parents to the root state

$$v_{\pi}(s) = \sum_{m=1}^{M} \pi(a^{m}|s) q_{\pi}(s, a^{m})$$

We could also have its alternative form expected over actions

$$v_{\pi}(s) = \bar{\mathcal{R}}_{\pi}(s) + \sum_{n=1}^{N} p_{\pi}(s^{n}|s) v_{\pi}(s^{n})$$

Finding Optimal Values

- + Well! Bellman lets us compute value of a given policy. But, how can we find the optimal value? It doesn't seem to solve this problem!
- We can in fact use it to directly find the optimal values!
- + That sounds a bit weird!
- Once we know the *optimality constraint*, it doesn't anymore

In Assignment 1, you show that for any state we have

$$v_{\pi}(s) = \sum_{m=1}^{M} q_{\pi}(s, a^{m}) \pi(a^{m}|s)$$

Now, recall that policy is a conditional distribution meaning that

$$0 \leqslant \pi \left(\mathbf{a}^{\mathbf{m}} | s \right) \leqslant 1$$

We can think of it as

It is hence obvious that

$$\min_{\mathbf{m}} q_{\pi}\left(s, \mathbf{a}^{\mathbf{m}}\right) \leqslant v_{\pi}\left(s\right) \leqslant \max_{\mathbf{m}} q_{\pi}\left(s, \mathbf{a}^{\mathbf{m}}\right)$$

We can use this simple fact to find a constraint on optimal values

If our policy is the optimal policy; then, we should have

$$v_{\star}\left(s\right)=\max_{m}q_{\star}\left(s,a^{m}\right)$$

- + But, can we guarantee that we can achieve such value?
- Sure! We can set an optimal policy to

$$\pi^{\star} (a^{m}|s) = \begin{cases} 1 & m = \underset{m}{\operatorname{argmax}} q_{\star} (s, a^{m}) \\ 0 & m \neq \underset{m}{\operatorname{argmax}} q_{\star} (s, a^{m}) \end{cases}$$

- + But, they are both in terms of $q_{\star}(s, a^{m})$! We don't have the optimal action-values!
- Sure! But, we could say that optimal values must satisfy this constraint: if not, they cannot be optimal

Optimality Constraint

Optimal value at each state s satisfies the following identity

$$v_{\star}\left(s\right) = \max_{\mathbf{m}} q_{\star}\left(s, \mathbf{a}^{\mathbf{m}}\right)$$

and is achieved if we set the policy to

$$\pi^{\star} \left(\mathbf{a}^{m} | s \right) = \begin{cases} 1 & m = \underset{m}{\operatorname{argmax}} q_{\star} \left(s, \mathbf{a}^{m} \right) \\ 0 & m \neq \underset{m}{\operatorname{argmax}} q_{\star} \left(s, \mathbf{a}^{m} \right) \end{cases}$$

which is an optimal policy

- + But, how can we relate this constraint to Bellman equation?
- Let's see!

Optimal Value: Bellman Equation

We know from Bellman equation II for action-value function that

$$q_{\pi}\left(s, \mathbf{a}\right) = \bar{\mathcal{R}}\left(s, \mathbf{a}\right) + \gamma \sum_{n=1}^{N} v_{\pi}\left(s^{n}\right) p\left(s^{n} \middle| s, \mathbf{a}\right)$$

If we play with optimal policy: we are going to have same identity

$$q_{\star}(s, \mathbf{a}) = \bar{\mathcal{R}}(s, \mathbf{a}) + \gamma \sum_{n=1}^{N} v_{\star}(s^{n}) p(s^{n}|s, \mathbf{a})$$

We now substitute it in optimality constraint

$$v_{\star}(s) = \max_{\mathbf{m}} \left[\bar{\mathcal{R}}(s, \mathbf{a}^{\mathbf{m}}) + \gamma \sum_{n=1}^{N} v_{\star}(s^{n}) p(s^{n}|s, \mathbf{a}^{\mathbf{m}}) \right]$$

Optimal Value: Bellman Equation

This is again a recursive equation that

does not depend on any policy!

Bellman Optimality Equation

The optimal value function $v_{\star}(s)$ satisfies

$$v_{\star}(s) = \max_{\mathbf{m}} \left[\bar{\mathcal{R}}(s, \mathbf{a}^{\mathbf{m}}) + \gamma \sum_{n=1}^{N} v_{\star}(s^{n}) p(s^{n}|s, \mathbf{a}^{\mathbf{m}}) \right]$$

We can again treat it as a fixed-point equation and solve it for $v_{\star}(s)$

Let's find optimal values for our dummy grid world: we first find $\bar{\mathcal{R}}\left(s,\mathbf{a}\right)$

$$\bar{\mathcal{R}}(0, \mathbf{a}) = 0 \quad \bar{\mathcal{R}}(1, \mathbf{0}) = -1 \qquad \bar{\mathcal{R}}(2, \mathbf{0}) = -0.5 \quad \bar{\mathcal{R}}(3, \mathbf{0}) = -1$$

$$\bar{\mathcal{R}}(1, \mathbf{1}) = -1 \qquad \bar{\mathcal{R}}(2, \mathbf{1}) = -0.5 \quad \bar{\mathcal{R}}(3, \mathbf{1}) = -0.5$$

$$\bar{\mathcal{R}}(1, \mathbf{2}) = -0.5 \quad \bar{\mathcal{R}}(2, \mathbf{2}) = -1 \qquad \bar{\mathcal{R}}(3, \mathbf{2}) = -0.5$$

$$\bar{\mathcal{R}}(1, \mathbf{3}) = -0.5 \quad \bar{\mathcal{R}}(2, \mathbf{3}) = -1 \qquad \bar{\mathcal{R}}(3, \mathbf{3}) = -1$$

- **1** Since s=0 is a terminal state we know that $v_{\star}\left(0\right)=0$
- 2 Now, let's consider s=1

- **1** Since s=0 is a terminal state we know that $v_{\star}\left(0\right)=0$
- **2** Now, let's consider s = 1

$$\begin{array}{l} p\left(0|1,1\right) = 0 \\ p\left(1|1,1\right) = 0 \\ p\left(2|1,1\right) = 0 \\ p\left(3|1,1\right) = 1 \end{array} \longrightarrow \sum_{\bar{s}=0}^{4} v_{\star}\left(\bar{s}\right) p\left(\bar{s}|1,1\right) = v_{\star}\left(3\right)$$

- **1** Since s=0 is a terminal state we know that $v_{\star}\left(0\right)=0$
- 2 Now, let's consider s=1

- **1** Since s=0 is a terminal state we know that $v_{\star}\left(0\right)=0$
- 2 Now, let's consider s=1

- **1** Since s=0 is a terminal state we know that $v_{\star}(0)=0$
- **2** Now, let's consider s = 1

$$v_{\star}(1) = \max_{m} \bar{\mathcal{R}}(1, \mathbf{a}^{m}) + \sum_{\bar{s}=0}^{4} v_{\star}(\bar{s}) p(\bar{s}|1, \mathbf{a}^{m})$$
$$= \max\{-1, -1 + v_{\star}(3), -0.5 + v_{\star}(1), -0.5 + v_{\star}(1)\}$$

We next write down Bellman equations

- **1** Since s=0 is a terminal state we know that $v_{\star}(0)=0$
- **2** Now, let's consider s = 1

$$v_{\star}(1) = \max\{-1, -1 + v_{\star}(3), -0.5 + v_{\star}(1), -0.5 + v_{\star}(1)\}$$

3 Similarly, we have for s=2

$$v_{\star}(2) = \max\{-0.5 + v_{\star}(2), -0.5 + v_{\star}(2), -1 + v_{\star}(3), -1\}$$

We next write down Bellman equations

- **1** Since s=0 is a terminal state we know that $v_{\star}(0)=0$
- **2** Now, let's consider s = 1

$$v_{\star}(1) = \max\{-1, -1 + v_{\star}(3), -0.5 + v_{\star}(1), -0.5 + v_{\star}(1)\}$$

3 Similarly, we have for s=2

$$v_{\star}(2) = \max\{-0.5 + v_{\star}(2), -0.5 + v_{\star}(2), -1 + v_{\star}(3), -1\}$$

4 Finally for s = 3, we have

$$v_{\star}(3) = \max\{-1 + v_{\star}(2), -0.5 + v_{\star}(3), -0.5 + v_{\star}(3), -1 + v_{\star}(1)\}$$

After sorting out the Bellman equations, we get

$$v_{\star}(1) = \max \{-1, -1 + v_{\star}(3), -0.5 + v_{\star}(1)\}$$

$$v_{\star}(2) = \max \{-1, -1 + v_{\star}(3), -0.5 + v_{\star}(2)\}$$

$$v_{\star}(3) = \max \{-1 + v_{\star}(2), -0.5 + v_{\star}(3), -1 + v_{\star}(1)\}$$

We should now solve this system of equations

We first note that

$$\max \{-1, -1 + v_{\star}(3), -0.5 + v_{\star}(1)\} \neq -0.5 + v_{\star}(1)$$

Proof: Assume that

$$\max \{-1, -1 + v_{\star}(3), -0.5 + v_{\star}(1)\} = -0.5 + v_{\star}(1)$$

Then, we have

$$v_{\star}(1) - 0.5 + v_{\star}(1) \rightsquigarrow 0 = -0.5$$
 impossible!

For the same reason, we have

$$\max \{-1, -1 + v_{\star}(3), -0.5 + v_{\star}(2)\} \neq -0.5 + v_{\star}(2)$$
$$\max \{-1 + v_{\star}(2), -0.5 + v_{\star}(3), -1 + v_{\star}(1)\} \neq -0.5 + v_{\star}(3)$$

So the equations reduce to

$$v_{\star}(1) = \max \{-1, -1 + v_{\star}(3)\} = v_{\star}(2)$$

$$v_{\star}(2) = \max \{-1, -1 + v_{\star}(3)\} = v_{\star}(1)$$

$$v_{\star}(3) = \max \{-1 + v_{\star}(2), -1 + v_{\star}(1)\} = -1 + v_{\star}(1)$$

Thus, we should only solve

$$v_{\star}(1) = \max\{-1, -1 + v_{\star}(3)\}\$$

 $v_{\star}(3) = -1 + v_{\star}(1)$

It is again easy to see that $\max\{-1, -1 + v_{\star}(3)\} \neq -1 + v_{\star}(3)$; therefore,

$$v_{\star}(1) = v_{\star}(2) = -1 \rightsquigarrow v_{\star}(3) = -2$$

Well! This is what we expected!

From Optimal Values to Optimal Policy

- + What is the benefit then? It only finds optimal value, but we are looking for optimal policy!
- We can actually back-track optimal policy, once we have optimal value

The idea is quite simple:

- We can find optimal values from Bellman optimality equations
- 2 We could then find the optimal action-values
- 3 We finally get the optimal policy from optimal action-values

Finding Optimal Policy: Back-Tracking from Optimal Values

We could summarize this approach algorithmically as follows

```
OptimBackTrack():
 1: for n = 1 : N do
            Solve Bellman equation v_{\star}(s^n) = \max_{m} \bar{\mathcal{R}}(s^n, a^m) + \gamma \mathbb{E}\left\{v_{\star}(\bar{S}) | s^n, a^m\right\}
 3: end for
 4: for n = 1 : N do
 5:
           for m = 1 : M do
                  Compute action-value q_{\star}(s^n, \mathbf{a}^m) = \bar{\mathcal{R}}(s^n, \mathbf{a}^m) + \gamma \mathbb{E} \{v_{\star}(\bar{S}) | s^n, \mathbf{a}^m\}
 6:
          end for
 8:
            Compute optimal policy via optimality constraint
                                            \pi^{\star} \left( a^{m} | s \right) = \begin{cases} 1 & m = \underset{m}{\operatorname{argmax}} q_{\star} \left( s, a^{m} \right) \\ 0 & m \neq \underset{m}{\operatorname{argmax}} q_{\star} \left( s, a^{m} \right) \end{cases}
 9: end for
```


Let's find optimal policy at state s=1 in our dummy grid world: first, we write

$$\begin{bmatrix} q_{\star} (1,0) \\ q_{\star} (1,1) \\ q_{\star} (1,2) \\ q_{\star} (1,3) \end{bmatrix} = \begin{bmatrix} \bar{\mathcal{R}} (1,0) + \sum_{\bar{s}} v_{\star} (\bar{s}) p (\bar{s}|1,0) \\ \bar{\mathcal{R}} (1,1) + \sum_{\bar{s}} v_{\star} (\bar{s}) p (\bar{s}|1,1) \\ \bar{\mathcal{R}} (1,2) + \sum_{\bar{s}} v_{\star} (\bar{s}) p (\bar{s}|1,2) \\ \bar{\mathcal{R}} (1,3) + \sum_{\bar{s}} v_{\star} (\bar{s}) p (\bar{s}|1,3) \end{bmatrix} = \begin{bmatrix} -1+0 \\ -1-2 \\ -0.5-1 \\ -0.5-1 \end{bmatrix} = \begin{bmatrix} -1 \\ -3 \\ -1.5 \\ -1.5 \end{bmatrix}$$

The optimal policy at state s = 1 is then given by

$$\pi^{\star} (\mathbf{a}|1) = \begin{cases} 1 & a = \underset{a}{\operatorname{argmax}} q_{\star} (1, \mathbf{a}) \\ 0 & a \neq \underset{a}{\operatorname{argmax}} q_{\star} (1, \mathbf{a}) \end{cases} = \begin{cases} 1 & a = 0 \\ 0 & a \neq 0 \end{cases}$$

Well! We know that this is optimal in this problem!

Finding Optimal Policy: Back-Tracking from Optimal Values

- + Wait a moment! Does that mean that our optimal policy is always deterministic? But, you said it could be also random!
- Well! In some cases we could find random optimal policies as well!

```
If q_{\star}\left(s, \mathbf{a^m}\right) has a single maximizer; then,
```

optimal policy $\pi^*(a^m|s)$ is deterministic

But, if it has multiple maximizers

optimal policy π^* ($a^m|s$) can also be random

Finding Optimal Policy: General Form

Generic Optimal Policy

Assume that m^1, \ldots, m^J are all maximizers of $q_{\star}(s, a^m)$; then, policy

$$\pi^{\star} (\boldsymbol{a^m}|s) = \begin{cases} p_1 & m = m^1 \\ \vdots & & \\ p_J & m = m^J \\ 0 & m \notin \{m^1, \dots, m^J\} \end{cases}$$

for any p_1, \ldots, p_J that satisfy

$$\sum_{j=1}^{J} p_j = 1$$

is an optimal policy

Finding Optimal Policy

- + But, why are all such policies optimal?
- Well! We could look back at the optimality constraint

With any policy $\pi^*(a|s)$ of the form given in the last slide, we have

$$v_{\pi^{\star}}(s) = \sum_{m=1}^{M} \pi^{\star} (\mathbf{a}^{m} | s) q_{\pi^{\star}}(s, \mathbf{a}^{m}) = \sum_{j=1}^{J} p_{j} q_{\pi^{\star}} (s, \mathbf{a}^{m^{j}}) + 0$$

$$= \sum_{j=1}^{J} p_{j} \max_{m} q_{\pi^{\star}}(s, \mathbf{a}^{m}) = \max_{m} q_{\pi^{\star}}(s, \mathbf{a}^{m}) \sum_{j=1}^{J} p_{j} = \max_{m} q_{\pi^{\star}}(s, \mathbf{a}^{m})$$

which is the optimality constraint! It's intuitive, because

If we have multiple options for next action that give us same maximal value; then, we could randomly pick any of them

Finding Optimal Policy

- + But, still we could have a deterministic optimal policy in such cases! Right?!
- Sure! We could always have a deterministic optimal policy!

Deterministic Optimal Policy

With known MDP for the environment, there exists at least one deterministic optimal policy

In the nutshell: if we know the complete state and its transition model

- We always can find a deterministic optimal policy
- We might have multiple deterministic optimal policies

Let's find optimal policy at state s=3 in our dummy grid world: first, we write

$$\begin{bmatrix} q_{\star}(3,0) \\ q_{\star}(3,1) \\ q_{\star}(3,2) \\ q_{\star}(3,3) \end{bmatrix} = \begin{bmatrix} \bar{\mathcal{R}}(3,0) + \sum_{\bar{s}} v_{\star}(\bar{s}) p(\bar{s}|3,0) \\ \bar{\mathcal{R}}(3,1) + \sum_{\bar{s}} v_{\star}(\bar{s}) p(\bar{s}|3,1) \\ \bar{\mathcal{R}}(3,2) + \sum_{\bar{s}} v_{\star}(\bar{s}) p(\bar{s}|3,2) \\ \bar{\mathcal{R}}(3,3) + \sum_{\bar{s}} v_{\star}(\bar{s}) p(\bar{s}|3,3) \end{bmatrix} = \begin{bmatrix} -1-1 \\ -0.5-2 \\ -0.5-2 \\ -1-1 \end{bmatrix} = \begin{bmatrix} -2 \\ -2.5 \\ -2.5 \\ -2 \end{bmatrix}$$

The optimal policy at state s=3 is then given by

$$\pi^{\star}(\boldsymbol{a}|3) = \begin{cases} 1 & a = \underset{a}{\operatorname{argmax}} q_{\star}(3, \boldsymbol{a}) \\ 0 & a \neq \underset{a}{\operatorname{argmax}} q_{\star}(3, \boldsymbol{a}) \end{cases} = \begin{cases} 1 & a = 0 \\ 0 & a \neq 0 \end{cases}$$

This is obviously optimal in this problem!

The optimal policy at state s=3 is then given by

$$\pi^{\star}(\boldsymbol{a}|3) = \begin{cases} 1 & a = \underset{a}{\operatorname{argmax}} q_{\star}(3, \boldsymbol{a}) \\ 0 & a \neq \underset{a}{\operatorname{argmax}} q_{\star}(3, \boldsymbol{a}) \end{cases} = \begin{cases} 1 & a = 3 \\ 0 & a \neq 3 \end{cases}$$

This is obviously optimal in this problem!

The optimal policy at state s=3 is then given by

$$\pi^{\star}(a|3) = \begin{cases} 0.5 & a = 0\\ 0 & a = 1, 2\\ 0.5 & a = 3 \end{cases}$$

This is also optimal in this problem!

The optimal policy at state s=3 is then given by

$$\pi^{\star}(a|3) = \begin{cases} 0.2 & a = 0\\ 0 & a = 1, 2\\ 0.8 & a = 3 \end{cases}$$

This is also optimal in this problem!

Backup Diagram: For Optimal Policy

Here, we assume $q_{\star}\left(s, a^{m}\right)$ has one maximizer \equiv optimal policy is deterministic