ECE 1508: Reinforcement Learning

Chapter 2: Model-based RL

Ali Bereyhi

ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Fall 2025

Classical RL Methods: Recall

Ultimate goal in an RL problem is to find the optimal policy

As mentioned, we have two major challenges in this way

- 1 We need to compute values explicitly
- 2 We often deal with settings with huge state spaces?

In this part of the course, we are going to handle the first challenge

- This chapter \(\sigma \) Model-based methods
- Next chapter \(\sigma \) Model-free methods

A Good Start Point: Model-based RL

In a nutshell, in model-based methods

we are able to describe mathematically the behavior of environment

This might come from the nature of problem or simply postulated by us

Model-Based RL
Bellman Equation
value iteration
policy iteration

Model-free RL
on-policy methods
temporal difference
Monte Carlo
SARSA

Off-policy methods
Q-learning

Complete State is Markov Process

When we formulated the RL framework, we stated that

a complete state must describe a Markov process

Markov Process

Sequence $S_1 \rightarrow S_2 \rightarrow \dots$ describe a Markov process if

$$\Pr\left\{S_{t+1} = s_{t+1} \middle| S_t = s_t, \dots, S_1 = s_1\right\} = \Pr\left\{S_{t+1} = s_{t+1} \middle| S_t = s_t\right\}$$

Following this fact, we introduced the concepts of

rewarding and transition functions

Recall: Transition and Rewarding

Both these mappings only depend on current state and action

Transition function maps state S_t and action A_t to the next state S_{t+1}

$$\mathcal{P}\left(\cdot\right): \$ \times \mathbb{A} \mapsto \$$$

Rewarding function maps state S_t and action A_t to reward R_{t+1}

$$\mathcal{R}\left(\cdot\right): \mathbb{S} \times \mathbb{A} \mapsto \left\{r^{1}, \dots, r^{L}\right\}$$

We said that these mappings are in general random

Describing Markov Trajectory

Markovity of the state indicates that we observe the following trajectory

$$S_0, A_0 \to (R_1, S_1), A_1 \to \ldots \to (R_t, S_t), A_t \to (R_{t+1}, S_{t+1})$$

This trajectory describes a Markov process with conditional distribution

$$p(r, \bar{s}|s, a) = \Pr\{R_{t+1} = r, S_{t+1} = \bar{s}|S_t = s, A_t = a\}$$

$$= \Pr\{R_t = r, S_t = \bar{s}|S_{t-1} = s, A_{t-1} = a\}$$

$$\vdots$$

$$= \Pr\{R_1 = r, S_1 = \bar{s}|S_0 = s, A_0 = a\}$$

The above trajectory describes a Markov Decision Process (MDP)

Finite MDPs

In this course, we focus on finite MDPs

Finite MDP

The Markov process

$$S_0, A_0 \to (R_1, S_1), A_1 \to \ldots \to (R_t, S_t), A_t$$

is a finite MDP if rewards, actions and states belong to a finite set, i.e.,

$$r \in \left\{r^1, \dots, r^L\right\} \qquad \mathbf{a} \in \left\{a^1, \dots, a^M\right\} \qquad s \in \left\{s^1, \dots, s^N\right\}$$

MDPs are completely described by conditional distribution $p(r, \overline{s}|s, \mathbf{a})$

We call $p(r, \overline{s}|s, a)$ hereafter rewarding-transition model

Model-based RL via MDP

- + What makes it now model-based RL?
- We assume that rewarding-transition model $p(r, \overline{s}|s, \mathbf{a})$ is given to us
- + But you said for model-based RL, we should know the transition and rewarding functions!
- Well, we can describe them using $p(r, \bar{s}|s, a)!$

Rewarding Model

Assume we are in state $S_t = s$ and act $A_t = a$; then, R_{t+1} is a random variable whose distribution is given by

$$p(r|s, a) = \sum_{n=1}^{N} p(r, s^{n}|s, a)$$

We call this distribution hereafter rewarding model

Model-based RL via MDP

Similarly, we can describe the transition function

Transition Model

Assume we are in state $S_t = s$ and act $A_t = a$; then, next state S_{t+1} is a random variable whose distribution is given by

$$p\left(\overline{s}|s, \mathbf{a}\right) = \sum_{\ell=1}^{L} p\left(r^{\ell}, \overline{s}|s, \mathbf{a}\right)$$

We call this distribution hereafter transition model

We have a grid board where at each cell we can move

$$\mathbb{A} = \{0 \equiv \mathtt{left}, 1 \equiv \mathtt{down}, 2 \equiv \mathtt{right}, 3 \equiv \mathtt{up}\}$$

Our ultimate goal is to arrive at top-left corner

through shortest path

This problem describes an MDP with deterministic rewarding-transition model

- State is the cell index
- Action is the direction we move
- Reward is -1 each time we move until we get to destination
 - \rightarrow Reward is -0.5 when we hit the corners

$$$ = \{0, 1, 2, 3\}$$

$$\mathbb{A} = \{0 \equiv \mathtt{left}, 1 \equiv \mathtt{down}, 2 \equiv \mathtt{right}, 3 \equiv \mathtt{up}\}$$

Let's write the rewarding-transition model down

$$p(r, \bar{s}|3,3) = \begin{cases} 1 & (r, \bar{s}) = (-1,1) \\ 0 & (r, \bar{s}) \neq (-1,1) \end{cases}$$

$$$ = \{0, 1, 2, 3\}$$

$$\mathbb{A} = \{0 \equiv \mathtt{left}, 1 \equiv \mathtt{down}, 2 \equiv \mathtt{right}, 3 \equiv \mathtt{up}\}$$

Let's write the rewarding-transition model down

$$p\left(r,\overline{s}\middle|0,\mathbf{a}\right) = \begin{cases} 1 & (r,\overline{s}) = (0,0) \\ 0 & (r,\overline{s}) \neq (0,0) \end{cases} \longrightarrow s = 0 \text{ is terminal state}$$

Transition Diagram

It is sometimes helpful to show transition model via a transition diagram

This diagram describes a graph

- Each node is a possible state: we have in total N nodes
- Node s is connected to \bar{s} if the probability of transition is non-zero
 - → We could specify the action that can lead us to the new state

Transition Diagram: Dummy Grid World

In our dummy grid world, we have four states

- If we are in terminal state we always remain there with no rewards
- From state s=1 we can go to states $\bar{s}=0,3$ depending on action
- From state s=2 we can go to states $\bar{s}=0,3$ depending on action
- From state s=3 we can go to states $\bar{s}=1,2$ depending on action We can also remain in state s=1 and reward with -0.5 if we hit corners

,,,,,,,,,,,,

Reinforcement Learning

Expected Action Reward

As we said, using rewarding-transition model we can describe the environment completely: for instance, let's see what would be the expected immediate reward that we get if in state s we act a

$$\begin{split} \bar{\mathcal{R}}\left(s, \pmb{a}\right) &= \mathbb{E}\left\{R_{t+1} \middle| s, \pmb{a}\right\} \iff \text{we simplify notation } S_t = s \text{ to } s \\ &= \sum_{\ell=1}^L r^\ell p\left(r^\ell \middle| s, \pmb{a}\right) \\ &= \sum_{\ell=1}^L r^\ell \sum_{n=1}^N p\left(r^\ell, s^n \middle| s, \pmb{a}\right) \\ &= \sum_{\ell=1}^L \sum_{n=1}^N r^\ell p\left(r^\ell, s^n \middle| s, \pmb{a}\right) \iff \text{rewarding-transition model} \end{split}$$

Expected Action Reward

 $\bar{\mathcal{R}}\left(s, \mathbf{a}\right)$ describes

the reward we expect to see immediately after acting \boldsymbol{a} in state s

We are going to see this expectation a lot, so maybe we could give it a name

Expected Action Reward

The expected reward for a state-action pair (s, \mathbf{a}) is defined as

$$\bar{\mathcal{R}}(s, \boldsymbol{a}) = \mathbb{E}\left\{R_{t+1}|s, \boldsymbol{a}\right\} = \sum_{\ell=1}^{L} \sum_{n=1}^{N} r^{\ell} p\left(r^{\ell}, s^{n}|s, \boldsymbol{a}\right)$$

Obviously, $\bar{\mathcal{R}}(s, \mathbf{a})$ does not depend on policy

Expected Policy Reward

- + Can we relate it also to our policy?
- Sure! We could average over our policy

Expected Policy Reward

The expected immediate reward of policy π at state s is defined as

$$\bar{\mathcal{R}}_{\pi}(s) = \mathbb{E}_{\pi} \left\{ R_{t+1} | s \right\} = \sum_{m=1}^{M} \mathbb{E} \left\{ R_{t+1} | s, a^{m} \right\} \pi \left(a^{m} | s \right)$$
$$= \sum_{m=1}^{M} \sum_{\ell=1}^{L} \sum_{n=1}^{N} r^{\ell} p \left(r^{\ell}, s^{n} | s, a \right) \pi \left(a^{m} | s \right)$$

It describes reward we expect to see immediately after state s while playing π

In our dummy grid world, we can easily compute the expected immediate reward

$$\bar{\mathcal{R}}(1, a) = \begin{cases} -1 & a \in \{0, 1\} \\ -0.5 & a \in \{2, 3\} \end{cases}$$

Obviously in terminal state we always get zero expected reward, e.g., for all a

$$\bar{\mathcal{R}}\left(0, \mathbf{a}\right) = 0$$

Now assume that we play uniformly at random, i.e., for all \boldsymbol{a} and \boldsymbol{s}

$$\pi\left(\mathbf{a}|s\right) = \frac{1}{4}$$

In this case the expected policy reward is

$$\bar{\mathcal{R}}_{\pi}(1) = \sum_{a=0}^{3} \bar{\mathcal{R}}(1, a) \pi(a|1) = -0.75$$

But if we change to above deterministic policy: the expected reward changes to

$$\bar{\mathcal{R}}_{\pi}\left(1\right) = \sum_{a=0}^{3} \bar{\mathcal{R}}\left(1, a\right) \pi\left(a | 1\right) = \bar{\mathcal{R}}\left(1, 0\right) = -1$$

and we can easily show that

$$\bar{\mathcal{R}}_{\pi}(0) = 0$$
 $\bar{\mathcal{R}}_{\pi}(2) = -1$ $\bar{\mathcal{R}}_{\pi}(3) = -1$

Computing Value Functions: Naive Approach

Now that we have a concrete model for our environment: we should go ahead and compute the value function, as we want to optimize it

Let's start with direct computation

$$v_{\pi}(s) = \mathbb{E}_{\pi} \{G_{t}|s\}$$

$$= \mathbb{E}_{\pi} \{R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots |s\}$$

$$= \mathbb{E}_{\pi} \{R_{t+1}|s\} + \gamma \mathbb{E}_{\pi} \{R_{t+2}|s\} + \gamma^{2} \mathbb{E}_{\pi} \{R_{t+3}|s\} + \dots$$

$$= \bar{\mathcal{R}}_{\pi}(s) + \gamma \mathbb{E}_{\pi} \{R_{t+2}|s\} + \gamma^{2} \mathbb{E}_{\pi} \{R_{t+3}|s\} + \dots$$

- + How can we compute next terms?
- We could use the rewarding-transition model of MDP

Computing Value Functions: Naive Approach

Let's try the second term for example: we first define the notation

$$\mathbb{E}_{\pi}\left\{R_{t+2}|s, s^{n}, a^{m}, a^{j}\right\} = \mathbb{E}_{\pi}\left\{R_{t+2}|S_{t} = s, S_{t+1} = s^{n}, A_{t} = a^{m}, A_{t+1} = a^{j}\right\}$$

We can easily compute $\mathbb{E}_{\pi}\left\{R_{t+2}|s,s^n,a^m,a^j\right\}$ as

$$\mathbb{E}_{\pi} \left\{ R_{t+2} | s, s^{n}, \boldsymbol{a}^{m}, a^{j} \right\} = \sum_{\ell=1}^{L} r^{\ell} p \left(r^{\ell} | s, s^{n}, \boldsymbol{a}^{m}, a^{j} \right)$$
$$= \sum_{\ell=1}^{L} r^{\ell} p \left(r^{\ell} | s^{n}, a^{j} \right)$$

Computing Value Functions: Naive Approach

We can then say that

$$\mathbb{E}_{\pi} \left\{ R_{t+2} | s \right\} = \sum_{n=1}^{N} \sum_{m=1}^{M} \sum_{j=1}^{M} \mathbb{E}_{\pi} \left\{ R_{t+2} | s, s^{n}, a^{m}, a^{j} \right\} p\left(a^{m}, s^{n}, a^{j} | s\right)$$

and write down $p\left(\mathbf{a^m}, s^n, \mathbf{a^j}|s\right)$ using chain rule

$$p\left(a^{m}, s^{n}, a^{j}|s\right) = p\left(a^{m}|s\right) p\left(s^{n}|s, a^{m}\right) p\left(a^{j}|s, a^{m}, s^{n}\right)$$
$$= \pi\left(a^{m}|s\right) \quad p\left(s^{n}|s, a^{m}\right) \quad \pi\left(a^{j}|s^{n}\right)$$
transition model

- + How can we compute the next term?
- We should repeat the same approach: there will be more nested sums

Let's start with the above policy: π^1

$$v_{\pi^1}(1) = \mathbb{E}_{\pi^1} \left\{ R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | 1 \right\}$$

Following policy at s=1 we end up at terminal state at next time

$$v_{\pi^1}(1) = \mathbb{E}_{\pi^1} \left\{ R_{t+1} + \gamma 0 + \gamma^2 0 + \dots | 1 \right\} = \bar{\mathcal{R}}_{\pi^1}(1) = -1$$

Same way, we can conclude that

$$v_{\pi^1}(0) = 0$$
 $v_{\pi^1}(2) = -1$ $v_{\pi^1}(3) = -2$

Let's change to policy π^2 : we could follow same steps to show that

$$v_{\pi^2}(0) = 0$$

$$v_{\pi^2}(0) = 0$$
 $v_{\pi^2}(1) = -1$ $v_{\pi^2}(2) = -1$ $v_{\pi^2}(3) = -2$

$$v_{\pi^2}\left(2\right) = -1$$

$$v_{\pi^2}(3) = -2$$

We note that it returns the same values as policy π^1

Let's now look at policy π^3 : we could follow same steps to show that

$$v_{\pi^3}(0) = 0$$

$$v_{\pi^3}(0) = 0$$
 $v_{\pi^3}(1) = -3$ $v_{\pi^3}(2) = -1$ $v_{\pi^3}(3) = -2$

$$v_{\pi^3}(2) = -1$$

$$v_{\pi^3}(3) = -2$$

We can see that

$$\pi^1 = \pi^2 \geqslant \pi^3$$

Computing Value Functions: Practical Approach

- + But, we should compute infinite terms in general!
- Well, if we are lucky: the sequence either terminates or shows a pattern
- + What if that doesn't happen?
- Then, this approach really does **not** work!

This is why we called it the naive approach, since we never use this approach: in practice, we always invoke

Bellman equation

and find the value via dynamic programming

Future Return: Recursive Property

Even though future return looks infinte, it has a simple recursive property

$$G_{t} = \sum_{i=0}^{\infty} \gamma^{i} R_{t+i+1}$$

$$= R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots$$

$$= R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \dots)$$

$$= R_{t+1} + \gamma G_{t+1}$$

We can use this property to find a fixed-point equation for the value function!

Say we are playing with policy π : we can write the value function as

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left\{ G_{t} | s \right\}$$

$$= \mathbb{E}_{\pi} \left\{ R_{t+1} + \gamma G_{t+1} | s \right\}$$

$$= \mathbb{E}_{\pi} \left\{ R_{t+1} | s \right\} + \gamma \mathbb{E}_{\pi} \left\{ G_{t+1} | s \right\}$$

$$= \bar{\mathcal{R}}_{\pi}(s) + \gamma \underbrace{\mathbb{E}_{\pi} \left\{ G_{t+1} | s \right\}}_{7}$$

- + Isn't that term again the value function at s?
- Be careful! It's not

Attention

The second term is not the value of state s

$$\mathbb{E}_{\pi} \left\{ G_{t+1} | s \right\} = \mathbb{E}_{\pi} \left\{ G_{t+1} | S_t = s \right\} \neq \mathbb{E}_{\pi} \left\{ G_t | S_t = s \right\} = v_{\pi} \left(s \right)$$

Let's do some marginalization

$$\mathbb{E}_{\pi} \left\{ G_{t+1} | s \right\} = \sum_{n=1}^{N} \mathbb{E}_{\pi} \left\{ G_{t+1} | S_{t} = s, S_{t+1} = s^{n} \right\} \Pr \left\{ S_{t+1} = s^{n} | S_{t} = s \right\}$$
$$= \sum_{n=1}^{N} \mathbb{E}_{\pi} \left\{ G_{t+1} | s, s^{n} \right\} p \left(s^{n} | s \right)$$

Well, we need to specify the two terms in under summation, i.e.,

- $\mathbb{E}_{\pi}\left\{G_{t+1}|s,s^n\right\}$
- $p(s^n|s) = \Pr\{S_{t+1} = s^n | S_t = s\}$

Recall the trajectory

$$S_0, A_0 \to (R_1, S_1), A_1 \to \dots \to (R_{t+1}, S_{t+1}), A_{t+1} \to (R_{t+2}, S_{t+2})$$

If we know state S_{t+1} any reward after t+1 only depends on S_{t+1} , i.e.,

$$\mathbb{E}_{\pi} \left\{ G_{t+1} \middle| S_t = s, S_{t+1} = s^n \right\} = \mathbb{E}_{\pi} \left\{ G_{t+1} \middle| S_{t+1} = s^n \right\}$$

This indicates that

$$\mathbb{E}_{\pi} \left\{ G_{t+1} | s, \boldsymbol{s}^{\boldsymbol{n}} \right\} = v_{\pi} \left(\boldsymbol{s}^{\boldsymbol{n}} \right)$$

i.e., the value function at state s^n

We can further find $p(s^n|s)$ from transition model and policy

$$\begin{split} p_{\pi}\left(s^{n}|s\right) &= \sum_{m=1}^{M} p\left(s^{n}, a^{m}|s\right) \\ &= \sum_{m=1}^{M} p\left(a^{m}|s\right) p\left(s^{n}|a^{m}, s\right) \\ &= \sum_{m=1}^{M} \pi\left(a^{m}|s\right) p\left(s^{n}|s, a^{m}\right) & \iff \text{depends on policy} \end{split}$$

We know have both terms in terms of transition model and policy

Replacing into the equation, where we left we have

$$\mathbb{E}_{\pi} \{G_{t+1}|s\} = \sum_{n=1}^{N} \mathbb{E}_{\pi} \{G_{t+1}|s, s^{n}\} p(s^{n}|s)$$

$$= \sum_{n=1}^{N} v_{\pi}(s^{n}) p_{\pi}(s^{n}|s)$$

$$= \sum_{n=1}^{N} \sum_{m=1}^{M} v_{\pi}(s^{n}) p(s^{n}|s, a^{m}) \pi(a^{m}|s)$$

We can also present it by shorter notation as

$$\mathbb{E}_{\pi} \left\{ G_{t+1} \middle| s \right\} = \mathbb{E}_{\pi} \left\{ v_{\pi} \left(S_{t+1} \right) \middle| s \right\}$$

Back to computation of value function, we have

$$v_{\pi}(s) = \bar{\mathcal{R}}_{\pi}(s) + \gamma \mathbb{E}_{\pi} \{ G_{t+1} | s \}$$

$$= \bar{\mathcal{R}}_{\pi}(s) + \gamma \mathbb{E}_{\pi} \{ v_{\pi}(S_{t+1}) | s \}$$

$$= \bar{\mathcal{R}}_{\pi}(s) + \gamma \sum_{n=1}^{N} v_{\pi}(s^{n}) p_{\pi}(s^{n} | s)$$

This is a recursive equation that relates value of one state to other values

which is a Bellman equation

Bellman Equation: Value

Bellman Equation for Value Function

For any policy π the value function at each state s satisfies

$$v_{\pi}(s) = \bar{\mathcal{R}}_{\pi}(s) + \gamma \sum_{n=1}^{N} v_{\pi}(s^{n}) p_{\pi}(s^{n}|s)$$

- + Well! What is the use of Bellman equation?
- It describes a fixed-point equation that can be solved for $v_{\pi}(s)$!

Bellman Equation: Breaking Down

$$v_{\pi}(s) = \bar{\mathcal{R}}_{\pi}(s) + \gamma \sum_{n=1}^{N} v_{\pi}(s^{n}) p_{\pi}(s^{n}|s)$$

In general, we have N possible state \rightsquigarrow we have N possible values

- Bellman equation relates each value to other N-1 values
 - $\,\,\,\,\,\,\,\,$ For each s, Bellman equation has N unknowns $v_{\pi}\left(s^{1}
 ight),\ldots,v_{\pi}\left(s^{N}
 ight)$
- ullet We can write the Bellman equation for all N states
- We solve this system of equations for unknowns $v_{\pi}\left(s^{1}
 ight),\ldots,v_{\pi}\left(s^{N}
 ight)$

Let's try with our dummy grid world: we saw that

$$\bar{\mathcal{R}}_{\pi}\left(0\right)=0$$

$$\bar{\mathcal{R}}_{\pi}\left(1\right) = -1$$

$$\bar{\mathcal{R}}_{\pi}(0) = 0$$
 $\bar{\mathcal{R}}_{\pi}(1) = -1$ $\bar{\mathcal{R}}_{\pi}(2) = -1$ $\bar{\mathcal{R}}_{\pi}(3) = -1$

$$\bar{\mathcal{R}}_{\pi}\left(3\right) = -1$$

Now let's consider the values unknown

$$v_{\pi}(0), v_{\pi}(1), v_{\pi}(2), v_{\pi}(3)$$

We set $\gamma=1$ and start with state s=0

$$v_{\pi}(0) = \bar{\mathcal{R}}_{\pi}(0) + \sum_{\bar{s}=0}^{3} v_{\pi}(\bar{s}) p_{\pi}(\bar{s}|0)$$

We know that

$$p_{\pi}\left(\bar{s}|0\right) = \begin{cases} 1 & \bar{s} = 0\\ 0 & \bar{s} \neq 0 \end{cases}$$

This concludes that at state s=0, Bellman equation reads

$$v_{\pi}\left(0\right) = 0 + v_{\pi}\left(0\right)$$

which is an obvious equation; let's try s=1

At state s = 0, we have

$$v_{\pi}(1) = \bar{\mathcal{R}}_{\pi}(1) + \sum_{\bar{s}=0}^{3} v_{\pi}(\bar{s}) p_{\pi}(\bar{s}|1)$$

Again we can easily say based on the policy that

$$p_{\pi}(\bar{s}|1) = \begin{cases} 1 & \bar{s} = 0\\ 0 & \bar{s} \neq 0 \end{cases}$$

This concludes that at state s = 1, Bellman equation reads

$$v_{\pi}(1) = -1 + v_{\pi}(0)$$

which relates $v_{\pi}(1)$ to $v_{\pi}(0)$. If we keep repeating we get further

$$v_{\pi}(2) = -1 + v_{\pi}(0)$$

$$v_{\pi}(3) = -1 + v_{\pi}(2)$$

We now have the system of equations

$$v_{\pi}\left(1\right) = -1 + v_{\pi}\left(0\right)$$

$$v_{\pi}\left(2\right) = -1 + v_{\pi}\left(0\right)$$

$$v_{\pi}\left(3\right) = -1 + v_{\pi}\left(2\right)$$

We also know that s=0 is a terminal state, and thus $v_{\pi}\left(0\right)=0$: so, we get

$$v_{\pi}(1) = -1$$
 $v_{\pi}(2) = -1$ $v_{\pi}(3) = -2$

Bellman Equation: Action-Value

We can find a Bellman equation for action-value function as well: say we play with policy π

$$q_{\pi}(s, \mathbf{a}) = \mathbb{E}_{\pi} \left\{ G_{t} | s, \mathbf{a} \right\}$$

$$= \mathbb{E}_{\pi} \left\{ R_{t+1} + \gamma G_{t+1} | s, \mathbf{a} \right\}$$

$$= \mathbb{E} \left\{ R_{t+1} | s, \mathbf{a} \right\} + \gamma \mathbb{E}_{\pi} \left\{ G_{t+1} | s, \mathbf{a} \right\}$$

$$= \bar{\mathcal{R}}(s, \mathbf{a}) + \gamma \underbrace{\mathbb{E}_{\pi} \left\{ G_{t+1} | s, \mathbf{a} \right\}}_{7}$$

We need to compute

$$\mathbb{E}_{\pi}\left\{G_{t+1}|s,a\right\}$$

in terms of the rewarding-transition model and policy

Action-Value: Recursive Property

We apply the marginalization trick

$$\mathbb{E}_{\pi} \left\{ G_{t+1} | s, \mathbf{a} \right\} = \sum_{n=1}^{N} \mathbb{E}_{\pi} \left\{ G_{t+1} | S_t = s, S_{t+1} = s^n, \mathbf{A_t} = \mathbf{a} \right\} p \left(s^n | s, \mathbf{a} \right)$$

Attention

Recalling the trajectory of the MDP, we should note that

$$q_{\pi}(s^{n}, a) \neq \mathbb{E}_{\pi} \{G_{t+1} | S_{t} = s, S_{t+1} = s^{n}, A_{t} = a\} = v_{\pi}(s^{n})$$

In fact, once we know S_{t+1} , the previous action does not contain any extra information! We only gain information, if we observe A_{t+1} , i.e.,

$$\mathbb{E}_{\pi} \{ G_{t+1} | S_t = s, S_{t+1} = s^n, A_{t+1} = a \} = q_{\pi} (s^n, a)$$

Action-Value: Recursive Property

So, we can replace it into original equation to get

$$\mathbb{E}_{\pi} \left\{ G_{t+1} | s, a \right\} = \sum_{n=1}^{N} \mathbb{E}_{\pi} \left\{ G_{t+1} | S_{t} = s, S_{t+1} = s^{n}, A_{t} = a \right\} p\left(s^{n} | s, a \right)$$
$$= \sum_{n=1}^{N} v_{\pi}\left(s^{n} \right) p\left(s^{n} | s, a \right)$$

This implies that

$$q_{\pi}(s, \mathbf{a}) = \bar{\mathcal{R}}(s, \mathbf{a}) + \gamma \sum_{n=1}^{N} v_{\pi}(s^{n}) p(s^{n}|s, \mathbf{a})$$
$$= \bar{\mathcal{R}}(s, \mathbf{a}) + \gamma \mathbb{E} \{v_{\pi}(S_{t+1}) | s, \mathbf{a}\}$$

Bellman Equation: Action-Value

Bellman Equation I for Action-Value Function

For any policy π the action-value function at each pair (s, \mathbf{a}) satisfies

$$q_{\pi}(s, \mathbf{a}) = \bar{\mathcal{R}}(s, \mathbf{a}) + \gamma \sum_{n=1}^{N} v_{\pi}(s^{n}) p(s^{n}|s, \mathbf{a})$$

After doing Assignment 1, you will immediately conclude the following extension

Bellman Equation II for Action-Value Function

For any policy π the action-value function at each pair (s, \mathbf{a}) satisfies

$$q_{\pi}\left(s, \boldsymbol{a}\right) = \bar{\mathcal{R}}\left(s, \boldsymbol{a}\right) + \gamma \sum_{n=1}^{N} \sum_{m=1}^{M} q_{\pi}\left(s^{n}, a^{m}\right) \pi\left(a^{m} | s^{n}\right) p\left(s^{n} | s, \boldsymbol{a}\right)$$

Computing Action-Value via Bellman Equation

We can again use the recursive equation

$$q_{\pi}\left(s, \mathbf{a}\right) = \bar{\mathcal{R}}\left(s, \mathbf{a}\right) + \gamma \sum_{n=1}^{N} \sum_{m=1}^{M} q_{\pi}\left(s^{n}, a^{m}\right) \pi\left(a^{m} | s^{n}\right) p\left(s^{n} | s, \mathbf{a}\right)$$

to find the action-value function: we have in this case NM possible values

- Bellman equation relates each action-value to other action-values \downarrow For each s and a, Bellman equation has NM unknowns $q_{\pi}(s^n, a^m)$
- We can write the Bellman equation for all NM cases
- ullet We solve this system of equations for unknowns $q_\pi\left(s^n, {\color{black}a^m}
 ight)$