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Classical RL Methods: Recall

‘ Ultimate goal in an RL problem is to find the optimal policy

As mentioned, we have two major challenges in this way
@ We need to compute values explicitly

@® We often deal with settings with huge state spaces?

In this part of the course, we are going to handle the first challenge
® This chapter -~~~ Model-based methods
® Next chapter -~~~ Model-free methods
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A Good Start Point: Model-based RL

In a nutshell, in model-based methods
we are able to describe mathematically the behavior of environment

This might come from the nature of problem or simply postulated by us

' N s A
Model-gased RL Model-free R L
Bellman Equation on-policy methods
value iteration temporal difference
policy iteration Monte Carlo
SARSA

of$-policy methods

Q-learning
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Markov Decision Process

Complete State is Markov Process

When we formulated the RL framework, we stated that

a complete state must describe a Markov process

Markov Process

Sequence S1 — So — ... describe a Markov process if

Pr{Sii1 = st+1]St = s¢,...,51 = 51} = Pr{Si41 = st41|St = s¢}

Following this fact, we introduced the concepts of

rewarding and transition functions
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Recall: Transition and Rewarding

Both these mappings only depend on current state and action

Transition function maps state S; and action A; to the next state S 1

P()$XAb—>$

Rewarding function maps state S; and action A; to reward R; 1

R():SxAw{r', .. rl}

We said that these mappings are in general random
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Describing Markov Trajectory

Markovity of the state indicates that we observe the following trajectory
SOvAO_) (Rlasl)vAl ... (Rtvst)aAt_) (Rt+17 )

This trajectory describes a Markov process with conditional distribution

p(ra IS,CL) =Pr {RtJrl =T, ‘St = SaAt = a}
= Pr {Rt =T, |St,1 = S,At,1 = (L}
=PI"{R1=T’, |50=S,A0=CL}

‘ The above trajectory describes a Markov Decision Process (MDP) ‘
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Finite MDPs

In this course, we focus on finite MDPs
Finite MDP

The Markov process

S(),A() - (Rl, Sl) ,Al = 500 =% (Rt,St) ,At
is a finite MDP if rewards, actions and states belong to a finite set, i.e.,

re{r,...;rt}  aefal,....d"} se{s'... "}

MDPs are completely described by conditional distribution p (r, 5|s, a)

We call p (r, <|s, a) hereafter rewarding-transition model
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Transition and Rewarding Function
Model-based RL via MDP

+ What makes it now model-based RL?
- We assume that rewarding-transition model p (r, 5|s, a) is given to us

+ But you said for model-based RL, we should know the and
rewarding functions!

Well, we can describe them using p (r, 5|s, a)!

Rewarding Model

Assume we are in state S; = s and act A; = a; then, R, 1 is a random variable
whose distribution is given by

p(r|s,a) = > p(r,s"|s,a)

We call this distribution hereafter rewarding model
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Transition and Rewarding Function
Model-based RL via MDP

Similarly, we can describe the transition function
Transition Model

Assume we are in state S; = s and act A; = a; then, next state isa
random variable whose distribution is given by

(5]s,a) Zp( |s,a>

We call this distribution hereafter transition model
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Markov Decision Process Transition and Rewarding Function

Example: Dummy Grid World

We have a grid board where at each cell we can move

ﬁ/7 ‘ \ A = {0 = 1left,1 = down,2 = right,3 = up}
/// Our ultimate goal is to arrive at top-left corner

through shortest path

This problem describes an MDP with rewarding-transition model
e State is the cell index

e Action is the direction we move
e Reward is —1 each time we move until we get to destination
L, Reward is —0.5 when we hit the corners
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Markov Decision Process

Example: Dummy Grid World

7)1 )+

2 13

$=1{0,1,2,3} A = {0 = left,1 = down, 2 = right, 3 = up}

Let’s write the rewarding-transition model down

p(r,5)3,3) = {
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Markov Decision Process

Example: Dummy Grid World

7)1 )+

2 13

$=1{0,1,2,3} A = {0 = left,1 = down, 2 = right, 3 = up}
Let’s write the rewarding-transition model down

1 5)=(0,0
p(r,5)0,a) = (r, i) (0,0) w5 =0 is terminal state
0 (r,5) #(0,0)
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Markov Decision Process Transition and Rewarding Function

Transition Diagram

It is sometimes helpful to show transition model via a transition diagram

This diagram describes a graph
® Fach node is a possible state: we have in total N nodes

® Node s is connected to s if the probability of transition is non-zero

L, We could specify the action that can lead us to the
L, The graph could have loops including self-loop
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Transition and Rewarding Function
Transition Diagram: Dummy Grid World

In our dummy grid world, we have four states
® [f we are in terminal state we always remain there with no rewards

® From state s = 1 we can go to depending on action

L, We can also remain in state s = 1 and reward with —0.5 if we hit corners
® From state s = 2 we can go to depending on action

L, We can also remain in state s = 1 and reward with —0.5 if we hit corners
® From state s = 3 we can go to depending on action

L, We can also remain in state s = 1 and reward with —0.5 if we hit corners
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Expected Action Reward

As we said, using rewarding-transition model we can describe the environment
completely: for instance, let’s see what would be the expected immediate
reward that we get if in state s we act a

R (s,a) = E{Ri11]s,a} v we simplisy notation 5; = s to s

L
=Y rp (ré\s, a)

I
o~
0= I

rt P <ré, |s, a)

~
Il
—_

Tep (717 |S, a) v rewarding—transition model

[l
M=

~
Il
—
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Markov Decision Process Expected Reward

Expected Action Reward

R (s, a) describes
the reward we expect to see immediately after acting a in state s
We are going to see this expectation a lot, so maybe we could give it a name
Expected Action Reward
The expected reward for a state-action pair (s, a) is defined as

L
R (5,a) = E{Renals,a} = )} O v'p (1t 5713, a)
=1

Obviously, R (s, a) does not depend on policy
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Expected Policy Reward

+ Can we relate it also to our policy?
- Sure! We could average over our policy

Expected Policy Reward

The expected immediate reward of policy m at state s is defined as

M
Rr (s) = Ex {Repals} = > E{Rusals,a™}m (a™]s)
m=1

M L
ZZ r%(re, \s,a)w(am\s)

m=1¢=1

It describes reward we expect to see immediately after state s while playing
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Example: Dummy Grid World

In our dummy grid world, we can easily compute the expected immediate reward

R(La) = ~1  ae{0,1}
=05 ae{2,3)

Obviously in terminal state we always get zero expected reward, e.g., for all a

R(0,a) =0
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Example: Dummy Grid World

/)
|

Now assume that we play uniformly at random, i.e., for all a and s

m(als) =

In this case the expected policy reward is

3
Z 7 (all) = —0.75
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Example: Dummy Grid World

7
1]

But if we change to above policy: the expected reward changes to

3
Ra(1) = > R(1,a)w(all) = R(1,0) = -1
a=0

and we can easily show that
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Computing Value Functions: Naive Approach

Now that we have a concrete model for our environment: we should go
ahead and compute the value function, as we want to optimize it

Let’s start with direct computation

vr (s) = Ex {C]s}
=Ex {Rt+1 + YRiy2 + ’72Rt+3 + ... |9}
= E; {Rit+1|s} +vEr { s} + Y2Ex { |s}+ ...
=R (s) +7Ex{ |5}+72E7r{ |s}+...

+ How can we compute next terms?

- We could use the rewarding-transition model of MDP
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Computing Value Functions: Naive Approach

Let’s try the second term for example: we first define the notation
E7’r {Rt+2|37 7am7 aj} = E7T {Rt+2|St =5, 7At = ama At+1 = aj}
We can easily compute E . {Rt+2‘8, ,a™, aj} as

>irfp ( fs, ,am,aj>

=1

2oty (1)

=1

Eﬂ {Rt+2|8, ,am }

~

~
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Markov Decision Process Computing Value with MDPs

Computing Value Functions: Naive Approach

We can then say that
M M ‘ ‘
Er {Rit2|s} = Z ZE“ {Rt+2|s, ,am,aj}p (am, ,a]|s)
m=1j=1

and write down p (a™, <", a’|s) using chain rule

p(am, ,aj|s)=p(am|s)p( |s,am)p(aj|s,am, )

=7 (a"s) p(s"[s,a™) 7 (a’]|s")
~——

transition model

+ How can we compute the next term?
- We should repeat the same approach: there will be more nested sums
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Example: Dummy Grid World

7T
Lt 1]

Let’s start with the above policy: =!

U (1) = Eqt { Ryt + YRz + 7V Rigs + ... |1}
Following policy at s = 1 we end up at terminal state at next time
v (1) =B {Rpy1 70 +720+ ... [1} =R (1) = -1
Same way, we can conclude that
v (0)=0 v (2)=-1 v (3) = =2
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Example: Dummy Grid World

Let’s change to policy 72: we could follow same steps to show that

U2 (0)=0 w2 (l)=-1 vz (2) = —1 vp2 (3) = =2

We note that it returns the same values as policy 7!
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Markov Decision Process

Example: Dummy Grid World

Zn

Ak

Let’s now look at policy 73: we could follow same steps to show that

vy (0) =0 vy (1) = =3 v (2) = —1 v (3) = =2

We can see that
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Markov Decision Process Bellman Equation

Computing Value Functions: Practical Approach

+ But, we should compute infinite terms in general!

- Well, if we are lucky: the sequence either terminates or shows a pattern
+ What if that doesn’t happen?

- Then, this approach really does not work!

This is why we called it the naive approach, since we never use this approach: in
practice, we always invoke

Bellman equation

and find the value via dynamic programming
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Future Return: Recursive Property

Even though looks infinte, it has a simple recursive property

0

Gt = 2 V' Ryyis
i=0

= Riy1+ YR + 7 Reps + ...
= Rip1 +v(Rig2 + 7 Rig3 +..)
= Ri1 +7Gi

We can use this property to find a fixed-point equation for the value function!

Reinforcement Learning Chapter 2: Model-based RL © A. Bereyhi 2024 - 2025 28/47



Value Function: Recursive Property
Say we are playing with policy 7: we can write the value function as
vr (s) = BEx {C1]s}
= ETI' {RtJrl +’7 |S}
= Ex {Resals} + 7B {C 1|}
=Rr(s) +vE-{Cii]s}
—_————
7
+ Isn’t that term again the value function at s?
- Be careful! It's not
Attention

The second term is not the value of state s

Er {Cii1ls} = Ba {G111]St = s} #Ex {G1] St = s} = vr ()
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Value Function: Recursive Property

Let's do some marginalization
N
Ex {Cils} = D Ex{Cri118 = 5,841 = 8"} Pr{S11 = s"|S; = s}

n=1
N
= Y Ec{C i ]s, 5" p(s"]9)
n=1
Well, we need to specify the two terms in under summation, i.e.,

° ETI'{ |Sasn}
* p(s"]s) =Pr{S;11 =s"|S; = s}
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Value Function: Recursive Property

Recall the trajectory

So, Ao = (R1,51),A1 — ... = (R4, ), Avir — (Riyo, Sii2)

If we know state Sy any reward after t + 1 only depends on S;. 1, i.e.,

Ex{ |St = 5,541 = 5"} = Ex { |St41 = 5"}

This indicates that
Ex{ ls,s"} = vg (s)

i.e., the value function at state s™
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Value Function: Recursive Property

We can further find p (s"'|s) from transition model and policy

M
pr(]s) = D p (s a"s)

Il
M= i

p(a™|s)p(s"a™,s)

3

1

T (am|s)p( |S, am) > depends on policy
1

Il
M=

3
I

We know have both terms in terms of transition model and policy
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Value Function: Recursive Property

Replacing into the equation, where we left we have

Ec G5} = O Enf{Groils, < }p(s"]5)

=0 D e ()p (s, w (@)

m=1

We can also present it by shorter notation as

Er {1 lst = Ex{or (5001) [s}
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Value Function: Recursive Property

Back to computation of value function, we have

(s) +7Ex {C1 115}
(s) +7Ex {vr (5 1) [s}

vy ()

R
R

Il
pov]

() +7 0 vr (1) pr (57]5)

This is a recursive equation that relates value of one state to other values

which is a Bellman equation
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Markov Decision Process Bellman Equation

Bellman Equation: Value

Bellman Equation for Value Function

For any policy 7 the value function at each state s satisfies

U (8) = R (8) + 7 ), vn (") pr (5] 9)

+ Well! What is the use of Bellman equation?

- It describes a fixed-point equation that can be solved for v (s)!
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Markov Decision Process Bellman Equation

Bellman Equation: Breaking Down

/Uﬂ'(S):ﬁﬂ'(S)—'_’y 'Urr( )pﬂ'( |S)

In general, we have IV possible state v~ we have IN possible values
® Bellman equation relates each value to other
L, For each s, Bellman equation has vp (41) 5o va (5)
e We can write the Bellman equation for all N states
L, We have N equations each with

* We solve this system of equations for Or (41) o un ()
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Example: Dummy Grid World

7
,1\

\ <«

Let’s try with our dummy grid world: we saw that
Re(0)=0 Re(l)=-1 Re(2)=-1 Rp(3)=-1
Now let’s consider the values unknown

vr (0) 07 (1) yvr (2), 07 (9)
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Example: Dummy Grid World

7
,1\

\ <«

We set v = 1 and start with state s = 0

0r (0) = R (0) + > wr (5) pr (£10)

We know that

(-]

®
I

|
W
— -
o

pe (:10) = {;
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Example: Dummy Grid World

7
,1\

\ <«

This concludes that at state s = 0, Bellman equation reads
U (0) = 0+ vr (0)

which is an obvious equation; let’s try s = 1
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L e Decion rocess B
Example: Dummy Grid World

7
,1\

\ <«

At state s = 0, we have

on (1) = Re (1) + > 0e (5) pr (411)

Again we can easily say based on the policy that

1 5—0
511) =
pr (5]1) {0 o

Reinforcement Learning Chapter 2: Model-based RL



Example: Dummy Grid World

7
,1\

\ <«

This concludes that at state s = 1, Bellman equation reads
v (1) = =14 v (0)
which relates v, (1) to v, (0). If we keep repeating we get further

vr (2) = =14 v (0)
vr (3) = =14 v (2)
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Example: Dummy Grid World

7
1]

We now have the system of equations

vr (1) = =14 vg ()
vr (2) = =14 vg ()
vr (3) = =14 v (2)

We also know that s = 0 is a terminal state, and thus v, (0) = 0: so, we get
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Bellman Equation: Action-Value
We can find a Bellman equation for action-value function as well: say we

play with policy

qr (57a) = Eﬂ'{ |37a}
= E7r {Rt+1 +7 |Saa}
=E{Ris1|s,a} + vEx { |s,a}

27?,(8,&)+’)/E7T{ |57a}
| SR —
?
We need to compute
Ex{ s, a}

in terms of the rewarding-transition model and policy
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Action-Value: Recursive Property

We apply the marginalization trick

Ex{ |s,a} = > Ex{ |S; = s, s Ap=a}p(s']s,a)

Attention
Recalling the trajectory of the MDP, we should note that

q7r( ’a);éEW{ |St:37 7At:a}=v7f( )

In fact, once we know , the previous action does not contain any extra
information! We only gain information, if we observe A, .1, i.e.,

Ex{ |St = s, , Apr1 = a} = gr (s", a)
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Action-Value: Recursive Property

So, we can replace it into original equation to get

N
Er{C/ 1]s,a} = Z E-{CG/1|St=s8,5.1=5" A =a}p(s|s,a)
n=1

—Zv s'ls,a)

n=1

This implies that

qr (5,0) = R (s,a) +7 Z e (") p ("5, a)

n=1

=R (s,a) +vE{vr (5 1) [s,a}
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Markov Decision Process Bellman Equation

Bellman Equation: Action-Value

Bellman Equation | for Action-Value Function

For any policy 7 the action-value function at each pair (s, a) satisfies

tr (5,0) =R (s,0) +7 ) vr (+") p(s"]s,0)

After doing Assignment 1, you will immediately conclude the following extension
Bellman Equation Il for Action-Value Function

For any policy 7 the action-value function at each pair (s, a) satisfies

M
qw(s,a)=7_€(s,a)+fy qu( 7am)ﬂ_(am| )p( ’8,@)
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Computing Action-Value via Bellman Equation

We can again use the recursive equation

M
gr (5,0) = R(s,0) 9 Y an (4" a™) 7w (@) p (+"]5,0)
m=1

to find the action-value function: we have in this case N M possible values
® Bellman equation relates each action-value to other
L, For each s and a, Bellman equation has N M Gr (57, a™)

® We can write the Bellman equation for all N M cases
e We solve this system of equations for Gr (5", a™)
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