ECE 1508: Reinforcement Learning

Chapter 1: Introduction

Ali Bereyhi

ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Fall 2025

Playing in RL Framework: Policy

As environment gets to state S_t , agent decides for an action

Policy

Policy $\pi(a|s)$ is a probability distribution over a conditional to s

$$\pi(a|s) = \Pr\left\{A_t = a|S_t = s\right\}$$

- + Why a probability distribution? Does agent always act randomly?!
- It can either act randomly or deterministically, and both these cases can be presented by this notation

Playing in RL Framework: Probabilistic Policy

Assume we have set of possible actions

$$\mathbb{A} = \left\{ a^1, \dots, a^M \right\}$$

Agents might behave probabilistic, e.g.,

$$\pi\left(a|s\right) = \begin{cases} 0.8 & a = a^{1} \\ 0.2 & a = a^{2} \\ 0 & \text{otherwise} \end{cases}$$

This means that in state s

- in 80% of cases it acts a^1
- in 20% of cases it acts a^2
- it never does any other action

Playing in RL Framework: Deterministic Policy

Assume we have set of possible actions

$$\mathbb{A} = \left\{ a^1, \dots, a^M \right\}$$

Agents might behave deterministically, e.g.,

$$\pi\left(a|s\right) = \begin{cases} 1 & a = a^1\\ 0 & \text{otherwise} \end{cases}$$

This means that if the agent observes state s

- it always acts a^1
- it never does any other action

0	1	α
3	4	5
6	チ	8

Let's look at the Tic-Tac-Toe example: assume the oponent starts at cell 0

- State is then $S_1 = \{0\}$: we can set the policy to
 - → In the policy, we should have specified

$$\pi(a|\{0\}) = \Pr\{A_1 = a|S_1 = \{0\}\} = \begin{cases} p_a & a = 1,\dots,8\\ 0 & a = 0 \end{cases}$$

for some p_a 's that satisfy

$$\sum_{a=1}^{8} p_a = 1$$

0	1	2
8	4	5
6	チ	8

We may play deterministically: we are sure what to do after seeing opponent playing zero

 \downarrow We may always play $A_1 = 1$

$$\pi(a|\{0\}) = \begin{cases} 1 & a = 1 \\ 0 & a \neq 1 \end{cases}$$

0	1	2
ß	4	5
6	チ	8

We may play deterministically: we are sure what to do after seeing opponent playing zero

 \downarrow We may always play $A_1 = 3$

$$\pi(a|\{0\}) = \begin{cases} 1 & a = 3\\ 0 & a \neq 3 \end{cases}$$

0	1	α
3	4	5
6	チ	8

We may play deterministically: we are sure what to do after seeing opponent playing zero

 \downarrow We may always play $A_1 = 4$

$$\pi(a|\{0\}) = \begin{cases} 1 & a = 4 \\ 0 & a \neq 4 \end{cases}$$

We may play probabilistic: we behave somehow randomly after seeing opponent playing zero

 \downarrow We may play any next cell $A_1 \in \{1, 3, 4\}$

$$\pi(a|\{0\}) = \begin{cases} 1/3 & a \in \{1,3,4\} \\ 0 & a \notin \{1,3,4\} \end{cases}$$

0	1	2
3	4	5
6	チ	8

Say we acted $A_1 = 1$, and the opponent plays 3 after our move: policy should tell us the next move

$$\pi(a|\{0,1,3\}) = \Pr\{A_2 = a|S_2 = \{0,1,3\}\}$$

Say we acted $A_1 = 1$, and the opponent plays 3 after our move: policy should tell us the next move

$$\pi(a|\{0,1,3\}) = \begin{cases} 1 & a = 6 \\ 0 & a \neq 6 \end{cases}$$

i.e., we always circle cell 6 in this state of the board

As agent gets into a new state, it can use its policy to estimate future return

Value Function

Assume that agent acts with policy $\pi\left(a|s\right)$ at state s; then, the value of this state is defined as

$$v_{\pi}\left(s
ight)=\mathbb{E}\left\{ G_{t}|S_{t}=s
ight\}$$
Because it depends on Policy π

- + Why do we have index π ?
- Because this value depends on the policy!

Let's break it down: we first recall that

Future return at time t

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots$$

for some discount factor $0 \leqslant \gamma \leqslant 1$

Also, we recall that

Rewarding function is going to determine the next reward

$$R_{t+1} = \mathcal{R}\left(S_t, A_t\right)$$

and transition function determines the next state

$$S_{t+1} = \mathcal{P}\left(S_t, \mathbf{A_t}\right)$$

Value of state s is

$$v_{\pi}(s) = \mathbb{E}\left\{G_{t}|S_{t}=s\right\} = \mathbb{E}\left\{R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots | S_{t}=s\right\}$$

Say we are at time t: at this time we see state $S_t = s$

- Policy $\pi(a|s)$ tells us what to play next
 - $\,\,\,\,\,\,\,\,\,$ For instance, it deterministically specifies A_t
- Rewarding function specifies the reward of next time step

$$R_{t+1} = \mathcal{R}\left(S_t, A_t\right)$$

• Transision function specifies the next state

$$S_{t+1} = \mathcal{P}\left(S_t, \mathbf{A_t}\right)$$

□ Both rewarding and transition could be probabilistic

Value of state s is

$$v_{\pi}(s) = \mathbb{E}\left\{G_{t}|S_{t}=s\right\} = \mathbb{E}\left\{R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots |S_{t}=s\right\}$$

Given rewarding function and policy: distribution of R_{t+1} is found

We compute the probability of each possible rewards, i.e.,

$$p_{\ell}(s, \mathbf{a}) = \Pr\left\{ R_{t+1} = r^{\ell} | S_t = s, A_t = \mathbf{a} \right\}$$

for $\ell = 1, \dots, L$ and each possible action a

→ We can hence compute the first term

$$\mathbb{E}_{\pi} \left\{ R_{t+1} | S_t = s \right\} = \sum_{\ell=1}^{L} \sum_{m=1}^{M} p_{\ell} \left(s, a^m \right) \pi \left(a^m | s \right) r^{\ell}$$

Note that distribution of R_{t+1} can change, if we change policy

Example: Say rewarding function says $\mathcal{R}\left(s, a^{1}\right) = 0$ and $\mathcal{R}\left(s, a^{2}\right) = 1$; now, consider the following policies

$$\pi^{1}(a|s) = \begin{cases} 1 & a = a^{1} \\ 0 & a \neq a^{1} \end{cases} \qquad \pi^{2}(a|s) = \begin{cases} 1 & a = a^{2} \\ 0 & a \neq a^{2} \end{cases}$$

Therefore, we could say

$$\mathbb{E}_{\pi^1} \left\{ R_{t+1} | S_t = s \right\} = 0 \qquad \mathbb{E}_{\pi^2} \left\{ R_{t+1} | S_t = s \right\} = 1$$

Value of state s is

$$v_{\pi}(s) = \mathbb{E}\left\{G_{t}|S_{t}=s\right\} = \mathbb{E}\left\{R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots |S_{t}=s\right\}$$

For time t + 1: we have specified state S_{t+1} via transition function

- Policy $\pi\left(a|S_{t+1}\right)$ tells us what to play next, i.e., A_{t+1}
- Rewarding function specifies the reward of next time step

$$R_{t+2} = \mathcal{R}\left(S_{t+1}, A_{t+1}\right)$$

We can hence compute the second term

$$\mathbb{E}_{\pi}\left\{R_{t+2}\middle|S_{t}=s
ight\}$$
 $ext{cm}$ Expectation over S_{t+1},A_{t+1} and A_{t}

Value of state s is

$$v_{\pi}(s) = \mathbb{E}\left\{G_{t}|S_{t}=s\right\} = \mathbb{E}\left\{R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots |S_{t}=s\right\}$$

So if we set a specific policy π , we could keep on

 $\bullet \ \mathbb{E}_{\pi} \left\{ R_{t+3} | S_t = s \right\}$

. . .

and we could estimate future return for a given policy π as

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left\{ R_{t+1} | S_t = s \right\} + \gamma \mathbb{E}_{\pi} \left\{ R_{t+2} | S_t = s \right\} + \gamma^2 \mathbb{E}_{\pi} \left\{ R_{t+3} | S_t = s \right\} + \cdots$$

Value Example: Tic-Tac-Toe

Assume we play Tic-Tac-Tao with a pretty deterministic opponent:

We know that opponent takes the following strategy:

- if corners are available without chance of loosing, it plays a corner
 - it starts with cross-corner
 - it plays other corners afterwards
- if a line can be filled by us in next move, it blocks the line
 - if multiple lines are available, it blocks one of them at random
- if there is a line to be filled, it fills and wins

Value Example: Tic-Tac-Toe - Policy I

We now take the following policy

- if there is no chance of loosing, we play next cell
 - if next cell in the row available, we play that cell
 - if next cell in the row not available, we play cell below
 - if neither is available, we play some cell at random
- if there is a line possibly filled in next move by opponent, we block it
 - if multiple lines are available, we block one of them at random
- if there is a line to be filled by us, we fill and win

Value Example: Tic-Tac-Toe - Policy I

Say the game starts at state $s = \{0\}$ with policy I: π^1

- Our next move will be $A_0 = 1$
- Opponent will play $O_1 = 8$ \downarrow this leads to new state $S_1 = \{0, 1, 8\}$
- Our next move will be $A_1 = 4$
- Opponent will play $O_2 = 7$ \downarrow this leads to new state $S_2 = \{0, 1, 4, 7, 8\}$
- Our next move will be $A_2 = 6$
- Opponent will play $O_3 = 2$ \downarrow this leads to new state $S_3 = \{0, 1, 2, 4, 6, 7, 8\}$
- Our next move will be $A_3 = 5$

• Opponent will play $O_4 = 3$

 \downarrow this leads to new state $S_4 = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$

Value Example: Tic-Tac-Toe - Policy II

Let's now change the policy

- if there is no chance of loosing, we play a corner
 - if a corner is available in the row, we play that corner
 - if no corner is available in the row, we play corner in the same column
 - → if neither is available, we play some random cell
- if there is a line possibly be filled in next round by opponent, we block it
 - if multiple lines are available, we block one of them at random
- if there is a line to be filled by us, we fill and win

Value Example: Tic-Tac-Toe - Policy II

assuming $\gamma = 1$

Say the game starts at state
$$s = \{0\}$$
 with policy I: π^2

- Our next move will be $A_0 = 2$
- Opponent will play O₁ = 8

 ↓ this leads to new state S₁ = {0, 2, 8}
- Our next move will be $A_1 = 4$
- Opponent will play O₂ = 6

 ↓ this leads to new state S₂ = {0, 2, 4, 6, 8}
- Our next move will be random
 - \rightarrow with 50% chance we play $A_2 = 7$ \rightarrow Opponent will play $O_3 = 3$
 - - \rightarrow Opponent will play $O_3 = 7$
- With any possible move, we end up losing

Value function can be also calculate for each possible next action

Action-Value Function

Assume that agent acts with policy $\pi(a|s)$ at state s; then, the action-value of this state is defined as

$$q_{\pi}\left(s, \mathbf{a}\right) = \mathbb{E}_{\pi}\left\{G_{t} \middle| S_{t} = s, A_{t} = \mathbf{a}\right\}$$

Because it depends on policy π

Action-Value of state-action pair (s, \mathbf{a}) is

$$q_{\pi}(s, \mathbf{a}) = \mathbb{E}_{\pi} \left\{ R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots | S_{t} = s, A_{t} = \mathbf{a} \right\}$$

Given rewarding function: distribution of R_{t+1} for given pair (s, a) is

We compute the probability of each possible rewards, i.e.,

$$p_{\ell}(s, \mathbf{a}) = \Pr\left\{R_{t+1} = r^{\ell} | S_t = s, A_t = \mathbf{a}\right\}$$

for $\ell = 1, \dots, L$ and each possible action a

→ We can hence compute the first term

$$\mathbb{E}_{\pi} \left\{ R_{t+1} | S_t = s, A_t = \mathbf{a} \right\} = \sum_{\ell=1}^{L} p_{\ell} \left(s, \mathbf{a} \right) r^{\ell}$$

Action-Value of state-action pair (s, \mathbf{a}) is

$$q_{\pi}(s, \mathbf{a}) = \mathbb{E}_{\pi} \left\{ R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots | S_{t} = s, A_{t} = \mathbf{a} \right\}$$

For time t + 1: we have specified state S_{t+1} via transition function

- Policy $\pi\left(a|S_{t+1}\right)$ tells us what to play next, i.e., A_{t+1}
- Rewarding function specifies the reward of next time step

$$R_{t+2} = \mathcal{R}\left(S_{t+1}, A_{t+1}\right)$$

We can hence compute the second term

$$\mathbb{E}_{\pi}\left\{R_{t+2}|S_t=s,A_t=a\right\}$$
 \longleftrightarrow Expectation over S_{t+1} and A_{t+1}

Action-Value Example: Tic-Tac-Toe - Hybrid Policy

We play Tic-Tac-Tao with the same opponent: this time however we take a hybrid approach

- with 50% chance we stick to policy I
- with 50% chance we stick to policy II

Let's denote this hybrid policy by $\bar{\pi}$

Action-Value Example: Tic-Tac-Toe - Hybrid Policy

Say the game starts at state $s = \{0\}$

- If we decide to stick to policy I
 - \rightarrow next move will be $A_0 = 1$
 - we end up drawing

$$q_{\bar{\pi}}\left(\{0\}, \mathbf{1}\right) = 0$$

- If we decide to stick to policy II
 - \rightarrow next move will be $A_0 = 2$
 - we end up losing

$$q_{\bar{\pi}}(\{0\}, \mathbf{2}) = -1$$

We see it in the assignment that with this hybrid approach we have

$$v_{\bar{\pi}}(\{0\}) = 0.5q_{\bar{\pi}}(\{0\}, 1) + 0.5q_{\bar{\pi}}(\{0\}, 2) = -0.5$$

- + What is the application of value functions?
- They let us compare policies

We can compare π^1 to π^2 using the value function

Better Policy

We say policy π^1 is better than policy π^2 , and denote it by $\pi^1{\geqslant}\pi^2$ if

$$v_{\pi^1}\left(s\right) \geqslant v_{\pi^2}\left(s\right)$$

for all $s \in \mathbb{S}$

It is important to note that when we say $\pi^1 \geqslant \pi^2$; it means that by playing π^1 , we expect higher or equal future return than π^2 , no matter at which state we start using policy π^1

This definition helps us defining optimal policy: simply speaking

optimal policy is the policy that is the best

Optimal Policy

Policy π^* is called optimal policy if for any possible policy π , we have

$$\pi^* \geqslant \pi$$

Optimal Policy: Alternative Definition

Policy π^* is called optimal policy if it maximizes the value for each state

$$\pi^* = \operatorname*{argmax}_{\pi} v_{\pi} \left(\underline{s} \right)$$

for all $s \in \mathbb{S}$

- + Can we guarantee that the optimal policy always exists?
- Yes!
- + Why didn't we define it based on action-value function?
- Well! We could, but we end up with the same result!

Basic Property of Optimal Policy

Let π^* be the optimal policy; then,

$$v_{\star}\left(s\right) = v_{\pi^{\star}}\left(s\right) = \max_{\pi} v_{\pi}\left(s\right)$$

for all $s \in \mathbb{S}$, and

$$q_{\star}\left(s, \mathbf{a}\right) = q_{\pi^{\star}}\left(s, \mathbf{a}\right) = \max_{\pi} q_{\pi}\left(s, \mathbf{a}\right)$$

for all $s \in \mathbb{S}$ and $a \in \mathbb{A}$

Attention

Optimal policy is not necessarily unique: we may have multiple optimal policies

Ultimate Goal in RL: Finding Optimal Policy

Ultimate goal in an RL problem is to find the optimal policy

But there are a bunch of challenges in this way

- 1 How can we get a model of environment?
 - - ∪ Our RL framework is based on a model
 - → Maybe, we could estimate what we need directly from enough samples
 - → We directly compute value or policy from samples, e.g.,

$$q_{\pi}\left(s, \mathbf{a}\right) = \mathbb{E}\left\{G_{t} \middle| S_{t} = s, A_{t} = \mathbf{a}\right\} \approx \text{average from samples}$$

∪ Our RL framework is free of a model

High Level Classification of RL Methods

Model-Based RL

Bellman Equation
value iteration
policy iteration

Model-free RL

on-policy methods temporal difference

Monte Carlo

off-policy methods
Q-learning

Ultimate Goal in RL: Finding Optimal Policy

Ultimate goal in an RL problem is to find the optimal policy

But there are a bunch of challenges in this way

- 2 How can we apply either approach in environments with huge # of states?
 - - → We approximate the target function via a neural network, e.g.,

$$v_{\star}(s) \approx \text{CNN}(s|\mathbf{w})$$

High Level Classification of RL Methods

