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Objective Design a simple intelligent agent that takes algorithmic problem descriptions, e.g., from
introductory programming course or Leetcode-style tasks, and generates not only the corresponding
code but also an educational breakdown of the solution. The agent should aim to provide human-readable
explanations alongside correct and runnable code, and include a self-refinement mechanism to debug and
correct incorrect generations.

Motivation. Generative models are increasingly used as coding assistants, yet current systems often
lack pedagogical depth. This project explores how pretrained LLMs can serve as educational agents,
generating explanations that enhance user understanding. It also introduces a layer of reasoning by
incorporating feedback loops where generations are tested and refined through a feedback loop.

Requirements The final submission should address the following core components:

1. Choose a small set of algorithmic problems (10–15) from public sources such as Leetcode, Hacker-
Rank, or open educational CS repositories with permissions for public usage.

2. Use a pretrained code-generating LLM, e.g., CodeT5 [4], StarCoder [2], GPT-J [3] or Mistral [1], to
generate solutions based on the problem statements.

3. Implement a test suite for each problem to evaluate correctness of generated code.

4. Design a prompt structure that encourages the LLM to provide step-by-step explanations, e.g., via
docstrings, comments, or separate plan generation.

5. Implement a simple self-refinement loop where the agent detects incorrect code via test failures and
attempts prompt reformulation or self-debugging.

6. Evaluate both code correctness, e.g., test pass rate, and pedagogical quality, e.g., readability,
coherence of explanations.

7. [Optional] Implement a simple GAN or VAE to generate stylistic variants of your code snippets.
Evaluate the diversity and correctness of generated variants.
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Milestones

1. Dataset preparation and task formulation. Select algorithmic problems, write ground-truth test cases,
and define the format of prompts and expected outputs.

2. Initial pipeline construction. Build the core pipeline that sends problem statements to the LLM,
retrieves code, and runs it against the test suite.

3. Pedagogical enhancement. Extend the pipeline to request and extract explanations or inline com-
ments. Define a rubric for evaluating their quality.

4. Self-refinement loop. Build a mechanism for detecting test failures and modifying the prompt or
re-querying the model with contextual feedback.

5. [Optional] Build a generative model, e.g., VAE or GAN, that learns to transform correct code
snippets into stylistically different but functionally equivalent versions. You may use a small style
reference bank for this part.

6. Evaluation and final report. Analyze performance across problem types and LLM behaviors. Docu-
ment findings, ablations, and limitations in the final report.

Submission Guidelines The main body of work is submitted through Git. In addition, each group
submits a final paper and gives a presentation. In this respect, please follow these steps.

• Each group must maintain a Git repository, e.g., GitHub or GitLab, for the project. By the time of
final submission, the repository should have

– Well-documented codebase
– Clear README.md with setup and usage instructions
– A requirements.txt file listing all required packages or an environment.yaml file with a

reproducible environment setup
– Demo script or notebook showing sample input-output
– If applicable, a /doc folder with extended documentation

• A final report (maximum 5 pages) must be submitted in a PDF format. The report should be written
in the provided formal style, including an abstract, introduction, method, experiments, results, and
conclusion.
Important: Submissions that do not use template are considered incomplete.

• A 5-minute presentation (maximum 5 slides including the title slide) is given on the internal seminar
on Week 14, i.e., Aug 4 to Aug 8, by the group. For presentation, any template can be used.

Final Notes While planning for the milestones please consider the following points.

1. You are encouraged to explore innovative approaches to conditioning or generation as long as the
core objectives are met.

2. While computational resources are limited, carefully chosen datasets and training setups can make
even diffusion models feasible. Trade-offs, e.g., resolution, training steps, are expected and should
be justified.

3. Teams are expected to manage their computing needs and are advised to perform early tests to
estimate runtime and training feasibility. As graduate students, team members can use facilities
provided by the university, e.g., ECE Facility. Teams are expected to inform themselves about the
limitations of the available computing resources and design the model accordingly.
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