Deep Generative Models

Chapter 6: Generation by Diffusion Process

Ali Bereyhi

ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Summer 2025

DPM: Sohl-Dickstein et al.

Sohl-Dickstein et al. implemented the first DPM in their work

DPM: Sohl-Dickstein et al.

They tried it on the Swiss roll dataset to demonstrate the diffusion process

Interestingly, they could see the drift behavior

DPM: Sohl-Dickstein et al.

They also tried couple of classical datasets including MNIST and CIFAR

But, it was not the beating the benchmark at the time, i.e., 2015

DDPM: Ho et al.

Ho et al. proposed DDPM and implemented it by embedding time in U-Net

DDPM: Ho et al.

They could demonstrate efficient reverse diffusion

and very inspiring high-quality samples

Improved DDPM: Nichol and Dhariwal

Nichol and Dhariwal kept U-Net, but improved training procedure by

- learning the variances for the reverse diffusion, and
- tuning thetime scheduling for the noising process, i.e., α_t

which ended up better sampling quality

Model	ImageNet	CIFAR
Glow (Kingma & Dhariwal, 2018)	3.81	3.35
Flow++ (Ho et al., 2019)	3.69	3.08
PixelCNN (van den Oord et al., 2016c)	3.57	3.14
SPN (Menick & Kalchbrenner, 2018)	3.52	-
NVAE (Vahdat & Kautz, 2020)	-	2.91
Very Deep VAE (Child, 2020)	3.52	2.87
PixelSNAIL (Chen et al., 2018)	3.52	2.85
Image Transformer (Parmar et al., 2018)	3.48	2.90
Sparse Transformer (Child et al., 2019)	3.44	2.80
Routing Transformer (Roy et al., 2020)	3.43	-
DDPM (Ho et al., 2020)	3.77	3.70
DDPM (cont flow) (Song et al., 2020b)	-	2.99
Improved DDPM (ours)	3.53	2.94

Stable Diffusion: First Large-Scale LDM

Stable Diffusion employs a VAE to get into the latent space

☐ It uses diffusion to generate the latent representation of date

This is a latent diffusion model (LDM)

DALL-E: Another LDM

OpenAI also developed an LDM which uses diffusion for image generation

January 5, 2021 Milestone

DALL: Creating images from text

Google Imagen: Diffusion in Image Space

Google developed Imagen which uses diffusion in the image space

Final Notes

Probabilistic diffusion learns the reverse diffusion process

- DPMs learn the reverse diffusion by ELBO maximization
- DDPMs are special case of DPMs which learn to estimate noising process
- Sampling diffusion models can take too long
 - \downarrow We need to move enough number of time samples, e.g., T=1000

Diffusion models scale slower than other models with data complexity

- **+** We can learn to sample complex data more efficiently

 - □ Data complexity does not involve directly in the process
- They are overkill for simple data
 - → We can learn to sample MNIST much easier via GANs or VAEs
 - → For simple data, we better stick to easier models