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DPM and DDPM Diffusion Probabilistic Model

Diffusion Probabilistic Model
Diffusion Probabilistic Models (DPMs)
DPMs learn the reverse diffusion process by considering a Gaussian conditional
distribution, i.e., they assume

Pw pxt´1|xtq ” N pµw pxt, tq ,Σw pxt, tqq

for some computational models µw and Σw

+ Do DPMs really use Σw?! You said we only learn the mean!– Not really in practice!
Most practical DPMs only learn the mean value

Pw pxt´1|xtq ” N
`

µw pxt, tq , σ
2
t

˘

for some predefined σt
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DPM and DDPM Diffusion Probabilistic Model

Visualizing a DPM: Additive Gaussian Noise
The reverse process is dual of the forward diffusion: we can see

Pw pxt´1|xtq ” N
`

µw pxt, tq , σ
2
t

˘

as a standard Gaussian process with additive noise

xt´1 “ µw pxt, tq ` σt ⃗εt

This is very easy to implement by a denoising network!

t

xt µw pxt, tq

denoiser

µt

N 0 ˆ σt

` xt´1 „ N
`

µt, σ
2
t

˘
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DPM and DDPM Diffusion Probabilistic Model

Generation by DPMs
+ How do DPMs generate a new data sample?
– Just move on the reverse process back in time

We can sample Gaussian noise and move reversely in time

x0
Pw,1
ÐÝ x1

Pw,2
ÐÝ ¨ ¨ ¨ ÐÝ xt´1

Pw,t
ÐÝ xt ÐÝ ¨ ¨ ¨

Pw,T
ÐÝ xT

Sample_DPM(µw:Denoiser)

1: Sample latent xT „ N 0

2: for t “ T, . . . , 1 do3: Pass xt and t forward to find µt “ µw pxt, tq4: Sample ε „ N 0

5: Denoise as xt´1 “ µt ` σtε6: end for7: return Sample x0
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DPM and DDPM Diffusion Probabilistic Model

DPM Training: Naive Training
+ How do we train DPMs?!
– We should only train the denoiser

Following ELBO maximization: we compute empirical risk as
R̂ pwq “ Êx0„Pdata

tR pw|x0qu

“ Êx0„Pdata

#

T
ÿ

t“1

1

σ2
t

∥µw pxt, tq ´ ηt∥2
+

And, just to recall: ηt is the posterior mean computed as

ηt “

?
ᾱt´1 p1 ´ αtq

1 ´ ᾱt
x0 `

?
αt p1 ´ ᾱt´1q

1 ´ ᾱt
xt
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DPM and DDPM Diffusion Probabilistic Model

DPM Training: Naive Training
We could define ωt “ 1{σ2

t and write the risk function compactly as

R̂ pwq “ Êx0„Pdata

#

T
ÿ

t“1

ωt∥µw pxt, tq ´ ηt∥2
+

We can then write a training loop to minimize this empirical risk

+ What is the order of T ?!
– T is rather large, e.g., T “ 1000!
 This sounds like a huge forward and backward pass at every sample!!
– Totally agree! But, there is a way around it
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DPM and DDPM Diffusion Probabilistic Model

DPM Training: Time Sampling
There is no harm to scale R̂ pwq by a constant!

R̂ pwq “
1

T
Êx0„Pdata

#

T
ÿ

t“1

ωt∥µw pxt, tq ´ ηt∥2
+

“ Êx0„Pdata

#

1

T

T
ÿ

t“1

ωt∥µw pxt, tq ´ ηt∥2
+

Now, assuming that t „ UT is uniformly distributed on t1, . . . , T u, we could say

R̂ pwq “ Êx0„Pdata

␣

Et„UT

␣

ωt∥µw pxt, tq ´ ηt∥2
((
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DPM and DDPM Diffusion Probabilistic Model

DPM Loss Computation by Time Sampling
Similar to averaging over data we can estimate time expectation by sampling:
let the loss function for a single data and time sample be

R pw|x0, tq “ ωt∥µw pxt, tq ´ ηt∥2

We could say that

Et„UT

␣

ωt∥µw pxt, tq ´ ηt∥2
(

« Êt„UT

␣

ωt∥µw pxt, tq ´ ηt∥2
(

where for computing right-hand-side, we sample t uniformly from t1, . . . , T u

The empirical risk is then estimated as

R̂ pwq “ Êx0,t

␣

ωt∥µw pxt, tq ´ ηt∥2
(

Deep Generative Models Chapter 6: Diffusion Models © A. Bereyhi 2025 8 / 29



DPM and DDPM Diffusion Probabilistic Model

DPM Loss Computation: Pseudo Code
It might be easier to think of it algorithmically

Risk_Computation_DPM(µw:Denoiser,B:data_batch)
1: for each sample j inB do2: Sample tj uniformly from t1, . . . , T u3: Sample ε „ N 0 and compute xj

tj
“

?
ᾱtjx

j
0 `

?
1 ´ ᾱtj ε4: Compute ηj

tj
from xj

0 and x
j

tj5: Pass xtj and tj forward to find µtj “ µw

`

xtj , t
j
˘

6: Compute sample loss asRj

tj
“ ωtj∥µtj ´ ηtj∥27: Backpropagate to compute∇Rj

tj8: end for9: Estimate empirical risk as R̂ “ mean
`

R1
t1 , . . . R

n
tn
˘

10: Estimate batch gradient as∇R̂ “ Opt_avg
␣

R1
t1 , . . . R

n
tn
(

11: return R̂ and∇R̂
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DPM and DDPM Diffusion Probabilistic Model

Training DPMs: Efficient Approach
We can use this trick to build an efficient training loop

Training_DPM(µw:Denoiser,D:dataset)
1: Initiate µw with some weights2: for multiple epochs do3: Sample a batchB fromD4: Compute batch gradient as R̂,∇R̂ Ð Risk_Computation_DPM(µw,B)5: Update the weights asw Ð w ´ ∇R̂6: end for7: return µw

and we could use the trained model to generate a new data sample

xnew Ð Sample_DPM(µw)
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DPM and DDPM Diffusion Probabilistic Model

DPM Training Loop: Visualization
t „ UT

xt µw pxt, tq

denoiser

µt ηt px0, xtq

N 0 ˆ
?
1 ´ ᾱt

`
?
ᾱtx0 „ Pdata

ηt
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DPM and DDPM Denoising DPM

Posterior Mean: Denoising Interpretation
Let’s take a look at posterior mean that we use for training

ηt “

?
ᾱt´1 p1 ´ αtq

1 ´ ᾱt
x0 `

?
αt p1 ´ ᾱt´1q

1 ´ ᾱt
xt

We also recall that

xt “
?
ᾱtx0 `

?
1 ´ ᾱtεt

So, we can expand the term as

ηt “

?
ᾱt´1 p1 ´ αtq

1 ´ ᾱt
x0 `

?
αt p1 ´ ᾱt´1q

1 ´ ᾱt

`?
ᾱtx0 `

?
1 ´ ᾱtεt

˘

“

?
ᾱt´1 p1 ´ αtq `

?
ᾱtαt p1 ´ ᾱt´1q

1 ´ ᾱt
loooooooooooooooooooooomoooooooooooooooooooooon

at

x0 `

?
αt p1 ´ ᾱt´1q

?
1 ´ ᾱt

loooooooomoooooooon

bt

εt
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DPM and DDPM Denoising DPM

Posterior Mean: Denoising Interpretation
We can use the fact that

ᾱt “

t
ź

i“1

αi ù ᾱt “ ᾱt´1αt

to simplify the coefficients: for at we have

at “

?
ᾱt´1

1 ´ ᾱt
r1 ´ αt ` αt p1 ´ ᾱt´1qs

“

?
ᾱt´1

1 ´ ᾱt
p1 ´ ᾱtq

“
?
ᾱt´1 “

?
ᾱt

?
αt
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DPM and DDPM Denoising DPM

Posterior Mean: Denoising Interpretation
Similarly for bt we can write

bt “

?
αt p1 ´ ᾱt´1q

?
1 ´ ᾱt

“
1

?
αt

αt p1 ´ ᾱt´1q
?
1 ´ ᾱt

“
1

?
αt

αt ´ ᾱt`1 ´ 1
?
1 ´ ᾱt

“
1

?
αt

1 ´ ᾱt ´ p1 ´ αtq
?
1 ´ ᾱt

“
1

?
αt

ˆ

?
1 ´ ᾱt ´

1 ´ αt
?
1 ´ ᾱt

˙
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DPM and DDPM Denoising DPM

Posterior Mean: Denoising Interpretation
Putting them together: we can write ηt ias

ηt “ atx0 ` btεt

“

?
ᾱt

?
αt

x0 `
1

?
αt

ˆ

?
1 ´ ᾱt ´

1 ´ αt
?
1 ´ ᾱt

˙

εt

“
1

?
αt

¨

˝

?
ᾱtx0 `

?
1 ´ ᾱtεt

looooooooooomooooooooooon

xt

´
1 ´ αt

?
1 ´ ᾱt

εt

˛

‚

“
1

?
αt

ˆ

xt ´
1 ´ αt

?
1 ´ ᾱt

εt

˙

” denoiser of xt

ηt is indeed a denoising of xt ù Bingo! This is why we called µw denoiser
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DPM and DDPM Denoising DPM

Connection to Direct Denoiser
We could also denoise simply by reversing the forward diffusion

xt “
?
αtxt´1 `

?
1 ´ αtε̃t

U Attention
ε̃t is noise sample added in step t of forward diffusion

ë It is different from εt which builds the direct link
ë They are though correlated!

We can directly denoise by reversing this equation as

xt´1 “
1

?
αt

`

xt´
?
1 ´ αtε̃t

˘
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DPM and DDPM Denoising DPM

Connection to Direct Denoiser
Indeed, we could think of ηt as same reverse diffusion when

we use an estimator of ε̃t computed from εt as

ε̂t “

c

1 ´ αt

1 ´ ᾱt
εt

Using this estimator, we can estimate the reverse diffusion as

x̂t´1 “
1

?
αt

`

xt´
?
1 ´ αtε̂t

˘

“
1

?
αt

ˆ

xt´
1 ´ αt

?
1 ´ ᾱt

εt

˙

“ ηt
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DPM and DDPM Denoising DPM

Key Observation: Sample Loss
Now, let us look at the training again: we compute sample loss as

R pw|x0, tq “ ωt∥µw pxt, tq ´ ηt∥2

and we know that

ηt “ x̂t´1 “
1

?
αt

ˆ

xt´
1 ´ αt

?
1 ´ ᾱt

εt

˙

Interesting Observation
When we train DPM, we have εt, since we use it for sample xt from x0

This observation leads to introduction of denoising DPMs
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DPM and DDPM Denoising DPM

DDPM: Specific Choice of DPM
Denoising DPM (DDPM)
In DDPMs, we set the model to estimate direct noise at time t and let

µw pxt, tq “
1

?
αt

ˆ

xt ´
1 ´ αt

?
1 ´ ᾱt

εw pxt, tq

˙

t

xt εw pxt, tq

noise learner

ε̂t
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DPM and DDPM Denoising DPM

Sample Loss of DDPM
Using DDPM: the sample loss becomes

R pw|x0, tq “ ωt∥µw pxt, tq ´ ηt∥2

“ ωt
p1 ´ αtq

2

αt p1 ´ ᾱtq
looooooomooooooon

ω̄t

∥εw pxt, tq ´ εt∥2

“ ω̄t∥εw pxt, tq ´ εt∥2

which we can easily compute!

Intuitive Interpretation
We train a model to estimate direct noise sample from noisy data

ë We use the model to estimate direct noise in each time step
ë We denoise to reverse the diffusion time step
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DPM and DDPM Denoising DPM

DDPM: Risk Computation
We can build a similar loop to compute empirical risk

Risk_Computation_DDPM(εw:Denoiser,B:data_batch)

1: for each sample xj
0 inB do2: Sample tj uniformly from t1, . . . , T u3: Sample ε „ N 0 and compute xj

tj
“

?
ᾱtjx

j
0 `

?
1 ´ ᾱtj ε4: Pass xtj and tj forward to find ε̂tj “ εw

`

xtj , t
j
˘

5: Compute sample loss asRj

tj
“ ω̄tj∥ε̂tj ´ ε∥2

6: Backpropagate to compute∇Rj

tj7: end for8: Estimate empirical risk as R̂ “ mean
`

R1
t1 , . . . R

n
tn
˘

9: Estimate gradient as∇R̂ “ Opt_avg
␣

∇R1
t1 , . . .∇Rn

tn
(

10: return R̂ and∇R̂

Deep Generative Models Chapter 6: Diffusion Models © A. Bereyhi 2025 21 / 29



DPM and DDPM Denoising DPM

DDPM: Training Loop
Training_DDPM(εw:Denoiser,D:dataset)
1: Initiate εw with some weights2: for multiple epochs do3: Sample a batchB fromD4: Compute batch gradient as R̂,∇R̂ Ð Risk_Computation_DDPM(εw,B)5: Update the weights asw Ð w ´ ∇R̂6: end for7: return εw
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DPM and DDPM Denoising DPM

DDPM: Generation
Sample_DDPM(εw:Denoiser)

1: Sample latent xT „ N 0

2: for t “ T, . . . , 1 do3: Pass xt and t forward to find ε̂t “ εw pxt, tq4: Denoise the sample xt as

x̂t´1 Ð
1

?
αt

ˆ

xt ´
1 ´ αt

?
1 ´ ᾱt

ε̂t

˙

5: Sample ⃗ε „ N 0 and move reversely as xt´1 “ x̂t´1 ` σt ⃗ε6: end for7: return Sample x0
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DPM and DDPM Denoising DPM

Few Implementational Notes on DDPM
There are a few notes: in practice with DDPMs

‚ We typically set ω̄t “ 1 for all t
ë This factor does not really make a significant impact

‚ In basic proposal, it is suggested to set σt “
?
1 ´ αt

ë This means that the variance in both directions are the same
ë At time t “ 1, we set σt “ 0, i.e., no noise added to last denoising

‚ The coefficients αt in general should be scheduled
ë Linear scheduling is one classical option where αt “ ξt ` κ
ë This might impact considerably on performance
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DPM and DDPM DDIM

Sampling Time of DDPM
The training of DDPM seems solid; however,

the sampling can take long

This is because the reverse diffusion is stochastic
ë It needs time to converge

There are two simple remedies
ë Learn more parameters for reverse trajectory, e.g., σt

ë Simple extension of DDPM with learnable variances
ë Make a deterministic sampling mechanism for generation
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DPM and DDPM DDIM

DDIM: Sampling with Zero Variance
We can use DDPM to estimate noise sample

ε̂t “ εw pxt, tq

If this was a very accurate estimate, we could have said

xt “
?
ᾱtx0 `

?
1 ´ ᾱtεt ù x̂0 “

1
?
ᾱt

`

xt ´
?
1 ´ ᾱtε̂t

˘

This is though not accurate!

Denoising Diffusion with Implicit Modeling ” DDIM
We may use this estimate to directly estimate previous time sample xt´1
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DPM and DDPM DDIM

DDIM: Sampling with Zero Variance
At time t, we get

x̂0 “
1

?
ᾱt

`

xt ´
?
1 ´ ᾱtεw pxt, tq

˘

We could then estimate xt´1 as

x̂t´1 “
?
ᾱt´1x̂0 `

a

1 ´ ᾱt´1ε̂t´1

“
?
ᾱt´1x̂0 `

a

1 ´ ᾱt´1εw pxt´1, t ´ 1q

We cannot compute εw pxt´1, t ´ 1q since we don’t have xt´1, but
‚ This describes approximate ordinary differential equation for continuous t
‚ With no randomness we can say εw pxt´1, t ´ 1q « εw pxt, tq
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DPM and DDPM DDIM

DDIM: Sampling with Zero Variance
At time t, we get

x̂0 “
1

?
ᾱt

`

xt ´
?
1 ´ ᾱtεw pxt, tq

˘

We could then estimate xt´1 as

x̂t´1 “
?
ᾱt´1x̂0 `

a

1 ´ ᾱt´1εw pxt, tq

U Attention
DDIM only modifies generation! Training is carried out identical to DDPM!
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DPM and DDPM DDIM

DDIM Sampling
Sample_DDIM(εw:Denoiser)

1: Sample latent xT „ N 0

2: for t “ T, . . . , 1 do3: Pass xt and t forward to find ε̂t “ εw pxt, tq4: Find an estimate of data sample as

x̂0 Ð
1

?
ᾱt

`

xt ´
?
1 ´ ᾱtε̂t

˘

5: Denoise as xt´1 Ð
?
ᾱt´1x̂0 `

?
1 ´ ᾱt´1ε̂t6: end for7: return Sample x0
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