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Probabilistic Diffusion Challenges of SDE-based Diffusion

Diffusion by SDE: Approximative Approach
With discrete time steps ¢t = 0, ..., T": an SDE of the form

Ty = w41 — Bpap_1dt + A/ yedieg

We can make sure that the variance is preserved by setting

Ydt + (1 — Bdt)? = 1

At the end of the day, we remain by

Ty = Jopri—1 + V1 — ey

where in this process we have
® « is close to one v~ 1 — oy is close to zero

* ¢, ~ N (0,1) is independent in each time step
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Probabilistic Diffusion Challenges of SDE-based Diffusion

Diffusion by SDE: Forward Diffusion
We can now build a forward diffusion by this SDE

B1 B2 Bt Bi+1 Br
aj‘o—>[]j1—)—){1}t_1—>[]jt—>—)

T

Key Observation
This SDE is fundamentally defined by (3,

This diffusion process takes us from data to noise

® We need a reverse diffusion to get back from noise to data
® This is described by the reverse SDE
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Challenges of SDE-based Diffusion
Diffusion by SDE: Reverse Diffusion

The reverse SDE formula specifies the reverse diffusion

B1 B2 Bt Bit1 Br
B1 B2 Bt Bit1 Br

It is important to keep in mind that
e The samples in reverse and forward trajectories are different
® They are though coming from the same distribution if
the reverse trajectory traverses exactly reverse SDE
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Challenges of SDE-based Diffusion
Diffusion by SDE: Reverse Diffusion

We can use the reverse SDE formula to find the reverse diffusion

B1 B2 Bt Bt+1 Br
To— X < "« Lp—] < Ty <— - <— 2T

The reverse diffusion is described by
T = (2= V) -1 + (1 —ay) s (2) + V1 — auey
where s; () is the score of distribution in time t, i.e.,
st (x) = Vylog Py ()

with P, (x) being the distribution of x;
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Our Initial Challenge: Score Matching
We need to estimate s; (x): in last part we saw that we can
® yse the noising process to estimate

&t

R

L, We sample several noise samples and compute these estimates
L, We then train the model sy, (x¢, ;) on these samples

® use a computational denoiser to approximate the expression

_ E {\/OTtJUt—ﬂfﬂt} — Tt

1—at

St (act)

L, We can train an AE to approximate the optimal denoiser
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Later Challenges

It turns out that this approach does not lead to a stable solution
@ The score estimate is not accurate

L, The model is trained by extremely noisy samples
L, The model has limited capacity as compared to Bayes optimal

@® The reverse trajectory is a first-order approximation
x(t+dt) ~ x (t) + dx (t)
but to be accurate we should write

P (4 dt) = 2 (1) + de (1) + Jd% (1) + -+

L, We cannot access d’x (t) for j > 1 as it is an SDE
L, Higher differentials can get very large due to Brownian motion
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Probabilistic Diffusion Learning Reverse Diffusion

Alternative Look: Diffusion as Markov Chain

As mentioned earlier: we could see forward diffusion as a Markov chain
x0_>m1_)”'_>xt—1_>mt_)”

We know mathematically that the reverse chain can exist
:L‘0<—:L‘1(—'--(—xt_1<—$t(—--

c— X7

Maybe we could directly learn it: in the forward process we have

T = Jouxi—1 + V1 — ey

So, we could say the forward Markov chain is

Q (l‘t|ﬂ7t—1) =N (\/OTtﬂ?t—L 1- Oét)
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Probabilistic Diffusion Learning Reverse Diffusion

Alternative Look: Reverse Diffusion

Lo — X € e Ty Ly —— I
Now the question is: what is the reverse Markov chain
P (z¢—1]21)

which takes from distribution P; to distribution P;_1?

Computational Solution

We consider a computational model P,
Py (z4-1|7t,t) = Fy (241, 1)

and try to find a way to train for mimicking the reverse trajectory
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A Deep Look at Forward Diffusion

a1 (&5 Ot Q41 ar
To—> X > > T > Ty > —> AT

What does happen in forward process?

1 = /aixg + V1 — a6
To = /aox1 + V1 — gy = Jaraoxg + v/asvV 1l — aje] + V1 — aneg
\/1—(;(10426_2

t t
T = H ;g + 41— H e = AT + V1 — e
i=1 i=1
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Direct Forward Links

We could also describe it with direct links from xq to

o1 a9 Qi ar
rg —— 1 — T2 — It — > X7
a
e
Q2

And, we note that

lim &; = lim
ttoo ttoo
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Direct Forward Links: Explicit Expression

a1 (&5 Ot Q41 ar
To—> X > > T > Ty > —> AT

What does happen in forward process?

Direct Forward Links

We can say that since

Ty = \/@tl'o + 1— 5[,5575

we have the direct forward conditional distributions as

Q (zlzo) = N (Vauzo, 1 — ay)
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Probabilistic Diffusion Learning Reverse Diffusion

Learning Reverse Diffusion: Reverse Processes

P‘N 1 }1v,2 P t [1N,T

xo(_’$1<_<_xt_1(L$t(_ «~— IT
In the reverse trajectory: we start with x ~ N (0, 1) and go as
xi—1 ~ Pu (4—1|x, 1)

What would be the marginal distribution in reverse trajectory at T' — 1?

We can use marginalization to write

Pr_y(zp_1) = fP(SCT—hﬂJT) dzr

= fPT (x7) Pw (x7—1|27, T) dap
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Probabilistic Diffusion Learning Reverse Diffusion

Learning Reverse Diffusion: Reverse Processes

P‘N 1 }1v,2 P t [1N,T

s w,
T = T e Ty ] - T e e DT

What if we go all the way back to 0?
R T

Py (z0) = fP (wour) | [ dae
t=1

T
_ jPT (27) P (27112, T) .. Par (w21, 1) | [
t=1
T

= fPT (SUT) 1_[ Py (17t71|33t7 t) day

t=1
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Probabilistic Diffusion Learning Reverse Diffusion

Learning Reverse Diffusion by Maximum Likelihood

]Pwl Pw2 Pwt Pw,T

xo(_$1<_<_xt_1(_’$t(_ <_$T
We want to see the same final distribution as out data
D, (POHPdata) ~0

So, we need to maximize the likelihood

log £ (w Z log Py (m())

T
—ZlongT xr) :v0|x1, >H (xy—1|z¢, t) dzyday

t=2
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Probabilistic Diffusion Learning Reverse Diffusion

Maximum Likelihood Learning

Maximum Likelihood on Reverse Trajectory

We learn reverse trajectory by maximizing the log-likelihood on our dataset

i
maxlogJPT T HPW (xp—1|xe, t) day
w

t=1

+ Don'’t we care about the samples in between?!
- Why should we?!
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Implicit MLE via ELBO Maximization
MLE Learning: Training Objective

Let us do some notations simplification: we define

T
Py (z9) = JPT T HPW (xy—1|z, t) day
t=1

In MLE, we want to maximize
log Pw (1‘0)

This is however computationally very hard!

+ Isn’t this the same thing we had in VAE?!
- Right!
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Implicit MLE via ELBO Maximization
MLE Training: Finding an ELBO

We first write the equation compactly as

T
Pu @) = [ Pr(an) [ | Pu (aecafort)do = [ Po (o) doar
t=1
Pw(‘;O:T)

Now we do importance sampling: say we know good distribution A (x1.7|x¢)

log Py (20) = 1ongw (z0:7) dr.r

lw (CCO:T)
ng A (a?1: \330) ($1.T\9€0) 1T

Py (zo1) }

= log Ex1;TNA {A (fL’l:T|x0)
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Finding ELBO
Next we use Jensen'’s inequality to write that

Pw Zo:
log P (20) = log Bz, ~a {ﬁ}

Py (xO:T)

>E; oA{log ————=
1:T A{OgA(xlszU(])

} — ELBO (w|z)

This describes an ELBO
Implicit MLE via ELBO Maximization

We can maximize likelihood by maximizing the ELBO

+ Shall we again think of A to be learned?!

- Not really! Actually we can explicitly compute a good A
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Implicit MLE via ELBO Maximization
Posterior Calculation
The best A (z1.7|x0) is given by posterior, i.e.,
A (z1.7|20) = Q (21:7|0)

If we try to open up this posterior in reverse direction we have

A (z1.7|20) = Q (21:7|0)

= Q (z7|r0) Q (TT-1|TT, T0) - . . Q (T4—1|TH:T, TO) - - -

= Q (z7|x0) H Q (x4—1|xe7, T0)
t
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Posterior Calculation
We are interested in such distributions
Q (zt—1|zer, w0) = Q (T4-1|28, 1417, T0)

Let’s do a bit of calculations

Q (ze—1|ze, Ty 1.7, 20) (Q (g 1.7|Te, o) = Q (Te—1, Tps1.7 |24, T0)
T-1

Q (wi1le, vy, xo) [ | Q (i lw) =

=t

Alternatively, we could say

Q($t+1:T|$t—1,UCt,UC0)Q(xt—1!$t7$0) Q(wt—l,ﬂctﬂzT!ﬂUt,wo)

T-1
H Q (ziy1]x;)
it

Q (xt—1|$t7$0) =
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Implicit MLE via ELBO Maximization
Posterior Calculation

So, the posterior can be simplified as

Q (z1.7]20) = Q (zrlz0) [ [ Q (11|21, 20)

t

+ How can we compute this?

- We can use the forward process

We do know Q) (z¢|z,—1) and Q (z|zo): so we could write

Q (vi—1|ze, o) = M

Q (¢, 70)
_ Q@—1,me|wo) P (10) _ Q(e-1|20)Q (3¢]21-1)
Q (wt|wo) P (20) Q (¢|o)
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Probabilistic Diffusion Implicit MLE via ELBO Maximization

Posterior Calculation: Gaussian Posterior

Recall that

Q (z|zi—1) =N (Vouwe—1,1 — o)
Q (xt]zo) = N (Vauwo, 1 — o)

Thus, it is easy to show that

Q (ze—1lze, 20) =N (ne (w0, 24) , p7)
for the mean and variance

Vai(—a) | Jai(l-a)
xo +

ne (o, 2¢) = 1— oy 1— oy Tt
o (T—ay—1)(1—ay)
Pt = 1—a
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Implicit MLE via ELBO Maximization
ELBO Calculation
The ELBO is hence given by

Pw (xO:T) }
ELBO ( =Ep<{log ———=L
(wzo) = Ex { % X (@1.rl70)

{k,g (o) [Ty Po (1-]0) }

HCT!wo Ht o Q (z—1|xy, 20)

CCt 1\1‘1&
Py (zolx
l‘T\fUO HQ (@t—1]xe, 20) w (ol 1)]}

&“T!mo -’L’t 1|7, o)

=E

O

= —Dxr, (Qoot|N?) — Z D1, (Qi—1,0[|Pw,t) + Eg {log Py (xo|x1)}
b
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Implicit MLE via ELBO Maximization
ELBO Maximization: Sample Loss

Our ultimate goal is to
max ELBO (w]zg)
w

which by dropping terms that do not depend on w, is done by

T

min DDk (Qr- 110 Pwt) — Eq {log Py (wolz1)}
t=2

Thus, we have the following sample loss

T
R (w|zo) = Z D1, (Qi—1t0
P

| Pw.t) — Eq {log Pw (o|x1)}
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Probabilistic Diffusion Implicit MLE via ELBO Maximization

ELBO Maximization: Gaussian Reverse Process

We typically consider a Gaussian reverse process

Py (l‘t—lll't) =N (/«‘w (:Bta t) ’0t2)

This results in the risk

T

R (wlwo) ¢ )l (20, t) = e (20, 20) 1> + [l pw (21,1) — o
t=2

This looks like a reconstruction!

‘ This motivated DPM and DDPM framework ‘
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