Deep Generative Models

Chapter 6: Generation by Diffusion Process

Ali Bereyhi

ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Summer 2025

Diffusion by SDE: Approximative Approach

With discrete time steps t = 0, ..., T: an SDE of the form

$$x_t = x_{t-1} - \beta_t x_{t-1} dt + \sqrt{\gamma_t dt} \varepsilon_t$$

We can make sure that the variance is preserved by setting

$$\gamma_t \mathrm{d}t + (1 - \beta_t \mathrm{d}t)^2 = 1$$

At the end of the day, we remain by

$$x_t = \sqrt{\alpha_t} x_{t-1} + \sqrt{1 - \alpha_t} \varepsilon_t$$

where in this process we have

- α_t is close to one $\leadsto 1 \alpha_t$ is close to zero
- $\varepsilon_t \sim \mathcal{N}\left(0,1\right)$ is independent in each time step

Diffusion by SDE: Forward Diffusion

We can now build a forward diffusion by this SDE

$$x_0 \xrightarrow{\beta_1} x_1 \xrightarrow{\beta_2} \cdots \longrightarrow x_{t-1} \xrightarrow{\beta_t} x_t \xrightarrow{\beta_{t+1}} \cdots \xrightarrow{\beta_T} x_T$$

Key Observation

This SDE is fundamentally defined by β_t

This diffusion process takes us from data to noise

- We need a reverse diffusion to get back from noise to data
- This is described by the reverse SDE

Diffusion by SDE: Reverse Diffusion

The reverse SDE formula specifies the reverse diffusion

$$x_0 \xrightarrow{\beta_1} x_1 \xrightarrow{\beta_2} \cdots \longrightarrow x_{t-1} \xrightarrow{\beta_t} x_t \xrightarrow{\beta_{t+1}} \cdots \xrightarrow{\beta_T} x_T$$

$$x_0 \xleftarrow{\beta_1} x_1 \xleftarrow{\beta_2} \cdots \longleftarrow x_{t-1} \xleftarrow{\beta_t} x_t \xleftarrow{\beta_{t+1}} \cdots \xleftarrow{\beta_T} x_T$$

It is important to keep in mind that

- The samples in reverse and forward trajectories are different
- They are though coming from the same distribution if the reverse trajectory traverses exactly reverse SDE

Diffusion by SDE: Reverse Diffusion

We can use the reverse SDE formula to find the reverse diffusion

$$x_0 \xleftarrow{\beta_1} x_1 \xleftarrow{\beta_2} \cdots \longleftarrow x_{t-1} \xleftarrow{\beta_t} x_t \xleftarrow{\beta_{t+1}} \cdots \xleftarrow{\beta_T} x_T$$

The reverse diffusion is described by

$$x_{t-1} = \left(2 - \sqrt{\alpha_t}\right) x_{t-1} + \left(1 - \alpha_t\right) \frac{s_t\left(x_t\right)}{s_t\left(x_t\right)} + \sqrt{1 - \alpha_t} \varepsilon_t$$

where $s_t(x_t)$ is the score of distribution in time t, i.e.,

$$s_t\left(x_t\right) = \nabla_x \log P_t\left(x\right)$$

with $P_t(x)$ being the distribution of x_t

Our Initial Challenge: Score Matching

We need to estimate $s_t(x_t)$: in last part we saw that we can

use the noising process to estimate

$$\hat{s}_t\left(x_t\right) = -\frac{\varepsilon_t}{\sqrt{1 - \alpha_t}}$$

- $\,\,\,\,\,\,\,\,\,\,$ We then train the model $s_{\mathbf{w}}\left(x_{t},\alpha_{t}\right)$ on these samples
- use a computational denoiser to approximate the expression

$$s_t(x_t) = \frac{\mathbb{E}\left\{\sqrt{\alpha_t}x_{t-1}|x_t\right\} - x_t}{1 - \alpha_t}$$

Later Challenges

It turns out that this approach does not lead to a stable solution

- 1 The score estimate is not accurate
- The reverse trajectory is a first-order approximation

$$x(t + dt) \approx x(t) + dx(t)$$

but to be accurate we should write

$$x(t + dt) = x(t) + dx(t) + \frac{1}{2}d^{2}x(t) + \cdots$$

- \rightarrow We cannot access $d^{j}x(t)$ for j > 1 as it is an SDE
- ☐ Higher differentials can get very large due to Brownian motion

Alternative Look: Diffusion as Markov Chain

As mentioned earlier: we could see forward diffusion as a Markov chain

$$x_0 \longrightarrow x_1 \longrightarrow \cdots \longrightarrow x_{t-1} \longrightarrow x_t \longrightarrow \cdots \longrightarrow x_T$$

We know mathematically that the reverse chain can exist

$$x_0 \longleftarrow x_1 \longleftarrow \cdots \longleftarrow x_{t-1} \longleftarrow x_t \longleftarrow \cdots \longleftarrow x_T$$

Maybe we could directly learn it: in the forward process we have

$$x_t = \sqrt{\alpha_t} x_{t-1} + \sqrt{1 - \alpha_t} \varepsilon_t$$

So, we could say the forward Markov chain is

$$Q\left(x_{t}|x_{t-1}\right) \equiv \mathcal{N}\left(\sqrt{\alpha_{t}}x_{t-1}, 1 - \alpha_{t}\right)$$

Alternative Look: Reverse Diffusion

$$x_0 \longleftarrow x_1 \longleftarrow \cdots \longleftarrow x_{t-1} \longleftarrow x_t \longleftarrow \cdots \longleftarrow x_T$$

Now the question is: what is the reverse Markov chain

$$P\left(x_{t-1}|x_t\right)$$

which takes from distribution P_t to distribution P_{t-1} ?

Computational Solution

We consider a computational model $P_{\mathbf{w}}$

$$P_{\mathbf{w}}\left(x_{t-1}|x_{t},t\right) = F_{\mathbf{w}}\left(x_{t-1},t\right)$$

and try to find a way to train for mimicking the reverse trajectory

A Deep Look at Forward Diffusion

$$x_0 \xrightarrow{\alpha_1} x_1 \xrightarrow{\alpha_2} \cdots \longrightarrow x_{t-1} \xrightarrow{\alpha_t} x_t \xrightarrow{\alpha_{t+1}} \cdots \xrightarrow{\alpha_T} x_T$$

What does happen in forward process?

$$x_{1} = \sqrt{\alpha_{1}}x_{0} + \sqrt{1 - \alpha_{1}}\varepsilon_{1}$$

$$x_{2} = \sqrt{\alpha_{2}}x_{1} + \sqrt{1 - \alpha_{2}}\varepsilon_{2} = \sqrt{\alpha_{1}\alpha_{2}}x_{0} + \underbrace{\sqrt{\alpha_{2}}\sqrt{1 - \alpha_{1}}\varepsilon_{1} + \sqrt{1 - \alpha_{2}}\varepsilon_{2}}_{\sqrt{1 - \alpha_{1}}\alpha_{2}\bar{\varepsilon}_{2}}$$

$$x_t = \sqrt{\prod_{i=1}^t \alpha_i} x_0 + \sqrt{1 - \prod_{i=1}^t \alpha_i} \bar{\varepsilon}_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \bar{\varepsilon}_t$$

Direct Forward Links

We could also describe it with direct links from x_0 to x_t

And, we note that

$$\lim_{t\uparrow\infty}\bar{\alpha}_t=\lim_{t\uparrow\infty}\sqrt{\prod_{i=1}^t\alpha_i}=0$$

Direct Forward Links: Explicit Expression

$$x_0 \xrightarrow{\alpha_1} x_1 \xrightarrow{\alpha_2} \cdots \longrightarrow x_{t-1} \xrightarrow{\alpha_t} x_t \xrightarrow{\alpha_{t+1}} \cdots \xrightarrow{\alpha_T} x_T$$

What does happen in forward process?

Direct Forward Links

We can say that since

$$x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \bar{\varepsilon}_t$$

we have the direct forward conditional distributions as

$$Q\left(x_{t}|x_{0}\right) \equiv \mathcal{N}\left(\sqrt{\bar{\alpha}_{t}}x_{0}, 1 - \bar{\alpha}_{t}\right)$$

Learning Reverse Diffusion: Reverse Processes

$$x_0 \stackrel{P_{\mathbf{w},1}}{\longleftarrow} x_1 \stackrel{P_{\mathbf{w},2}}{\longleftarrow} \cdots \longleftarrow x_{t-1} \stackrel{P_{\mathbf{w},t}}{\longleftarrow} x_t \longleftarrow \cdots \stackrel{P_{\mathbf{w},T}}{\longleftarrow} x_T$$

In the reverse trajectory: we start with $x_T \sim \mathcal{N}\left(0,1\right)$ and go as

$$x_{t-1} \sim P_{\mathbf{w}}\left(x_{t-1}|x_t, t\right)$$

What would be the marginal distribution in reverse trajectory at T-1?

We can use marginalization to write

$$\hat{P}_{T-1}(x_{T-1}) = \int P(x_{T-1}, x_T) dx_T$$

$$= \int P_T(x_T) P_{\mathbf{w}}(x_{T-1}|x_T, T) dx_T$$

Learning Reverse Diffusion: Reverse Processes

$$x_0 \stackrel{P_{\mathbf{w},1}}{\longleftarrow} x_1 \stackrel{P_{\mathbf{w},2}}{\longleftarrow} \cdots \longleftarrow x_{t-1} \stackrel{P_{\mathbf{w},t}}{\longleftarrow} x_t \longleftarrow \cdots \stackrel{P_{\mathbf{w},T}}{\longleftarrow} x_T$$

What if we go all the way back to 0?

$$\hat{P}_{0}(x_{0}) = \int P(x_{0:T}) \prod_{t=1}^{T} dx_{t}$$

$$= \int P_{T}(x_{T}) P_{\mathbf{w}}(x_{T-1}|x_{T}, T) \dots P_{\mathbf{w}}(x_{0}|x_{1}, 1) \prod_{t=1}^{T} dx_{t}$$

$$= \int P_{T}(x_{T}) \prod_{t=1}^{T} P_{\mathbf{w}}(x_{t-1}|x_{t}, t) dx_{t}$$

Learning Reverse Diffusion by Maximum Likelihood

$$x_0^j \overset{P_{\mathbf{w},1}}{\leftarrow} x_1 \overset{P_{\mathbf{w},2}}{\leftarrow} \cdots \leftarrow x_{t-1} \overset{P_{\mathbf{w},t}}{\leftarrow} x_t \leftarrow \cdots \overset{P_{\mathbf{w},T}}{\leftarrow} x_T$$

We want to see the same final distribution as out data

$$D_{\mathrm{KL}}\left(\hat{P}_{0} \| P_{\mathrm{data}}\right) \approx 0$$

So, we need to maximize the likelihood

$$\log \mathcal{L}(\mathbf{w}) = \sum_{j} \log \hat{P}_{0} \left(x_{0}^{j}\right)$$

$$= \sum_{j} \log \int P_{T}(x_{T}) P_{\mathbf{w}} \left(x_{0}^{j} | x_{1}, 1\right) \prod_{t=2}^{T} P_{\mathbf{w}} \left(x_{t-1} | x_{t}, t\right) dx_{t} dx_{1}$$

Maximum Likelihood Learning

Maximum Likelihood on Reverse Trajectory

We learn reverse trajectory by maximizing the log-likelihood on our dataset

$$\max_{\mathbf{w}} \log \int P_T(x_T) \prod_{t=1}^{T} P_{\mathbf{w}}(x_{t-1}|x_t, t) dx_t$$

- + Don't we care about the samples in between?!
- Why should we?!

MLE Learning: Training Objective

Let us do some notations simplification: we define

$$P_{\mathbf{w}}(x_0) = \int P_T(x_T) \prod_{t=1}^T P_{\mathbf{w}}(x_{t-1}|x_t, t) dx_t$$

In MLE, we want to maximize

$$\log P_{\mathbf{w}}\left(x_0\right)$$

This is however computationally very hard!

- + Isn't this the same thing we had in VAE?!
- Right!

MLE Training: Finding an ELBO

We first write the equation compactly as

$$P_{\mathbf{w}}(x_{0}) = \int \underbrace{P_{T}(x_{T}) \prod_{t=1}^{T} P_{\mathbf{w}}(x_{t-1}|x_{t}, t)}_{P_{\mathbf{w}}(x_{0:T})} dx_{t} = \int P_{\mathbf{w}}(x_{0:T}) dx_{1:T}$$

Now we do importance sampling: say we know good distribution $\Lambda\left(x_{1:T}|x_0\right)$

$$\begin{split} \log P_{\mathbf{w}}\left(x_{0}\right) &= \log \int P_{\mathbf{w}}\left(x_{0:T}\right) \mathrm{d}x_{1:T} \\ &= \log \int \frac{P_{\mathbf{w}}\left(x_{0:T}\right)}{\Lambda\left(x_{1:T}|x_{0}\right)} \Lambda\left(x_{1:T}|x_{0}\right) \mathrm{d}x_{1:T} \\ &= \log \mathbb{E}_{x_{1:T} \sim \Lambda} \left\{ \frac{P_{\mathbf{w}}\left(x_{0:T}\right)}{\Lambda\left(x_{1:T}|x_{0}\right)} \right\} \end{split}$$

Finding ELBO

Next we use Jensen's inequality to write that

$$\log P_{\mathbf{w}}(x_0) = \log \mathbb{E}_{x_{1:T} \sim \Lambda} \left\{ \frac{P_{\mathbf{w}}(x_{0:T})}{\Lambda(x_{1:T}|x_0)} \right\}$$

$$\geqslant \mathbb{E}_{x_{1:T} \sim \Lambda} \left\{ \log \frac{P_{\mathbf{w}}(x_{0:T})}{\Lambda(x_{1:T}|x_0)} \right\} = \text{ELBO}(\mathbf{w}|x_0)$$

This describes an ELBO

Implicit MLE via ELBO Maximization

We can maximize likelihood by maximizing the ELBO

- + Shall we again think of Λ to be learned?!
- Not really! Actually we can explicitly compute a good Λ

Posterior Calculation

The best $\Lambda\left(x_{1:T}|x_0\right)$ is given by posterior, i.e.,

$$\Lambda\left(x_{1:T}|x_0\right) = Q\left(x_{1:T}|x_0\right)$$

If we try to open up this posterior in reverse direction we have

$$\Lambda(x_{1:T}|x_0) = Q(x_{1:T}|x_0)
= Q(x_T|x_0) Q(x_{T-1}|x_T, x_0) \dots Q(x_{t-1}|x_{t:T}, x_0) \dots
= Q(x_T|x_0) \prod_t Q(x_{t-1}|x_{t:T}, x_0)$$

Posterior Calculation

We are interested in such distributions

$$Q(x_{t-1}|x_{t:T}, x_0) = Q(x_{t-1}|x_t, x_{t+1:T}, x_0)$$

Let's do a bit of calculations

$$Q(x_{t-1}|x_t, x_{t+1:T}, x_0) Q(x_{t+1:T}|x_t, x_0) = Q(x_{t-1}, x_{t+1:T}|x_t, x_0)$$

$$Q(x_{t-1}|x_t, x_{t+1:T}, x_0) \prod_{i=t}^{T-1} Q(x_{i+1}|x_i) =$$

Alternatively, we could say

$$Q\left(\mathbf{x_{t+1:T}}|x_{t-1}, x_{t}, x_{0}\right) Q\left(x_{t-1}|x_{t}, x_{0}\right) = Q\left(x_{t-1}, \mathbf{x_{t+1:T}}|x_{t}, x_{0}\right)$$

$$\prod_{i=t}^{T-1} Q\left(\mathbf{x_{i+1}}|x_{i}\right) \boxed{Q\left(x_{t-1}|x_{t}, x_{0}\right)} =$$

Posterior Calculation

So, the posterior can be simplified as

$$Q(x_{1:T}|x_0) = Q(x_T|x_0) \prod_t Q(x_{t-1}|x_t, x_0)$$

- + How can we compute this?
- We can use the forward process

We do know $Q(x_t|x_{t-1})$ and $Q(x_t|x_0)$: so we could write

$$Q(x_{t-1}|x_t, x_0) = \frac{Q(x_{t-1}, x_t, x_0)}{Q(x_t, x_0)}$$

$$= \frac{Q(x_{t-1}, x_t|x_0) P(x_0)}{Q(x_t|x_0) P(x_0)} = \frac{Q(x_{t-1}|x_0) Q(x_t|x_{t-1})}{Q(x_t|x_0)}$$

Posterior Calculation: Gaussian Posterior

Recall that

$$Q(x_t|x_{t-1}) \equiv \mathcal{N}(\sqrt{\alpha_t}x_{t-1}, 1 - \alpha_t)$$
$$Q(x_t|x_0) \equiv \mathcal{N}(\sqrt{\bar{\alpha}_t}x_0, 1 - \bar{\alpha}_t)$$

Thus, it is easy to show that

$$Q\left(x_{t-1}|x_t, x_0\right) \equiv \mathcal{N}\left(\eta_t\left(x_0, x_t\right), \rho_t^2\right)$$

for the mean and variance

$$\eta_t (x_0, x_t) = \frac{\sqrt{\bar{\alpha}_{t-1}} (1 - \alpha_t)}{1 - \bar{\alpha}_t} x_0 + \frac{\sqrt{\alpha_{t-1}} (1 - \bar{\alpha}_t)}{1 - \bar{\alpha}_t} x_t$$
$$\rho_t^2 = \frac{(1 - \bar{\alpha}_{t-1}) (1 - \alpha_t)}{1 - \bar{\alpha}_t}$$

ELBO Calculation

The ELBO is hence given by

ELBO
$$(\mathbf{w}|x_{0}) = \mathbb{E}_{\Lambda} \left\{ \log \frac{P_{\mathbf{w}}(x_{0:T})}{\Lambda(x_{1:T}|x_{0})} \right\}$$

$$= \mathbb{E}_{Q} \left\{ \log \frac{P(x_{T}) \prod_{t=1}^{T} P_{\mathbf{w}}(x_{t-1}|x_{t})}{Q(x_{T}|x_{0}) \prod_{t=2}^{T} Q(x_{t-1}|x_{t},x_{0})} \right\}$$

$$= \mathbb{E}_{Q} \left\{ \log \left[\frac{P(x_{T})}{Q(x_{T}|x_{0})} \prod_{t=2}^{T} \frac{P_{\mathbf{w}}(x_{t-1}|x_{t})}{Q(x_{t-1}|x_{t},x_{0})} P_{\mathbf{w}}(x_{0}|x_{1}) \right] \right\}$$

$$= \mathbb{E}_{Q} \left\{ -\log \frac{Q(x_{T}|x_{0})}{P(x_{T})} - \sum_{t=2}^{T} \log \frac{Q(x_{t-1}|x_{t},x_{0})}{P_{\mathbf{w}}(x_{t-1}|x_{t})} + \log P_{\mathbf{w}}(x_{0}|x_{1}) \right\}$$

$$= -D_{KL} \left(Q_{0 \to t} \| \mathcal{N}^{0} \right) - \sum_{t=2}^{T} D_{KL} \left(Q_{t-1 \leftarrow t,0} \| P_{\mathbf{w},t} \right) + \mathbb{E}_{Q} \left\{ \log P_{\mathbf{w}}(x_{0}|x_{1}) \right\}$$

ELBO Maximization: Sample Loss

Our ultimate goal is to

$$\max_{\mathbf{w}} \text{ELBO}\left(\mathbf{w}|x_0\right)$$

which by dropping terms that do not depend on w, is done by

$$\min_{\mathbf{w}} \sum_{t=2}^{T} D_{\mathrm{KL}} \left(Q_{t-1 \leftarrow t,0} \| P_{\mathbf{w},t} \right) - \mathbb{E}_{Q} \left\{ \log P_{\mathbf{w}} \left(x_{0} | x_{1} \right) \right\}$$

Thus, we have the following sample loss

$$R\left(\mathbf{w}|x_{0}\right) = \sum_{t=2}^{T} D_{\mathrm{KL}}\left(Q_{t-1\leftarrow t,0} \| P_{\mathbf{w},t}\right) - \mathbb{E}_{Q}\left\{\log \frac{P_{\mathbf{w}}\left(x_{0}|x_{1}\right)\right\}$$

ELBO Maximization: Gaussian Reverse Process

We typically consider a Gaussian reverse process

$$P_{\mathbf{w}}\left(x_{t-1}|x_{t}\right) \equiv \mathcal{N}\left(\mu_{\mathbf{w}}\left(x_{t},t\right),\sigma_{t}^{2}\right)$$

This results in the risk

$$R(\mathbf{w}|x_0) \propto \sum_{t=2}^{T} \|\mu_{\mathbf{w}}(x_t, t) - \eta_t(x_0, x_t)\|^2 + \|\mu_{\mathbf{w}}(x_1, 1) - x_0\|^2$$

This looks like a reconstruction!

This motivated DPM and DDPM framework