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Recap: Estimating from Noisy Observation

Before we start with this section: let us start with a simple problem

Say we have data x and we see a noisy version of it as

zZ=x+ o¢

for noise process ¢ ~ N

We intend to find the optimal function that

takes z and denoises it to an estimate of x
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Bayesian Optimal Estimator

Let’s think scalar

Z (z) = argmin E {(u —z)? |z}

u

To find the optimizer, we can write

d 2
qE a1z =0
This concludes

E{(u—2)|z} =0wwu" =E{z|z}

Bayes Optimal Denoiser

The optimal estimate in the Bayesian sense is

z (z) = E{z|z}
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Diffusion Score Matching and Denoising Bayesian Denoising

Bayesian Denoiser

+ Can we estimate the Bayes optimal denoiser by sampling?
- Not really!

To estimate Bayes optimal denoiser by sampling: we need to
® sample many data samples x whose noisy version is

® use these samples to compute the estimator as

Z(z) = E{z|z}

Complexity of Bayes Optimal Denoiser

To estimate the Bayes optimal denoiser, we need to collect exponentially large
data samples, such that we have enough samples for each =!
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Diffusion Score Matching and Denoising Bayesian Denoising

Computational Denoising: Decoding

We can though train a computational denoiser

= |

We train this model on a dataset using risk

R(0) = Ex {[l2 — ]}
= Ex {[lfo (z + o) — «[|*}

This is equivalent to autoencoding with noisy encoder and decoder fy
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Diffusion Process: General SDE

General Diffusion

A generic diffusion process is given by a stochastic differential equation (SDE)
dz (t) = f (& (), ) dt + g (£) dB (¢)

which describes time evolution of location i (t) for a particle impacted by the
Brownian motion process

+ Why we write Z(t)?!
- To indicate that we are doing forward in time
Note that the Langevin equation was a special case of this SDE

A7 (t) = Vi log P (Z (1)) dt + V2dB (1)
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Diffusion Process: Forward Process

We use this SDE as follows: if we shift At at time t, we approximately have

AZ(t) ~ f(Z(t),t) At + g (t) AB (1)

Now, say we start at to = 0 and move At step by step then
70D ~ 729 4 AZ (1))
~ i 4 f (a?(i), ti> At + g (t;)[B(t; + At) — B(t;)]
) + f ( ) At + g VAL Ate;
using the following notions and simplifications

o wedefine f (7)) = f (7, t;) and gV = g (t;)
* we use the fact that B (1; + At) — B (t;) ~ N (0, At)
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Diffusion Process: Forward Process

+ What is happening in this equation?
- We are simulating the diffusion process

This is the forward process
FHD = g0 4 fC ( )At + gDV Ate;
and we can look at it as a Markov chain
7O~ Py(x) » 2V ~ P (z) > 7P ~ Py(z) > -7 ~ Py ()
where P; (z) is roughly describing the distribution of location at time

t = 1At
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Diffusion Score Matching and Denoising Reverse Diffusion

Reverse Diffusion Process: Reverse SDE

B. Anderson in 1982 showed that we can reverse this process in time

Reverse Diffusion

The reverse diffusion process is given by the following SDE

4 (s) = [ £ (7 (), 8) — 9 ()7 Va log P (3 (s))| ds + g (s) dB (5)

where s = T' — t is the reverse time started as T’
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Reverse Dynamics

+ What is really reverse in time?

- We can move statistically backward in time

We can again approximate this equation by a reverse Markov chain
. . (i . A\ 2 . .
F0HD = 50 ¢ [ 77 (29) - (59) Valog Pros (z;@)] At + 5DV Ate;

Now, we start by a sample (9 ~ P; (x) and proceed as
Hj(o) ~ P[ (a;) — Z@(l) ~ P]_l (:L’) and ?L'(Q) ~ P[_2 (x) — E(I) ~ P() (SC)
where P; (z) is again describing the distribution of location at time

t = 1At
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iz Sl
Diffusing Back and Forth
Let's do some simplification: we compactly show the forward diffusion as
#i+1) < g, <—»(z+1 |7 (i ))

and the reverse diffusion as

F0) L9, (;mn, (i ))

Equivalency in Opposite Direction

If we know a forward diffusion Qz that takes us
from 20 ~ PO (z)to 2D ~ PO ()
Then, we can build the reverse diffusion @z which can take us

back from z(1) ~ p() (x) to 20 o p(0) (z)
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Noising Diffusion: Data to Latent

+ Why should this property be helpful?!
- We know how to get from a data sample to noise

Consider the following forward diffusion process

| , 0
f(erl) _ —»(z IB(Z At +\/ ﬁ(z) (1 o 6 2At> \/E&‘i

f (f(t),t) S -~
g(t)

If we define o) =1 — B(i)At; then, it simplifies to

Z+D = (@O z0) 4 ma;

and we use the notation a9 = \/1 — a0 for simplicity
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Noising Diffusion: Data to Latent

The following Markov chain
gD = @70 4 5,

describes an Ornstein-Uhlenbeck (OU) process: starting with a centered and
normalized sample of any distribution

¢ the OU process computes always a unit-variance sample for next time
e as it proceeds for large I, we get

#) ~ N (0,1)

Nosing Process

We know a diffusion process that turns a data sample 70 into Gaussian latent
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Diffusion Score Matching and Denoising Reverse Diffusion

Denoising Diffusion: Latent to Data

Since we know the forward diffusion: we can

build the reverse diffusion to get back from latent to data

This was the forward process

A A o (@)
gD = 70 _ gz AL 4 \/25(2') (1 _b 2At)\/A7ta

We need to change the drift and diffusion coefficient to

?(i) (E(i)> = —pU=9z0) — 28U~ <1 - —B(I_i)At> Vi log Pr—; (E(i))

2
o | (1)
5 (20)) = \/2/3(1_@ (1 _B ; At)
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Denoising Diffusion: Latent to Data

We can then denoise the latent into a data sample by

@ Sample a Gaussian ©'*) ~ N (0,1)
@ Proceed in reverse time as

F+) = 50 4 30 ( )AtJr“(Z <”)xﬁaZ

© Take z!) ~ P (z) as a data sample

+ Do we have everything that we need?!
- Let’s break it down
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Required Scores for Denoising Diffusion

We know the diffusion process
PO~ Prata > 7V ~ P 572 ~ Py oo 7D < N(0,1)
Just set a data sample at #°) ~ Py, and diffuse as

0D = o@Dz 4 g0,

We can also sample latent 7(*) ~ A (0, 1),but to diffuse reversely as
7(0) o N(0,1) - (1) o Py — - — =1 L P — 70 Piata
we need to know the following score functions
V.1log N () ,V,log Pr_y (z),...,V,log Py (z)
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Score of Noisy Output

+ Back to square one! We need score function of the data!
- No! We need all scores but data score!

We need to learn these scores
Vaelog Pr_i(x),...,Vzlog P (x)
@ V. log P, (x) is the score of

M=o 2 +a0g

data sample

® V. log P, (x)is the score of
72 = oWz 4 50g = oM <a<o>x 4 @<o>€0> +aWe

= aWaOg 4 (a(l)d(o)so + @(1)€1>

Deep Generative Models Chapter 6: Diffusion Models © A. Bereyhi 2025 17/30



Score of Noisy Output

In fact we need the score function of a noisy version of x, i.e.,
z=x+ o¢c

for some o whene ~ N (0, 1)

+ How is it so different then?!
- It turns out to be very different! Let’s take a look

Problem: Score of Noisy Sample

let x ~ Pand z = x + o¢; find the score
s(z) =V,logP(2)

with P (z) being the marginal distribution of z
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Diffusion Score Matching and Denoising Diffusion Score Matching

Score of Noisy Output
Let’s think about scalar x and z

L, everything extends the same to multi-dimensional case
We can write

P(z) = fP (z|x) P (x)dx

We know that P (z|z) = N (x,0?): so, we could write

P(z) = X/#Jexp{—(zzﬂ)}]?(x) dz
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Score of Noisy Output

For score function we have

V.log P (z) =
Considering the expression

P(z) = erxp { Z%‘)}P (x)dx

we can easily write

2
z—x)
V.P(z) = WJ exp {_W}P (z)dz

_ f(‘”(;z)p(zmp(x) dz
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Score of Noisy Output

So, we can write

V. log P (2) = ﬁﬂx;z)mgmp(@«) dz
1 (x — 2) L e
o] e
= L (17__ Z) Xr\z z2)ax
- 55| S lap ()
= f($0_22)P($Z)d93 — Ez~P|z {(wa_QZ)}

This concludes that
s(z) = %Ex {z — 2|z} = 2 Ex{z|z}—2 | = %

()
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Score of Noisy Output
We could also say that

Z—X

Z =02+ 0w e =

So, we could also write
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Score of Noisy Output

Problem: Score of Noisy Sample

let x ~ Pand z = x + o= v find the score s (z)

The score at point z is given by
e either the conditional noise average

E{clz}
s(z) = B
e or the Bayes optimal denoiser as
z(z)— =2
s(z) = 2
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Diffusion Score Matching and Denoising Diffusion Score Matching

Computing Score by Noise Averaging
Say we need to find score s (=) while we have access to a bunch of noise
samples <7 with the following property
L, All z — oe end up with a data sample
We can then estimate the score as

ooy — Bl | ECE)

g o

+ But how could we a bunch of such noise samples?!

- We rely on the single sample that we have ©

In practice we estimate as
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Diffusion Score Matching and Denoising Diffusion Score Matching

Computing Score by Denoising

Say we need to find score s (=) while we have access to data sample x: we take
x and sample ¢ ~ NV; then, we noise the data sample as

Z =X+ o€

We can then use the denoiser & (=) to compute the score as

S(Z)zi“(z)—z

o2

+ But how could we get the denoiser & (2)?!
- We can learn it!
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Computational Approach: Decoding

We saw before that we can denoise by a computational model

€T >{’i’J > V\Oisy >L\i:\J > 7
™

We just need to train this model by risk

R(w) = E, {|l& — 2|}
=E; {”fw (v +0¢e) — "17”2}
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Training Diffusion Score Model: Direct Score Model
We consider a score model sy, : R% x R — R which
takes a noisy sample = and noise standard deviation o~~~ returns s (z)

To train this model we make data batches as follows

Forj=1,....n
@ Sample a data sample =7 and choose a value for o/
@ Noise data sample as 7 = 27 + o7& for some e/ ~ N
©® Set the data point and its label (score) to

input to Sy = (Zj, Uj) output Of sw = —5j/0j

We could train this network by minimizing the empirical loss
R(w) = E {||sw (+/,07) + <7 /7 ||}
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Training Diffusion Score Model: Denoising Model

We consider a denosing model f5 : R? x R — R% which
takes a noisy sample = and noise standard deviation o~~~ denoises to & (z)

To train this model we make data batches as follows

Forj=1,...,n
@ Sample a data sample 7 and choose a value for o/
® Noise data sample as 27 = 27 + o7&/ for some e/ ~ N
@ Set the data point and its label (recovery) to

input to fyw = (zj o7 ) output of fy =’

We can use this denoiser to estimate the score as

fw(z,0) — =

Sw(z,0) = =
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Diffusion Score Matching and Denoising Computational DSM

Sampling Diffusion Score Model: Forward Diffusion

We define a forward diffusion as

20D = o070 4 500,

+ How should we choose () ?!
- Well! For sure &) is small, since we defined o) = 1 — B()A¢

For this process we can say

#0004 4 5O, — 90) 4 4 5(0).00)

22 _ 04 4 (au)@(%o n @<1>51) _ oWy 4 o)

with all € ~ N0
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Sampling Diffusion Score Model: Reverse Diffusion

From the forward diffusion: we can build the reverse diffusion as
(i+1) [f 70 _ g2, (R,(i)>] +gWe,

Noting that 7\ = #(I=9) and

20) _ gli=1),, 1 5li=1) (i-1)

We re-write 7" = z + 6=De(i=1) and use Sw to estimate the score as

s (?M) ~ Sw (3;(1')’ ;,(z'—n)

We keep going backward till we get to

:C_U(I) ~ Py = Pjata
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