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Diffusion Score Matching and Denoising Bayesian Denoising

Recap: Estimating from Noisy Observation
Before we start with this section: let us start with a simple problem

Say we have data x and we see a noisy version of it as

z “ x ` σε

for noise process ε „ N 0

We intend to find the optimal function that

takes z and denoises it to an estimate of x
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Diffusion Score Matching and Denoising Bayesian Denoising

Bayesian Optimal Estimator
Let’s think scalar

x̂ pzq “ argmin
u

E
!

pu ´ xq
2

|z
)

To find the optimizer, we can write
d

du
E
!

pu ´ xq
2

|z
)

“ 0

This concludes

E tpu ´ xq |zu “ 0 ù u‹ “ E tx|zu

Bayes Optimal Denoiser
The optimal estimate in the Bayesian sense is

x̂ pzq “ E tx|zu
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Diffusion Score Matching and Denoising Bayesian Denoising

Bayesian Denoiser
+ Can we estimate the Bayes optimal denoiser by sampling?
– Not really!

To estimate Bayes optimal denoiser by sampling: we need to
‚ sample many data samples x whose noisy version is

exactly z
‚ use these samples to compute the estimator as

x̂ pzq “ E tx|zu

Complexity of Bayes Optimal Denoiser
To estimate the Bayes optimal denoiser, we need to collect exponentially large
data samples, such that we have enough samples for each z!
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Diffusion Score Matching and Denoising Bayesian Denoising

Computational Denoising: Decoding
We can though train a computational denoiser

x

`
σ
ε noisy f θ x̂

We train this model on a dataset using risk

R pθq “ Ex

␣

∥x̂ ´ x∥2
(

“ Ex

␣

∥fθ px ` σεq ´ x∥2
(

This is equivalent to autoencoding with noisy encoder and decoder fθ
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Diffusion Score Matching and Denoising Reverse Diffusion

Diffusion Process: General SDE
General Diffusion
A generic diffusion process is given by a stochastic differential equation (SDE)

dx⃗ ptq “ f px⃗ ptq, tq dt ` g ptqdB ptq

which describes time evolution of location x⃗ ptq for a particle impacted by the
Brownian motion process

+ Why we write x⃗ptq?!
– To indicate that we are doing forward in time

Note that the Langevin equation was a special case of this SDE

dx⃗ ptq “ ∇x logP px⃗ ptqqdt `
?
2dB ptq
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Diffusion Score Matching and Denoising Reverse Diffusion

Diffusion Process: Forward Process
We use this SDE as follows: if we shift∆t at time t, we approximately have

∆x⃗ ptq « f px⃗ ptq, tq∆t ` g ptq∆B ptq

Now, say we start at t0 “ 0 and move∆t step by step then

x⃗pi`1q « x⃗piq ` ∆x⃗ ptiq

« x⃗piq ` f
´

x⃗piq, ti

¯

∆t ` g ptiq rB pti ` ∆tq ´ B ptiqs

« x⃗piq ` f piq
´

x⃗piq
¯

∆t ` gpiq
?
∆tεi

using the following notions and simplifications
‚ we define f piq

`

x⃗piq
˘

“ f
`

x⃗piq, ti
˘

and gpiq “ g ptiq

‚ we use the fact thatB pti ` ∆tq ´ B ptiq „ N p0,∆tq
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Diffusion Score Matching and Denoising Reverse Diffusion

Diffusion Process: Forward Process
+ What is happening in this equation?
– We are simulating the diffusion process

This is the forward process

x⃗pi`1q “ x⃗piq ` f piq
´

x⃗piq
¯

∆t ` gpiq
?
∆tεi

and we can look at it as a Markov chain

x⃗p0q „ P0 pxq Ñ x⃗p1q „ P1 pxq Ñ x⃗p2q „ P2 pxq Ñ ¨ ¨ ¨ x⃗pIq „ PI pxq

where Pi pxq is roughly describing the distribution of location at time

t “ i∆t
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Diffusion Score Matching and Denoising Reverse Diffusion

Reverse Diffusion Process: Reverse SDE
B. Anderson in 1982 showed that we can reverse this process in time
Reverse Diffusion
The reverse diffusion process is given by the following SDE

d ⃗x psq “

”

f p ⃗x psq, sq ´ g psq
2∇x logP p ⃗x psqq

ı

ds ` g psqdB psq

where s “ T ´ t is the reverse time started as T
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Diffusion Score Matching and Denoising Reverse Diffusion

Reverse Dynamics
+ What is really reverse in time?
– We can move statistically backward in time

We can again approximate this equation by a reverse Markov chain

⃗xpi`1q
“ ⃗xpiq

`

„

⃗f
piq

´

⃗xpiq
¯

´

´

⃗gpiq
¯2

∇x logPI´i

´

⃗xpiq
¯

ȷ

∆t ` ⃗gpiq
?
∆tεi

Now, we start by a sample ⃗xp0q
„ PI pxq and proceed as

⃗xp0q
„ PI pxq Ñ ⃗xp1q

„ PI´1 pxq Ñ ⃗xp2q
„ PI´2 pxq Ñ ¨ ¨ ¨ ⃗xpIq

„ P0 pxq

where Pi pxq is again describing the distribution of location at time

t “ i∆t
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Diffusion Score Matching and Denoising Reverse Diffusion

Diffusing Back and Forth
Let’s do some simplification: we compactly show the forward diffusion as

x⃗pi`1q „ Q⃗i

´

x⃗pi`1q|x⃗piq
¯

and the reverse diffusion as

⃗xpi`1q
„ ⃗Qi

´

⃗xpi`1q
| ⃗xpiq

¯

Equivalency in Opposite Direction
If we know a forward diffusion Q⃗i that takes us

from xp0q „ P p0q pxq to xpIq „ P pIq pxq

Then, we can build the reverse diffusion ⃗Qi which can take us

back from xpIq „ P pIq pxq to xp0q „ P p0q pxq
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Diffusion Score Matching and Denoising Reverse Diffusion

Noising Diffusion: Data to Latent
+ Why should this property be helpful?!
– We know how to get from a data sample to noise

Consider the following forward diffusion process

x⃗pi`1q “ x⃗piq ´ βpiqx⃗piq
loomoon

fpx⃗ptq,tq

∆t `

d

2βpiq

ˆ

1 ´
βpiq∆t

2

˙

looooooooooooomooooooooooooon

gptq

?
∆tεi

If we define αpiq “ 1 ´ βpiq∆t; then, it simplifies to

x⃗pi`1q “ αpiqx⃗piq `

b

1 ´ αpiq2εi

and we use the notation ᾱpiq “

a

1 ´ αpiq2 for simplicity
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Diffusion Score Matching and Denoising Reverse Diffusion

Noising Diffusion: Data to Latent
The following Markov chain

x⃗pi`1q “ αpiqx⃗piq ` ᾱpiqεi

describes an Ornstein-Uhlenbeck (OU) process: starting with a centered and
normalized sample of any distribution

‚ the OU process computes always a unit-variance sample for next time
‚ as it proceeds for large I , we get

x⃗pIq „ N p0, 1q

Nosing Process
We know a diffusion process that turns a data sample x⃗p0q into Gaussian latent

Deep Generative Models Chapter 6: Diffusion Models © A. Bereyhi 2025 13 / 30



Diffusion Score Matching and Denoising Reverse Diffusion

Denoising Diffusion: Latent to Data
Since we know the forward diffusion: we can

build the reverse diffusion to get back from latent to data

This was the forward process

x⃗pi`1q “ x⃗piq ´ βpiqx⃗piq∆t `

d

2βpiq

ˆ

1 ´
βpiq∆t

2

˙

?
∆tεi

We need to change the drift and diffusion coefficient to

⃗f
piq

´

⃗xpiq
¯

“ ´βpI´iq ⃗xpiq
´ 2βpI´iq

˜

1 ´
βpI´iq∆t

2

¸

∇x logPI´i

´

⃗xpiq
¯

⃗gpiq
´

⃗xpiq
¯

“

d

2βpI´iq

ˆ

1 ´
βpI´iq∆t

2

˙
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Diffusion Score Matching and Denoising Reverse Diffusion

Denoising Diffusion: Latent to Data
We can then denoise the latent into a data sample by

1 Sample a Gaussian ⃗xp0q
„ N p0, 1q

2 Proceed in reverse time as

⃗xpi`1q
“ x⃗piq ` ⃗f

piq
´

⃗xpiq
¯

∆t ` ⃗gpiq
´

⃗xpiq
¯?

∆tεi

3 Take ⃗xpIq
„ P pxq as a data sample

+ Do we have everything that we need?!
– Let’s break it down
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Diffusion Score Matching and Denoising Diffusion Score Matching

Required Scores for Denoising Diffusion
We know the diffusion process

x⃗p0q „ Pdata Ñ x⃗p1q „ P1 Ñ x⃗p2q „ P2 Ñ ¨ ¨ ¨ Ñ x⃗pIq „ N p0, 1q

Just set a data sample at x⃗p0q „ Pdata and diffuse as

x⃗pi`1q “ αpiqx⃗piq ` ᾱpiqεi

We can also sample latent ⃗xp0q
„ N p0, 1q,but to diffuse reversely as

⃗xp0q
„ N p0, 1q Ñ ⃗xp1q

„ PI´1 Ñ ¨ ¨ ¨ Ñ ⃗xpI´1q
„ P1 Ñ ⃗xpIq

„ Pdata

we need to know the following score functions

∇x logN 0 pxq ,∇x logPI´1 pxq , . . . ,∇x logP1 pxq
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Diffusion Score Matching and Denoising Diffusion Score Matching

Score of Noisy Output
+ Back to square one! We need score function of the data!
– No! We need all scores but data score!

We need to learn these scores

∇x logPI´1 pxq , . . . ,∇x logP1 pxq

1 ∇x logP1 pxq is the score of

x⃗p1q “ αp0q x
loomoon

data sample

`ᾱp0qε0

2 ∇x logP2 pxq is the score of

x⃗p2q “ αp1qx⃗p1q ` ᾱp1qε1 “ αp1q
´

αp0qx ` ᾱp0qε0

¯

` ᾱp1qε1

“ αp1qαp0qx `

´

αp1qᾱp0qε0 ` ᾱp1qε1

¯
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Diffusion Score Matching and Denoising Diffusion Score Matching

Score of Noisy Output
In fact we need the score function of a noisy version of x, i.e.,

z “ x ` σε

for some σ when ε „ N p0, 1q

+ How is it so different then?!
– It turns out to be very different! Let’s take a look

Problem: Score of Noisy Sample
Let x „ P and z “ x ` σε; find the score

s pzq “ ∇z logP pzq

with P pzq being the marginal distribution of z
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Diffusion Score Matching and Denoising Diffusion Score Matching

Score of Noisy Output
Let’s think about scalar x and z

ë everything extends the same to multi-dimensional case
We can write

P pzq “

ż

P pz|xqP pxq dx

We know that P pz|xq ” N
`

x, σ2
˘

: so, we could write

P pzq “
1

?
2πσ2

ż

exp

#

´
pz ´ xq

2

2σ2

+

P pxq dx
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Diffusion Score Matching and Denoising Diffusion Score Matching

Score of Noisy Output
For score function we have

∇z logP pzq “
1

P pzq
∇zP pzq

Considering the expression

P pzq “
1

?
2πσ2

ż

exp

#

´
pz ´ xq

2

2σ2

+

P pxq dx

we can easily write

∇zP pzq “
1

?
2πσ2

ż

pz ´ xq

σ2
exp

#

´
px ´ zq

2

2σ2

+

P pxq dx

“

ż

px ´ zq

σ2
P pz|xqP pxqdx
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Diffusion Score Matching and Denoising Diffusion Score Matching

Score of Noisy Output
So, we can write

∇z logP pzq “
1

P pzq

ż

px ´ zq

σ2
P pz|xqP pxqdx

“
1

P pzq

ż

px ´ zq

σ2
P pz, xqdx

“
1

P pzq

ż

px ´ zq

σ2
P px|zqP pzqdx

“

ż

px ´ zq

σ2
P px|zqdx “ Ex„P|z

"

px ´ zq

σ2

*

This concludes that

s pzq “
1

σ2
Ex tx ´ z|zu “

1

σ2

¨

˚

˝

Ex tx|zu
looomooon

x̂pzq

´z

˛

‹

‚

“
x̂ pzq ´ z

σ2
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Diffusion Score Matching and Denoising Diffusion Score Matching

Score of Noisy Output
We could also say that

z “ x ` σε ù ε “
z ´ x

σ

So, we could also write

s pzq “
1

σ
Ex

"

x ´ z

σ
|z

*

“ ´
1

σ
E tε|zu
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Diffusion Score Matching and Denoising Diffusion Score Matching

Score of Noisy Output
Problem: Score of Noisy Sample
Let x „ P and z “ x ` σε ù find the score s pzq

The score at point z is given by
‚ either the conditional noise average

s pzq “ ´
E tε|zu

σ

‚ or the Bayes optimal denoiser as

s pzq “
x̂ pzq ´ z

σ2
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Diffusion Score Matching and Denoising Diffusion Score Matching

Computing Score by Noise Averaging
Say we need to find score s pzq while we have access to a bunch of noise
samples εj with the following property

ë All z ´ σε end up with a data sample
We can then estimate the score as

s pzq “ ´
E tε|zu

σ
« ´

Ê tε|zu

σ

+ But how could we a bunch of such noise samples?!
– We rely on the single sample that we have⌣

In practice we estimate as

s pzq « ´
ε

σ
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Diffusion Score Matching and Denoising Diffusion Score Matching

Computing Score by Denoising
Say we need to find score s pzq while we have access to data sample x: we take
x and sample ε „ N 0; then, we noise the data sample as

z “ x ` σε

We can then use the denoiser x̂ pzq to compute the score as

s pzq “
x̂ pzq ´ z

σ2

+ But how could we get the denoiser x̂ pzq?!
– We can learn it!
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Diffusion Score Matching and Denoising Diffusion Score Matching

Computational Approach: Decoding
We saw before that we can denoise by a computational model

x

`
σ
ε noisy f w x̂

We just need to train this model by risk

R pwq “ Ex

␣

∥x̂ ´ x∥2
(

“ Ex

␣

∥fw px ` σεq ´ x∥2
(
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Diffusion Score Matching and Denoising Computational DSM

Training Diffusion Score Model: Direct Score Model
We consider a score model sw : Rd ˆ R ÞÑ R

d which

takes a noisy sample z and noise standard deviation σ ù returns s pzq

To train this model we make data batches as follows

For j “ 1, . . . , n

1 Sample a data sample xj and choose a value for σj

2 Noise data sample as zj “ xj ` σjεj for some εj „ N 0

3 Set the data point and its label (score) to

input to sw ”
`

zj , σj
˘

output of sw ” ´εj{σj

We could train this network by minimizing the empirical loss

R̂ pwq “ Ê
␣

∥sw
`

zj , σj
˘

` εj{σj∥2
(
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Diffusion Score Matching and Denoising Computational DSM

Training Diffusion Score Model: Denoising Model
We consider a denosing model fθ : Rd ˆ R ÞÑ R

d which
takes a noisy sample z and noise standard deviation σ ù denoises to x̂ pzq

To train this model we make data batches as follows
For j “ 1, . . . , n

1 Sample a data sample xj and choose a value for σj

2 Noise data sample as zj “ xj ` σjεj for some εj „ N 0

3 Set the data point and its label (recovery) to

input to fw ”
`

zj , σj
˘

output of fw ” xj

We can use this denoiser to estimate the score as

sw pz, σq “
fw pz, σq ´ z

σ2
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Diffusion Score Matching and Denoising Computational DSM

Sampling Diffusion Score Model: Forward Diffusion
We define a forward diffusion as

x⃗pi`1q “ αpiqx⃗piq ` ᾱpiqεi

+ How should we choose αpiq?!
– Well! For sure ᾱpiq is small, since we defined αpiq “ 1 ´ βpiq∆t

For this process we can say

x⃗p1q “ αp0qx ` ᾱp0qε0 “ θp0qx ` σp0qεp0q

x⃗p2q “ αp1qαp0qx `

´

αp1qᾱp0qε0 ` ᾱp1qε1

¯

“ θp1qx ` σp1qεp1q

...

with all εpiq „ N 0
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Diffusion Score Matching and Denoising Computational DSM

Sampling Diffusion Score Model: Reverse Diffusion
From the forward diffusion: we can build the reverse diffusion as

⃗xpi`1q
“

”

⃗f
piq

⃗xpiq
´ ⃗gpiq2s

´

⃗xpiq
¯ı

` ⃗gpiqεi

Noting that ⃗xpiq
“ x⃗pI´iq and

x⃗piq “ θpi´1qx ` σpi´1qεpi´1q

We re-write ⃗xpiq
“ x ` σ̂pi´1qεpi´1q and use sw to estimate the score as

s
´

⃗xpiq
¯

« sw

´

⃗xpiq, σ̂pi´1q
¯

We keep going backward till we get to

⃗xpIq
„ P0 ” Pdata
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