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Learning by Langevin Dynamics

Modern Data Generation
Recall that we are still working with modern generative models

modern generative models mainly learn how to sample!
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Learning by Langevin Dynamics Vanilla Diffusion

Learning via Diffusion Process
Our main goal in this chapter is to

build models that learn by mimicking a diffusion process

+ What is a diffusion process?!
– We understand it after a bit of preliminaries

Langevin Equation
Langevin equation describes a diffusion process in which particle moves under
friction and random collisions: the location of the particle in time t satisfies

dx ptq “ ∇x logP pxqdt `
?
2dB ptq

whereB ptq is the Brownian motion process
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Learning by Langevin Dynamics Vanilla Diffusion

Brownian Motion
+ What is Brownian motion process?
– It’s a stochastic process that evolves i.i.d. Gaussian

Brownian Motion
The Brownian motion process starts at zero, i.e.,B p0q “ 0 and independently
progresses through time by Gaussian distribution

ë The variance increases linearly with time

B pt2q ´ B pt1q „ N p0, t2 ´ t1q

ë Any differenceB pt2q ´ B pt1q is independent of past
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Learning by Langevin Dynamics Vanilla Diffusion

Langevin Equation: Learning Viewpoint
+ What is important about this equation?

dx ptq “ ∇x logP pxqdt `
?
2dB ptq

– It describes the physical diffusion
Diffusion Process by Langevin Equation
As time evolves, the location of the particle at time t, i.e., x ptq, converges to a
random variable whose distribution is P pxq

+ But how can we use such a fact?!
– Well! Let’s be a bit naive and approximate solution of this equation
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Learning by Langevin Dynamics Vanilla Diffusion

Langevin Dynamics: Markov Chain
Say we move tiny steps in time: we shift step by step from ti “ t to
ti`1 “ t ` δ and approximate dt “ δ as well as

dx ptq « x pt ` δq ´ x ptq ” xpi`1q ´ xpiq

dB ptq « B pt ` δq ´ B ptq ” ∆Bpiq „ N p0, δq

Now, we could say

xpi`1q ´ xpiq “ ∇x logP
´

xpiq
¯

δ `
?
2∆Bpiq

We can say∆Bpiq “
?
δεpiq with εpiq „ N p0, 1q and write

xpi`1q “ xpiq ` δ∇x logP
´

xpiq
¯

`
?
2δεpiq

The Markov process x1 Ñ x2 Ñ ¨ ¨ ¨ is what we call Langevin dynamics
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Learning by Langevin Dynamics Vanilla Diffusion

Key Property of Langevin Dynamics
+ Well! Then what?!
– We can use this process to sample P pxq

Sampling via Langevin Dynamics
Recall that in Langevin equation x ptq converges in distribution to P pxq

1 Start by an arbitrary point xp0q

2 Evolve through time by

xpi`1q “ xpiq ` δ∇x logP
´

xpiq
¯

`
?
2δεpiq

3 Get a sample of P pxq
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Learning by Langevin Dynamics Vanilla Diffusion

Recall: Sampling EBMs
+ Wait a moment! This sounds familiar!
– Yep! We used it to sample EBMs
Langevin_Sampling():

1: Initiate sample xp0q and choose a converging series tϵtu2: for t “ 1, . . . , T do3: Sample ηt „ N p0, 1q

4: Update xptq
Ð xpt´1q

`
ϵt
2
∇x logPw

´

xpt´1q
¯

`
?
ϵtηt

5: end for6: return xpT q for T larger than burn-in period
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Learning by Langevin Dynamics Vanilla Diffusion

Alternative Objective for Generation
This brings up this idea:

Why don’t wemodel and learn directly the term∇x logP pxq?!

If we learn∇x logP pxq ù we can sample P pxq by mimicking diffusion

+ Why should this be better than learning P pxq itself?!
– Well! There are two key reasons

1 As we have seen in Chapter 4, this can be computationally easier

∇x logP pxq “ ∇x log
exp t´E pxqu

Z
“ ´∇xE pxq

2 It opens a way to learn the distribution implicitly
ë We will see this in this chapter
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Learning by Langevin Dynamics Score Function

Score Function
Score Function
The score function is defined as the gradient of the log-likelihood w.r.t. argument

s pxq “ ∇x logP pxq

U Attention: Score Function vs Informant
The score function is different from the informant which is also called score
sometimes in statistics: if we have a model Pw pxq; then, the informant is

ιw pxq “ ∇w logPw pxq

We just keep calling this informant to avoid confusion
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Learning by Langevin Dynamics Score Function

Score Function: Gaussian Example
Example: Say we have a Gaussian distribution, i.e.,

P pxq “
exp

␣

´x2{2
(

?
2π

The score function in this case is

s pxq “
d

dx
logP pxq “ ´

1

2

dx2

dx
“ ´x

We note that in this example
‚ The score function is a random variable
‚ The mean and variance are

Ex„P ts pxqu “ 0 Ex„P

␣

s2 pxq
(

“ 1
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Learning by Langevin Dynamics Score Function

Properties of Score Function: Normalization Independence
Normalization Independence

The score function does not change by any distribution scaling

+ How can such property help?
– When we know the distribution up to a constant

Say we know joint distribution P px, yq and look for score function of P px|yq

‚ Computing P px|yq itself needs marginalization over x
‚ The score function is though given by

∇x logP px|yq “ ∇x log
P px, yq

P pyq
“ ∇x logP px, yq

which does not need any marginalization
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Learning by Langevin Dynamics Score Function

Properties of Score Function: Zero-Mean

Score Function is Zero-Mean
For well-defined distributions, the expected score function is zero, i.e.,

Ex„P ts pxqu “ 0

Let’s expand the expression

Ex„P ts pxqu “

ż

s pxqP pxq dx “

ż

∇x logP pxqP pxqdx

“

ż

∇xP pxq

P pxq
P pxq dx “

ż

∇xP pxq dx

Say we want to compute entry i
ż

B

Bxi
P pxq dx “ P pxiq

ˇ

ˇ

ˇ

`8

´8
“ 0 Ð if P is decaying
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Learning by Langevin Dynamics Score Function

Properties of Score Function
Score Function is Zero-Mean
For well-defined distributions, the covariance matrix is the negative expected
Jacobian of the score function, i.e.,

Cov rs pxqs “ ´Ex„P t∇xs pxqu

We can again show this by definition

Cov rs pxqs “ Ex„P

!

ps pxq ´ Ex„P ts pxquq ps pxq ´ Ex„P ts pxquq
T
)

“ Ex„P

!

s pxq s pxq
T
)

“ ¨ ¨ ¨ “ ´Ex„P t∇xs pxqu
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Learning by Langevin Dynamics Score-based Generation

Score Models
Back to our problem: our idea is to learn the score function of data
Score-based Model
Score-based model sw p¨q : Rd ÞÑ R

d is a computational model approximating
the score funciton s pxq “ ∇x logP pxq of the data from its sample

The key point about the score-based models is that
‚ They do not need to fit into a specific definition

ë Models for distributions should add up to 1
‚ They could be directly used for sampling

ë We just need to replace them in Langevin dynamics

Deep Generative Models Chapter 6: Diffusion Models © A. Bereyhi 2025 15 / 24



Learning by Langevin Dynamics Score-based Generation

Training Score Models
+ Say we choose a NN as score model, how can we train it?!
– We try to do score matching!

Score Matching
We train the model, such that its difference to the true score is minimized. This
means that we train the model for the risk function

R pwq “ Ex„P

␣

∥sw pxq ´ s pxq∥2
(

+ Excellent! We have neither the true score nor data distribution!
– So was it the case when we wanted to minimize KL divergence

ë We ended up with maximum likelihood!
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Learning by Langevin Dynamics Score-based Generation

Training Score: Score Risk
Let’s try to look at this risk function: given the definition we have
R pwq “ Ex„P

␣

∥sw pxq ´ s pxq∥2
(

“ Ex„P

␣

∥sw pxq∥2
(

` Ex„P

␣

∥s pxq∥2
(

´ 2Ex„P

!

sw pxq
T s pxq

)

Since we want to minimize w.r.t. model parametersw, we can say

argmin
w

R pwq “ argmin
w

”

Ex„P

␣

∥sw pxq∥2
(

´ 2Ex„P

!

sw pxq
T s pxq

)ı

Looking at the above term, we could say
Ë The term Ex„P

␣

∥sw pxq∥2
(

can be estimated by sampling

é The term Ex„P

!

sw pxq
T s pxq

)

still needs data distribution
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Learning by Langevin Dynamics Score-based Generation

Training Score: Score Divergence
Let’s try to further expand the latter term

Ex„P

!

sw pxq
T s pxq

)

“

ż

sw pxq
T s pxqP pxqdx

“

ż

sw pxq
T∇x logP pxqP pxq
loooooooooomoooooooooon

∇xP pxq

dx

“

ż

sw pxq
T∇xP pxqdx

Using the definition of the gradient, we can write
ż

sw pxq
T∇xP pxqdx “

ż

ÿ

i

sw,i pxq
B

Bxi
P pxqdx

“
ÿ

i

ż

sw,i pxq
B

Bxi
P pxqdx
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Learning by Langevin Dynamics Score-based Generation

Recall: Integration by Part
We want to compute

ż b

a
f pxq

d

dx
g pxq dx

But, we would like to work with g itself instead of its derivative

We use the fact that

d

dx
rf pxq g pxqs “

d

dx
f pxq g pxq ` f pxq

d

dx
g pxq

and write the original integral as
ż b

a
f pxq

d

dx
g pxq dx “ f pxq g pxq

ˇ

ˇ

ˇ

b

a
´

ż b

a

d

dx
f pxq g pxq dx
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Learning by Langevin Dynamics Score-based Generation

Training Score: Score Divergence
Using integration by part, we could say

ż

sw,i pxq
B

Bxi
P pxqdx “ sw,i pxqP pxq

ˇ

ˇ

ˇ

8

´8
´

ż

B

Bxi
sw,i pxqP pxqdx

“ 0 ´ Ex„P

"

B

Bxi
sw,i pxq

*

This concludes that the cross-product term is given by

Ex„P

!

sw pxq
T s pxq

)

“
ÿ

i

ż

sw,i pxq
B

Bxi
P pxqdx

“ ´
ÿ

i

Ex„P

"

B

Bxi
sw,i pxq

*

“ ´Ex„P

#

ÿ

i

B

Bxi
sw,i pxq

+
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Learning by Langevin Dynamics Score-based Generation

Training Score: Score Divergence
Score Divergence
The divergence of the score-model sw p¨q is defined as

div psw pxqq “
ÿ

i

B

Bxi
sw,i pxq “ trt∇xsw pxqu

Using this definition, we could say

Ex„P

!

sw pxq
T s pxq

)

“ ´Ex„P tdiv psw pxqqu

which can be estimated from data samples!
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Learning by Langevin Dynamics Score-based Generation

Training Score: Hyvärinen Result
Aapo Hyvärinen was the one who showed this result
Score Risk
The score matching is equivalent to minimizing

Rscore pwq “ Ex„P

␣

∥sw pxq∥2
(

´ 2Ex„P tdiv psw pxqqu

This means that the risk for score matching can be estimated as

R̂score pwq “ Êx„P

␣

∥sw pxq∥2
(

´ 2Êx„P tdiv psw pxqqu

using the data samples
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Learning by Langevin Dynamics Computational Score Matching

Training Computational Score Models
Score_Train(D:dataset):
1: Initiate the score model sw with somew2: for multiple epochs do3: Sample a batch of data samples

␣

xj : j “ 1, . . . , n
(

fromD4: for sample j “ 1, . . . , n do5: Compute the model Jacobian Jj
Ð ∇xsw

`

xj
˘

6: Compute sample risk asRj
Ð ∥sw

`

xj
˘

∥2 ` trtJj
u7: Backpropagate to compute sample gradient∇Rj

8: end for9: Updatew using Opt_avg
!

∇wR̂j
)

10: end for11: return trained score model

This is though computationally expensive
ë We need to backpropagate on∇xsw pxq
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Sampling Computational Score Models
Score_Sampling():

1: Initiate sample xp0q and choose a converging series tϵtu2: for t “ 1, . . . , T do3: Sample ηt „ N p0, 1q

4: Update xptq
Ð xpt´1q

`
ϵt
2
sw

´

xpt´1q
¯

`
?
ϵtηt

5: end for6: return xpT q for T larger than burn-in period
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