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Early Work on VAE

For some time: people considered using decoder of AEs to generate data
@ train an encoder-decoder architecture
® sample latent at random and pass it through decoder

z

The idea however does not work in this basic form, because

prior distribution of the latent is unknown
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Early Work: Kingma and Welling

Kingma and Welling used variational inference to control the latent prior
this somehow gave birth to VAEs

In their basic experiments, they considered MLP encoder and decoder
* decoder computes feature h = tanh (Linear (z)) and then

i = Linear (h)
log o = Linear (h)

e encoder works exactly the same with = and = swapped
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Initial VAEs

Advances in VAEs

ing

Kingma and Welli

Early Work

The results on Frey Face dataset is acceptable

MNIST
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and the impact of latent size can be easily seen v

QarrNPwmid>rd
O FrNNV=mONW N
NP dRNE A~
A Tl WS N DR
AN ODO AT~
DD NN 0D
NEMT =N O r Ny
OCQAO PR e~
NPT OREID®
IR DNV Y

WO~ AN\~
ST RSN Y SGRE RN -)
Frau>d Noows
W60oeaQ MmO ~
MO MOEAQO -
MNAHS OV >
SAN®Qe QN0
~MreM N o
0o b AN™™ T~
A Gl ~ 40 oy

AN~ TwOraY
NS0T INBYNY D
R WS NN e ST
SROYOmONw
OmPesrNTN N0
~oNT 3+ er\S
Oemee~mNd -
WL NwTooT >
—emmg My e=-a
rwRAMa—-II™

T TM9 e Mo —
-9 prerdrh
Q= RNMOO0HOYN
FRe~<=N—day
B B LT Y
oTrMeMO9 ma >
N ~mM S m~
N®e~OMmao e N0
Se-ddrhoeores
DL RN

(b) 5-D latent space (c) 10-D latent space (d) 20-D latent space

(a) 2-D latent space
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Early Work: Rezende, Mohamed, and Wierstra

Kingma and Welling motivated the others to dive deeper
® Rezende et al. provided solid base for VAE
® They looked into the stochastic computation graph of VAEs
® They visualized the true and approximate posterior

prior

aPProximate posterior

. true posterior

In their experiment, they considered simple MLP encoder and decoder
® poth modules were three-layer MLPs

e they also investigated other applications, e.g., image inpainting
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Early Work: Rezende, Mohamed, and Wierstra
Since model is simple, we get lower quality on more complex datasets like NORB
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Deep Convolutional VAE

People started to use CNNs to better encode and decode

¢ O(R34SE729 '

9 0123956789 |5 [11213141516)715]9)0
S O/ 23¢CCT7707

Y 0123456789 H,unnnnunnn
2 01234YS67¢%9

7 01 A3 456789 12131415161718191C
c d/ 224707

| 01234567849

7 0123456789

/ 0123456789 2

(b) MNIST analogies (c) SVHN analogies
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ResNet-VAEs

The results motivated people to further improve encoder and decoder

Frechet Inception Distance
(g2 )
OFa -
MM-GAN NS-GAN LSGAN WGAN WGAN GP DRAGAN BEGAN VAE
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Advances in VAEs Initial VAEs

Transformer-VAEs

The results motivated people to further improve encoder and decoder

Positional Encoding —>

Encoders

Encoders

X
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Advances in VAEs Limitations of VAE

VAE Limits: Sharpness

Despite computational advances: there are a few key restrictions to VAEs
@ VAE visual output is quite blurry ~~> for a generic data: not too sharp
L, This is observed simply by comparing VAE and GAN outputs

L, The reason is intuitively understandable

® The output is sampled conditionally from a Gaussian distribution
® This means that after generating » = Gy (z) we compute

x=p+e~N(0,0%)

which is always a noisy image!
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Advances in VAEs

Disentanglement

Disentanglement in Latent Representation

A latent representation z € R™ is bluewell-disentangled if
® each z; corresponds to a single generative factor, e.g., position or color

® changing z; only affects the corresponding factor leaving others invariant

color of eall | #1

Zm
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Disentanglement via 5-VAE

In VAEs: we compute a latent representation
e [f latent is well-disentangled we can better modify generation
e This is an ideal property for the decoder

@® VAEs have limited control over latent disentanglement

L, There is no parameter in encoder or decoder to impose such property
L, Intuitively, we can improve disentanglement by increasing latent dimension
L, Larger latent size however introduces redundant features as well

A better approach is the so-called 3-VAE modification

3 —ELBO (w,0|z) = E,~q,, {log Py (z|2)} — 8Dk1, (Qw|N?)

L, As 3 1 v~ KL penalizes stronger -~~~ latent becomes statistically i.i.d.
L, Statistically i.i.d. z is better disentangled
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Posterior Collapse

Posterior Collapse

Posterior collapse refers to the case in which decoder learns to ignore latent
during training
+ What does that mean?!

- It means that the decoder learns to sample data by its own without caring
about encoder!

Say we are training a VAE: with posterior collapse we could say that
¢ |oss computed by passing encoder’s output through decoder, and

¢ |oss computed by passing an independent latent through decoder
are roughly the same!
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Posterior Collapse

Though posterior collapse does not directly impact generation, we can say
® the encoder of such VAE is useless!
L, it gives a random latent representation for data samples
e decoder mainly learns to fit to the training samples ~~~> when sampling
L, it can show worse performance as it did not learn any structure
L, it might stick to a few samples «~ it shows mode collapse

+ How do we know if posterior collapse is happening?!
- If during training D, (Qw |N") gets very close to zero

® In VAEs with powerful decoder, we can observe posterior collapse

L, We can control the KL divergence term as in 3-VAE
L, We can also reduce the capacity of the decoder
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Treating Sharpness Issue

Looking at sharpness issue: people thought of old AE-based generation idea

z

This old idea says

« train deterministic encoder Ey, and decoder G ¢ for perfect reconstruction
R(w,0|z) = [z — G (Ew (2))]

? learn the distribution of the latent P (=) using encoder
v sample z ~ P (z) and generate = = Gg (2)
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Advances in VAEs Vector Quantized VAE

Back to AEs: Perfect Reconstruction

+ Why should this basic idea resolves sharpness issue?!
- Well! There is no Gaussian sampling at the decoder anymore!

If we are sure z is a valid latent -~~~> we can compute x perfectly

z2

{ .\>zl> latent >E} >
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Challenge: Unknown Latent Prior

The key challenge is that in this case

prior latent distribution is not controlled and hence is unknown!
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Learning Latent Prior

+ Can’t we learn this prior from the data?!

- Theoretically, we can!

AE_General_Latent (Eyw, Gg:AE, Pj:Prior_Model):
1: Initiate the encoder and decoder
: for multiple epochs do
Train E, and Gy for perfect reconstruction
: end for
: for all sample 27 in dataset do
Compute latent representation z’ = Ey, (27)
Keep it in the latent dataset Z <« 2’7
end for
: for multiple epochs on Z do
10:  Train Py #learn latent prior
11: end for
12: return Latent prior and AE
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Advances in VAEs Vector Quantized VAE

Learning Latent Prior

+ What should be Py?!
- It could be any explicit model we had in Chapter 3

From Chapter 3 we know that
it is not really easy to train Py on a continuous latent

This motivated for using a discrete latent
e |atent entries belongs to a predefined codebook of k codewords

ZiGCZ{Cl,...,Ck}

* Given that latent space is finite, we can learn Py more efficiently
L, For example, we can train an AR model with k-output Softmax at its end
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VQ-VAE: Vector Quantized VAE

VQ-VAE is an example of generative AEs with discrete latent
L, It’s usually used for visual and audio data

L, It quantizes the outputs of the encoder on a codebook
L, The codebook can be seen as an embedding
L, Its codewords, i.e., c; € C, are learnable

I Attention

Despite its name, it is technically not a VAE, since it does not use ELBO anymore
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Advances in VAEs

VQ-VAE: Architecture

el ‘z cx

codebook C

P e.ny

c1

c8 c2.

z=[z1,..., 2m]
8 21

indx (u;) = argmin;|[u; — ¢j|

Training VQ-VAE

Note that in this architecture E,, Gy and codebook are learnable

R(w,0,Clz) = ||lz — G (Bw (2))II* + Bl Ew (2) — 2|
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VQ-VAE: Prior Learning

To learn the prior, we invoke AR modeling:
* Define a computational model F4 that extracts context up to entry 1

C;, = Fd) (Z<i) € [Rk
® Define a conditional distribution as

th (Zz|z<1) = Softmax (Cz) = Softmax (F¢ (z<z))

® Model the latent prior as

P(2) =] | Ps (2i]2<i)
i
We train this model on encoded latent samples given by the trained encoder

Deep Generative Models Chapter 5: VAEs © A. Bereyhi 2025

22/26



Advances in VAEs

VQ-VAE: Sampling

We can sample data distribution by
@ sampling the AR latent prior

@ passing the latent sample through the decoder

v

Zi GV

H P¢ (ZZ|Z<1)
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VQ-VAE: Sample Output

In the original VQ-VAE proposal
® CNN encoder and decoder is deployed

e PixelCNN is used to learn latent prior
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Wrap Up

In practice VAEs show various favorable properties
® They are very stable while training
L, ELBO maximization = conventional empirical risk minimization
e They are easy to sample
L, They are sampled as flow-based models with Gaussian prior

They could however exhibit
® blurry output
L, This happens due toGaussian sampling at the decoder
® imperfect disentanglement
L, This happens due to limited control on the latent
® posterior collapse
L, This happens when the decoder is very strong
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Wrap Up

We can address the key issues of VAEs by various modifications, e.g., by
* modifying the ELBO term as in 3-VAE
® quantizing the latent representation as in VQ-VAE

VAEs are still considered as powerful generative models

e [ike GANs, they are straightforward to implement in simple applications
e They can provide us further with latent representation
L, This is in particular very useful when we change modality

image 2% latent M text

Next Stop: Indirect distribution learning by diffusion process
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