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Advances in VAEs Initial VAEs

Early Work on VAE
For some time: people considered using decoder of AEs to generate data

1 train an encoder-decoder architecture
2 sample latent at random and pass it through decoder
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The idea however does not work in this basic form, because

prior distribution of the latent is unknown
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Advances in VAEs Initial VAEs

Early Work: Kingma and Welling
Kingma and Welling used variational inference to control the latent prior

this somehow gave birth to VAEs

In their basic experiments, they considered MLP encoder and decoder
‚ decoder computes feature h “ tanh pLinear pzqq and then

µ “ Linear phq

log σ “ Linear phq

‚ encoder works exactly the same with x and z swapped
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Advances in VAEs Initial VAEs

Early Work: Kingma and Welling
The results on Frey Face dataset is acceptable

and the impact of latent size can be easily seen via MNIST
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Advances in VAEs Initial VAEs

Early Work: Rezende, Mohamed, and Wierstra
Kingma and Welling motivated the others to dive deeper

‚ Rezende et al. provided solid base for VAE
‚ They looked into the stochastic computation graph of VAEs
‚ They visualized the true and approximate posterior

prior

true posterior

approximate posterior

In their experiment, they considered simple MLP encoder and decoder
‚ both modules were three-layer MLPs
‚ they also investigated other applications, e.g., image inpainting
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Advances in VAEs Initial VAEs

Early Work: Rezende, Mohamed, and Wierstra
Since model is simple, we get lower quality on more complex datasets like NORB

But on simple MNIST, we can do very well
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Advances in VAEs Initial VAEs

Deep Convolutional VAE
People started to use CNNs to better encode and decode
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Advances in VAEs Initial VAEs

ResNet-VAEs
The results motivated people to further improve encoder and decoder
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Advances in VAEs Initial VAEs

Transformer-VAEs
The results motivated people to further improve encoder and decoder
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Advances in VAEs Limitations of VAE

VAE Limits: Sharpness
Despite computational advances: there are a few key restrictions to VAEs

1 VAE visual output is quite blurry ù for a generic data: not too sharp
ë This is observed simply by comparing VAE and GAN outputs

ë The reason is intuitively understandable
‚ The output is sampled conditionally from a Gaussian distribution
‚ This means that after generating µ “ Gθ pzq we compute

x “ µ ` ε „ N
`

0, σ2
˘

which is always a noisy image!
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Advances in VAEs Limitations of VAE

Disentanglement
Disentanglement in Latent Representation
A latent representation z P Rm is bluewell-disentangled if

‚ each zi corresponds to a single generative factor, e.g., position or color
‚ changing zi only affects the corresponding factor leaving others invariant
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Advances in VAEs Limitations of VAE

Disentanglement via β-VAE
In VAEs: we compute a latent representation

‚ If latent is well-disentangled we can better modify generation
‚ This is an ideal property for the decoder

2 VAEs have limited control over latent disentanglement
ë There is no parameter in encoder or decoder to impose such property
ë Intuitively, we can improve disentanglement by increasing latent dimension
ë Larger latent size however introduces redundant features as well

A better approach is the so-called β-VAE modification

β ´ ELBO pw, θ|xq “ Êz„Qw tlogPθ px|zqu ´ βDKL

`

Qw}N 0
˘

ë As β Ò ù KL penalizes stronger ù latent becomes statistically i.i.d.
ë Statistically i.i.d. z is better disentangled
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Advances in VAEs Limitations of VAE

Posterior Collapse
Posterior Collapse
Posterior collapse refers to the case in which decoder learns to ignore latent
during training

+ What does that mean?!
– It means that the decoder learns to sample data by its own without caring

about encoder!

Say we are training a VAE: with posterior collapse we could say that
‚ loss computed by passing encoder’s output through decoder, and
‚ loss computed by passing an independent latent through decoder

are roughly the same!
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Advances in VAEs Limitations of VAE

Posterior Collapse
Though posterior collapse does not directly impact generation, we can say

‚ the encoder of such VAE is useless!
ë it gives a random latent representation for data samples

‚ decoder mainly learns to fit to the training samples ù when sampling
ë it can show worse performance as it did not learn any structure
ë it might stick to a few samples ù it shows mode collapse

+ How do we know if posterior collapse is happening?!
– If during trainingDKL

`

Qw}N 0
˘

gets very close to zero

3 In VAEs with powerful decoder, we can observe posterior collapse
ë We can control the KL divergence term as in β-VAE
ë We can also reduce the capacity of the decoder
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Advances in VAEs Vector Quantized VAE

Treating Sharpness Issue
Looking at sharpness issue: people thought of old AE-based generation idea

x
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w latent

z
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θ

x̂

This old idea says
Ë train deterministic encoder Ew and decoderGθ for perfect reconstruction

R pw, θ|xq “ ∥x ´ Gθ pEw pxqq∥

? learn the distribution of the latent P pzq using encoder
Ë sample z „ P pzq and generate x “ Gθ pzq
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Advances in VAEs Vector Quantized VAE

Back to AEs: Perfect Reconstruction
+ Why should this basic idea resolves sharpness issue?!
– Well! There is no Gaussian sampling at the decoder anymore!

If we are sure z is a valid latent ù we can compute x perfectly

z1

z2

¨ latent G
θ x
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Advances in VAEs Vector Quantized VAE

Challenge: Unknown Latent Prior
The key challenge is that in this case

prior latent distribution is not controlled and hence is unknown!

‚ valid latent

‚ invalid latent
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Advances in VAEs Vector Quantized VAE

Learning Latent Prior
+ Can’t we learn this prior from the data?!
– Theoretically, we can!
AE_General_Latent(Ew, Gθ:AE, Pϕ:Prior_Model):
1: Initiate the encoder and decoder2: for multiple epochs do3: TrainEw andGθ for perfect reconstruction4: end for5: for all sample xj in dataset do6: Compute latent representation zj “ Ew

`

xj
˘

7: Keep it in the latent dataset Z Ð zj8: end for9: for multiple epochs on Z do10: Train Pϕ #learn latent prior11: end for12: return Latent prior and AE
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Advances in VAEs Vector Quantized VAE

Learning Latent Prior
+ What should be Pϕ?!
– It could be any explicit model we had in Chapter 3

From Chapter 3 we know that

it is not really easy to train Pϕ on a continuous latent

This motivated for using a discrete latent
‚ Latent entries belongs to a predefined codebook of k codewords

zi P C “ tc1, . . . , cku

‚ Given that latent space is finite, we can learn Pϕ more efficiently
ë For example, we can train an AR model with k-output Softmax at its end
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Advances in VAEs Vector Quantized VAE

VQ-VAE: Vector Quantized VAE
VQ-VAE is an example of generative AEs with discrete latent

ë It’s usually used for visual and audio data
ë It quantizes the outputs of the encoder on a codebook
ë The codebook can be seen as an embedding

ë Its codewords, i.e., cj P C, are learnable

U Attention
Despite its name, it is technically not a VAE, since it does not use ELBO anymore

Deep Generative Models Chapter 5: VAEs © A. Bereyhi 2025 20 / 26



Advances in VAEs Vector Quantized VAE

VQ-VAE: Architecture

Training VQ-VAE
Note that in this architecture Ew,Gθ and codebook are learnable

R pw, θ, C|xq “ ∥x ´ Gθ pEw pxqq∥2 ` β∥Ew pxq ´ z∥2
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Advances in VAEs Vector Quantized VAE

VQ-VAE: Prior Learning
To learn the prior, we invoke AR modeling:

‚ Define a computational model Fϕ that extracts context up to entry i

ci “ Fϕ pzăiq P Rk

‚ Define a conditional distribution as

Pϕ pzi|zăiq “ Softmax pciq “ Softmax pFϕ pzăiqq

‚ Model the latent prior as

P pzq “
ź

i

Pϕ pzi|zăiq

We train this model on encoded latent samples given by the trained encoder
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Advances in VAEs Vector Quantized VAE

VQ-VAE: Sampling
We can sample data distribution by

1 sampling the AR latent prior
2 passing the latent sample through the decoder
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Advances in VAEs Vector Quantized VAE

VQ-VAE: Sample Output
In the original VQ-VAE proposal

‚ CNN encoder and decoder is deployed
‚ PixelCNN is used to learn latent prior
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Advances in VAEs Summary

Wrap Up
In practice VAEs show various favorable properties

‚ They are very stable while training
ë ELBO maximization ” conventional empirical risk minimization

‚ They are easy to sample
ë They are sampled as flow-based models with Gaussian prior

They could however exhibit
‚ blurry output

ë This happens due toGaussian sampling at the decoder
‚ imperfect disentanglement

ë This happens due to limited control on the latent
‚ posterior collapse

ë This happens when the decoder is very strong
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Advances in VAEs Summary

Wrap Up
We can address the key issues of VAEs by various modifications, e.g., by

‚ modifying the ELBO term as in β-VAE
‚ quantizing the latent representation as in VQ-VAE

VAEs are still considered as powerful generative models
‚ Like GANs, they are straightforward to implement in simple applications
‚ They can provide us further with latent representation

ë This is in particular very useful when we change modality
image Ew

ù latent LM
ù text

Next Stop: Indirect distribution learning by diffusion process
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