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Variational Autoencoding

Recap: Probabilistic Generator
Let’s get back to our original problem: we have a probabilistic generator

Gθ pzqz µ N pµ, 1q x „ Pθ px|zq

Pw px|zq

Mean µ is computed from latent z ù x is sampled fromN pµ, 1q

Latent-space Generator
The sample x is generated conditionally from latent z as

Pθ px|zq “ N pGθ pzq , 1q
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Variational Autoencoding

Recap: Sampling Probabilistic Generator
Sampling is exactly as in flow-based models

1 Sample latent as z „ N p0, 1q ” N 0

ë Simply generatem independent Gaussian scalars
2 Pass forward latent through the model as µ “ Gθ pzq

3 Sample data as x „ N pµ, 1q

ë Simply sample ε „ N 0

ë Compute x “ µ ` ε

Gθ pzq µ

N 0

z

N 0

` x „ N pµ, 1q
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Variational Autoencoding Implicit MLE via Variational Inference

MLE Training: Formulation
Let’s consider training via MLE: say we have a batch of data samples

D “
␣

xj „ Pdata : j “ 1, . . . , n
(

In MLE we maximize log-likelihood which is

max
θ

logL pθq “ max
θ

1

n

ÿ

j

logPθ

`

xj
˘

“ max
θ
Êx„Pdata

tlogPθ pxqu

“ max
θ
Êx„Pdata

"

log

ż

Pθ px|zqP pzq dz

*

to handle this challenging computation, we developed ELBO
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Variational Autoencoding Implicit MLE via Variational Inference

MLE Training via Variational Inference
Computational ELBO
Variational inference indicates that

logPθ

`

xj
˘

“ max
w

ELBOθ,xj pQwq

for some computational modelQw

`

z|xj
˘

+ Why do we index ELBO by θ and xj?
– Well! Just write the ELBO down

Recall that ELBO is given by

ELBOθ,xj pQwq “ Ez„Qw

␣

logPθ

`

xj |z
˘(

´ DKL

`

Qw}N 0
˘

which obviously depends on the generator Pθ and data sample xj
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Variational Autoencoding Implicit MLE via Variational Inference

MLE Training via Variational Inference
Let us now represent sample ELBO estimate computed at x as

ELBO pw, θ|xq “ Êz„Qw tlogPθ px|zqu ´ DKL

`

Qw}N 0
˘

We maximize this sample ELBO overw to find log-likelihood; thus, MLE is

max
θ

logL pθq “ max
θ
Êx„Pdata

tlogPθ pxqu

“ max
θ
Êx„Pdata

!

max
w

ELBO pw, θ|xq

)

Let’s think algorithmic about computing log-likelihood
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Variational Autoencoding Implicit MLE via Variational Inference

Full Loop via Variational Inference
logL pθq “ Êx„Pdata

!

max
w

ELBO pw, θ|xq

)

Compute_LL(w, θ):

1: Sample a batch of data samples ␣xj : j “ 1, . . . , n
(

2: for j “ 1, . . . , n do3: Sample a batch of latent samples
␣

zℓ : ℓ “ 1, . . . , r
(

fromQw4: Compute ELBO
`

w, θ|xj
˘

over latent batch5: for T iterations do6: Iterate with∇wELBO
`

w, θ|xj
˘

to maximize ELBO atw‹

7: end for8: Set ELBOj
Ð ELBO

`

w‹, θ|xj
˘

9: end for10: Estimate log-likelihood as logL Ð mean
␣

ELBOj
(

11: return log-likelihood estimate logL

This means that log-likelihood optimization requires a two-tier loop
ë This is computationally expensive
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Variational Autoencoding Implicit MLE via Variational Inference

Approximate Loop via Variational Inference
Using Jensen’s inequality: we can write

Êx„Pdata

!

max
w

ELBO pw, θ|xq

)

ě max
w

Êx„Pdata
tELBO pw, θ|xqu

This means that the MLE loop can be bounded as

max
θ

logL pθq “ max
θ
Êx„Pdata

!

max
w

ELBO pw, θ|xq

)

ě max
θ

max
w

Êx„Pdata
tELBO pw, θ|xqu

Hoping that this bound is tight enough, we could simplify the MLE loop as

max
θ

logL pθq « max
θ

max
w

Êx„Pdata
tELBO pw, θ|xqu
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Variational Autoencoding Implicit MLE via Variational Inference

Approximate Loop via Variational Inference
Approx_Compute_LL(w, θ):

1: Sample a batch of data samples ␣xj : j “ 1, . . . , n
(

2: for j “ 1, . . . , n do3: Sample a batch of latent samples
␣

zℓ : ℓ “ 1, . . . , r
(

fromQw4: Compute ELBO
`

w, θ|xj
˘

over latent batch5: Set ELBOj
Ð ELBO

`

w,θ|xj
˘

#no inner optimization loop6: end for7: Estimate log-likelihood as logL Ð mean
␣

ELBOj
(

8: return log-likelihood estimate logL

This makes log-likelihood optimization a classical risk minimization with

R̂ pw, θq “ Êx„Pdata
t´ELBO pw, θ|xqu

which can be readily performed by a single gradient iteration loop
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Variational Autoencoding VAE Architecture

Completing Computational Model
Though the training is formulated: there are a few questions
+ How should we build the modelQw pz|xq?
– It needs to be a probability distribution computed from a sample x
– It should marginalize to prior latent distribution
+ How easy is it to compute the required sample gradients, i.e.,

∇wELBO pw, θ|xq and ∇θELBO pw, θ|xq

– Well! They are mostly trivial except a tiny tricky part
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Variational Autoencoding VAE Architecture

Probabilistic Generation: Decoding
The computational model given by this probabilistic generation describes an

Autoencoder (AE) ” encoder x ÞÑ z + decoder z ÞÑ x

Pθ px|zqz x

Decoder
The decoder is indeed probabilistic generator Pθ px|zq which consists of

1 a computational modelGθ : R
m ÞÑ R

d

2 a Gaussian sampler that decodes latent z by sampling

Pθ px|zq “ C exp

"

´
∥x ´ Gθ pzq∥2

2

*
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Variational Autoencoding VAE Architecture

Learning Latent Distribution: Encoding
To computationally model Qw pz|xq: we note that this model

‚ takes x as input and returns aQw pz|xq that we can sample
‚ approximates P pz|xq meaning that it should marginalize to latent prior

ż

Qw pz|xqPdata pxqdx «

ż

P pz|xqPdata pxqdx “ P pzq

The model should be capable of giving such approximation!

This model describes an encoder which encodes x to its latent representation

Qw pz|xqx Pθ px|zqz x
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Variational Autoencoding VAE Architecture

Modeling Encoder
+ How can we design a model that marginalizes toN 0?!

Recall: Universality of Gaussian Mixtures
Gaussian mixture model describes a dense set of distributions

Let’s take another look: we want to setQw pz|xq such that

P̂w pzq “

ż

Qw pz|xqPdata pxqdx

be a good approximator of latent priorN 0 ù setting

Qw pz|xq “ N pηw pxq ,Σw pxqq

we get a Gaussian mixture P̂w pzq

ë It approximates most distributions includingN 0
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Variational Autoencoding VAE Architecture

Encoding via Gaussian Model
+ How can we design a model that marginalizes toN 0?!
– We just set it to be a Gaussian whose mean and covariance are learned

Encoder
The encoderQw pz|xq consists of

1 a computational model ηw : Rd ÞÑ R
m that computes the mean

2 a computational model Σw : Rd ÞÑ R
mˆm that computes covariance

U Covariance should be positive semi-definite
ë The model should always compute a positive semi-definite output

3 a Gaussian sampler that encodes data x by sampling

Qw pz|xq “ N pηw pxq ,Σw pxqq
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Variational Autoencoding VAE Architecture

Encoding via Gaussian Model
Such a model is easy to realize

ηw pxq

x

η

Σw pxq Σ

N 0

`

ˆ

z „ N pη,Σq
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Variational Autoencoding VAE Architecture

Encoding: Building Positive-Definite Covariance
In practice: we usually learn a diagonal covariance

Σ “ diag
␣

σ2
1, . . . , σ

2
m

(

This corresponds to z with independent entries whose distribution is

Qw pz|xq “
1

ź

i

b

2πσ2
w,i pxq

exp

#

´
ÿ

i

pzi ´ ηw,i pxqq
2

2σ2
w,i pxq

+

This is preferred computationally because
‚ It is readily realized using Σw : Rd ÞÑ R

m
` and setting Σ “ diag tΣw pxqu

‚ It guarantees that the covariance is positive-definite
‚ It is much easier to sample from

ë since the entries of z are independent

Deep Generative Models Chapter 5: VAEs © A. Bereyhi 2025 16 / 38



Variational Autoencoding VAE Architecture

Variational AE: End-to-End Architecture
General VAE
A variational autoencoder (VAE) consists of

‚ an encoder which learns latent by sampling a conditional Gaussian
‚ a decoder that generates from latent by sampling a Gaussian generator

Qw pz|xqx Pθ px|zqz x

U Attention
Similar to discriminator of GANs, the encoder in VAEs

ë is used to implicitly compute the log-likelihood
ë is used only for training and is not required for generation

However, a trained encoder can also give us latent representation if we want

Deep Generative Models Chapter 5: VAEs © A. Bereyhi 2025 17 / 38



Variational Autoencoding VAE Architecture

VAE: Few Notes
+ Should we always consider Gaussian encoder and decoder?
– It’s not a must! We can use other encoder and decoders, but

ë universality tells us that Gaussian is good enough
ë Gaussian distribution is easy to sample

+ Why don’t we learn the covariance in decoder?
– In theory we can do that! We don’t do it in practice though since

ë we might face numerical challenges while training VAEs
ë We will get some idea about this in Assignment 3
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Variational Autoencoding Training VAE

Training VAEs: ELBO Estimate
For training, we maximize ELBO: the ELBO estimate is given by

ELBO pw, θ|xq “ Êz„Qw tlogPθ px|zqu ´ DKL

`

Qw}N 0
˘

Let’s look at the first term: considering Gaussian generator, we have

logPθ px|zq “ logC ` log exp

"

´
∥x ´ Gθ pzq∥2

2

*

“ C 1 ` ´
∥x ´ Gθ pzq∥2

2

Therefore, the first term is given by

Êz„Qw tlogPθ px|zqu “ C0 ´
1

2
Êz„Qw

␣

∥x ´ Gθ pzq∥2
(
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Variational Autoencoding Training VAE

Estimating ELBO in VAE
The second term is determined more compactly

DKL

`

Qw}N 0
˘

“ Ez„Qw

"

log
Qw pz|xq

N 0 pzq

*

“ Ez„Qw

$

’

’

’

’

&

’

’

’

’

%

log

exp

#

´
ÿ

i

pzi ´ ηw,i pxqq
2

2σ2
w,i pxq

+

ź

i

b

2πσ2
w,i pxq

`?
2π

˘m

exp

#

´
ÿ

i

z2i
2

+

,

/

/

/

/

.

/

/

/

/

-

“ Ez„Qw

#

´
1

2

ÿ

i

«

log σ2
w,i pxq`

pzi ´ ηw,i pxqq
2

σ2
w,i pxq

´z2i

ff+

“ ´
1

2

ÿ

i

log σ2
w,i pxq`1´η2w,i pxq ´ σ2

w,i pxq
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Variational Autoencoding Training VAE

Estimating ELBO in VAE
Let us define this simple function: A p¨q : Rm ÞÑ R is

A puq “
ÿ

i

log
1

ui
` ui

We can then say

The second term is given by

DKL

`

Qw}N 0
˘

“
1

2
A pΣw pxqq `

1

2
∥ηw pxq∥2 ´

m

2

This term only depends on the mean and covariance networks!
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Variational Autoencoding Training VAE

Training VAEs: Risk Function
MLE in VAEs is equivalent to ELBO maximization

max
θ

logL pθq « max
θ

max
w

Êx„Pdata
tELBO pw, θ|xqu

If we drop constants and coefficients, the sample risk reduces to

R pw, θ|xq9 ´ ELBO pw, θ|xq

“ Êz„Qw

␣

∥x ´ Gθ pzq∥2
(

` A pΣw pxqq ` ∥ηw pxq∥2

MLE via ELBO Maximization
MLE training is equivalent to the following empirical risk minimization

min
w,θ

R̂ pw, θq “ min
w,θ

Êx„Pdata
tR pw, θ|xqu
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Variational Autoencoding Training VAE

ELBO Maximization by Gradient Descent
Numerically, we are going to use a gradient-based optimizer which needs

∇wR pw, θ|xq and ∇θR pw, θ|xq

Let’s start looking into∇θR: we can expand the gradient as

∇θR “ ∇θÊz„Qw

␣

∥x ´ Gθ pzq∥2
(

` ∇θA pΣw pxqq
looooooomooooooon

0

`∇θ∥ηw pxq∥2
loooooomoooooon

0

“ Êz„Qw

␣

∇θ∥x ´ Gθ pzq∥2
(

“ Êz„Qw

$

’

&

’

%

∇µ∥x ´ µ∥2
ˇ

ˇ

ˇ

µ“Gθpzq
˝ ∇θGθ pzq

loooomoooon

backpropagation

,

/

.

/

-

This is readily computed by backpropagation over the modelGθ Ë
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Variational Autoencoding Training VAE

ELBO Maximization by Gradient Descent
It’s good to think about it algorithmic

Compute_Grad_Dec(x,Qw,Gθ)

1: Sample a batch of latent samples ␣zℓ : ℓ “ 1, . . . , n
(

fromQw pz|xq2: for ℓ “ 1, . . . , n do3: Pass zℓ forward and backward overGθ4: Use chain rule to compute∇ℓ
“ ∇θ∥x ´ Gθ

´

zℓ
¯

∥2

5: end for6: Estimate gradient w.r.t. decoder as∇θR pw, θ|xq “ mean
␣

∇ℓ
(

7: return Gradient∇θR at sample x
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Variational Autoencoding Training VAE

ELBO Maximization by Gradient Descent
Now, let’s look into∇wR: we can expand the gradient as
∇wR “ ∇wÊz„Qw

␣

∥x ´ Gθ pzq∥2
(

loooooooooooooooomoooooooooooooooon

?

`∇wA pΣw pxqq
looooooomooooooon

backprop

`∇w∥ηw pxq∥2
looooooomooooooon

backprop

Ë Latter two are computed by basic backpropagation
é Former is though not a conventional gradient computation
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Variational Autoencoding Training VAE

ELBO Maximization by Gradient Descent
Note that in the former, the gradient cannot go inside the expectation

∇wEz„Qw

␣

∥x ´ Gθ pzq∥2
(

“ ∇w

ż

∥x ´ Gθ pzq∥2Qw pz|xqdz

“

ż

∥x ´ Gθ pzq∥2∇wQw pz|xqdz

‰ Ez„Qw

␣

∇w∥x ´ Gθ pzq∥2
(

Naively speaking, we have

Ez„Qw

␣

∇w∥x ´ Gθ pzq∥2
(

“ 0

But indeed z is a stochastic function ofw through its distribution!
+ How can we compute the gradient of a stochastic function?!
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Variational Autoencoding Gradient of Stochastic Functions

Gradient of Stochastic Function
We can formulate the problem as follows: say we have

R pwq “ Ez„Qw tF pzqu

FunctionR pwq depends onw through samples z „ Qw:its gradient reads

∇wR pwq “ ∇wEz„Qw tF pzqu

“ ∇w

ż

F pzqQw pzq dz

which can be computed by two tricks; namely,
1 Importance Sampling
2 Reparameterization Trick
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Variational Autoencoding Gradient of Stochastic Functions

Importance Sampling
Let’s open up the expression: we can write

∇wR pwq “

ż

F pzq∇wQwpzq dz

We can use the simple fact that

∇w logQw pzq “
∇wQw pzq

Qw pzq

Using this fact, we can write the gradient as

∇wR pwq “

ż

F pzq∇wlogQw pzqQw pzqdz

“ Ez„Qw tF pzq∇w logQw pzqu
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Variational Autoencoding Gradient of Stochastic Functions

Importance Sampling
Computing Gradient by Importance Sampling
For any function F and distributionQw, we can estimate gradient as

∇wEz„Qw tF pzqu “ Êz„Qw tF pzq∇w logQw pzqu

ImpSampling(Qw)

1: Sample a batch of samples ␣zℓ : ℓ “ 1, . . . , n
(

fromQw pzq2: for ℓ “ 1, . . . , n do3: Pass zℓ forward and backward over logQw4: end for5: Estimate the gradient as∇wR “ mean
␣

F
`

zℓ
˘

∇w logQw

`

zℓ
˘(

6: return Gradient∇wR
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Variational Autoencoding Gradient of Stochastic Functions

Reparameterization Trick
There is also an alternative trick: say we could find some ε „ Q0 such that

z “ fw pεq

is distributed by z „ Qw: we can then write

∇wR pwq “ ∇wEz„Qw tF pzqu

“ ∇wEε„Q0 tF pfw pεqqu

“ Eε„Q0

$

’

&

’

%

∇zF pz “fw pεqq ˝ ∇wfw pεq
loooomoooon

backprop

,

/

.

/

-

which we can be readily estimated by sampling
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Variational Autoencoding Gradient of Stochastic Functions

Reparameterization Trick
Computing Gradient by Reparameterization
Assuming z “ fw pεq for some ε „ Q0, we can estimate gradient as

∇wEz„Qw tF pzqu “ Êε„Q0 t∇zF pz “fw pεqq ˝ ∇wfw pεqu

ReparamTrick(Qw ú fw, Q0)

1: Sample a batch of samples ␣εℓ : ℓ “ 1, . . . , n
(

fromQ02: for ℓ “ 1, . . . , n do3: Pass εℓ forward and backward over fw4: end for5: Estimate the gradient as∇wR “ mean
␣

∇zF
`

fw
`

εℓ
˘˘

˝ ∇wfw
`

εℓ
˘(

6: return Gradient∇wR
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Variational Autoencoding Gradient of Stochastic Functions

Training VAE: Reparameterization Trick
Back to our problem: we need to compute

∇wEz„Qw

␣

∥x ´ Gθ pzq∥2
(

We note that for a given x, we can build z „ Qw pz|xq from ε „ N 0 as

z “ ηw pxq `
a

Σw pxq ε

So we can use reparameterization trick to estimate this gradient with

Êε„N 0

!

∇z∥x ´ Gθ pzq∥2 ˝

”

∇wηw pxq ` ε ˝ ∇w

a

Σw pxq

ı)

which is computed by samplingË
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Variational Autoencoding Gradient of Stochastic Functions

Training with ELBO Maximization
Recall that we needed

∇wR pw, θ|xq and ∇θR pw, θ|xq

which are now given by
‚ With respect to θ, we use standard backpropagation

∇θR “ Êz„Qw

␣

∇µ∥x ´ Gθ pzq∥2 ˝ ∇θGθ pzq
(

‚ With respect tow, we use backpropagation and reparameterization

∇wR “ ∇wÊz„Qw

␣

∥x ´ Gθ pzq∥2
(

loooooooooooooooomoooooooooooooooon

reparameterization

`∇wA pΣw pxqq
looooooomooooooon

backprop

`∇w∥ηw pxq∥2
looooooomooooooon

backprop
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Variational Autoencoding Summary

VAE: Training Loop
Train_VAE(Qw:Enc,Pθ:Dec)
1: Initiate the decoder Pθ ” Gθ and encoderQw ” pηw,Σwq with some θ andw2: for multiple epochs do3: Sample a batch of data samples

␣

xj : j “ 1, . . . , n
(

fromD4: for j “ 1, . . . , n do5: Pass xj forward the encoder to compute ηj andΣj

6: Sample
␣

εℓ : ℓ “ 1, . . . , k
(

fromN 0 and compute latent zℓ “ ηj
`

?
Σjεℓ

7: Compute∇wRj by backpropagation and reparameterization with εℓ8: for ℓ “ 1, . . . , k do9: Pass latent zℓ forward and backward the decoder10: end for11: Compute∇θR
j averaging backpropagation on decoder12: end for13: Updatew using Opt_avg

␣

∇wRj
(

14: Update θ using Opt_avg
␣

∇θR
j
(

15: end for16: return trained encoder pηw,Σwq and decoderGθ
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Variational Autoencoding Summary

VAE: Generation
Sample_VAE(Gw:Dec)

1: Sample latent z „ N 0

2: Compute mean value µ “ Gw pzq3: Sample ε „ N 0

4: Compute generated sample as x “ µ ` ε5: return Sample x
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Variational Autoencoding Summary

Comparing VAEs to Vanilla AEs
+ Why we call them autoencoder?! It looks different than what we do with

vanilla AEs!
– Indeed, vanilla AEs are the special case of them

Consider the case where we set the encoder to be deterministic
Qw pz|xq “

#

1 z “ ηw pxq

0 z ‰ ηw pxq

if we forget about the KL divergence in the loss, we have

R pw, θ|xq “ Êz„Qw

␣

∥x ´ Gθ pzq∥2
(

“ ∥x ´ Gθ pηw pxqq∥2
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Variational Autoencoding Summary

Comparing VAEs to Vanilla AEs
This sample loss

R pw, θ|xq “ ∥x ´ Gθ pηw pxqq∥2

describes a vanilla AE with deterministic encoder and decoder

ηw pxqx Gθ pzqz x̂ “ Gθ pηw pxqq

Intuitive Connection to AEs
VAE is an AE with probabilistic encoder and decoder
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Variational Autoencoding Summary

VAEs: Wrap Up
In a nutshell, VAEs

‚ use a probabilistic generator to sample data distribution
‚ invoke variational inference to implicitly maximize likelihood

ë an encoder learns the posterior latent distribution
ë MLE is performed by maximizing ELBO
ë reparameterization trick is invoked to estimate gradient

As compared to GANs
Ë VAEs are more stable while training
Ë VAEs are able to compute latent representation of data

ë Trained encoder can encode data samples in latent space
é Samples of VAE are less sharp as compared to GAN

ë This is due to probabilistic generation in VAEs

Next stop: some well-known VAEs
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