Deep Generative Models Chapter 5: Variational Inference and VAEs

Ali Bereyhi

ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering University of Toronto

Summer 2025

Recap: Probabilistic Generator

Let's get back to our original problem: we have a probabilistic generator

$$z \xrightarrow{} G_{\theta}(z) \xrightarrow{} \mu \xrightarrow{} \mathcal{N}(\mu, 1) \xrightarrow{} x \sim P_{\theta}(x|z)$$
$$P_{w}(x|z)$$

Mean μ is computed from latent $z \leadsto x$ is sampled from $\mathcal{N}(\mu, 1)$

Latent-space Generator

The sample x is generated conditionally from latent z as

$$P_{\theta}\left(x|z\right) = \mathcal{N}\left(G_{\theta}\left(z\right), 1\right)$$

Recap: Sampling Probabilistic Generator

Sampling is exactly as in flow-based models

- **1** Sample latent as $z \sim \mathcal{N}(0, 1) \equiv \mathcal{N}^0$
- 2 Pass forward latent through the model as $\mu = G_{\theta}(z)$
- **3** Sample data as $x \sim \mathcal{N}(\mu, 1)$

 - rightarrow Compute $x = \mu + \varepsilon$

3/38

MLE Training: Formulation

Let's consider training via MLE: say we have a batch of data samples

$$\mathbb{D} = \left\{ x^j \sim P_{\text{data}} : j = 1, \dots, n \right\}$$

In MLE we maximize log-likelihood which is

$$\begin{aligned} \max_{\theta} \log \mathcal{L} \left(\theta \right) &= \max_{\theta} \frac{1}{n} \sum_{j} \log P_{\theta} \left(x^{j} \right) \\ &= \max_{\theta} \hat{\mathbb{E}}_{x \sim P_{\text{data}}} \left\{ \log P_{\theta} \left(x \right) \right\} \\ &= \max_{\theta} \hat{\mathbb{E}}_{x \sim P_{\text{data}}} \left\{ \log \int P_{\theta} \left(x | z \right) P \left(z \right) \mathrm{d}z \right\} \end{aligned}$$

to handle this challenging computation, we developed ELBO

4/38

MLE Training via Variational Inference

Computational ELBO

Variational inference indicates that

$$\log P_{\theta}\left(x^{j}\right) = \max_{\mathbf{w}} \text{ELBO}_{\theta, x^{j}}\left(Q_{\mathbf{w}}\right)$$

for some computational model $Q_{\mathbf{w}}\left(z|x^{j}
ight)$

- + Why do we index ELBO by θ and x^j ?
- Well! Just write the ELBO down

Recall that ELBO is given by

$$\text{ELBO}_{\boldsymbol{\theta}, x^{j}}\left(Q_{\mathbf{w}}\right) = \mathbb{E}_{z \sim Q_{\mathbf{w}}}\left\{\log P_{\boldsymbol{\theta}}\left(x^{j} | z\right)\right\} - D_{\text{KL}}\left(Q_{\mathbf{w}} \| \mathcal{N}^{0}\right)$$

which obviously depends on the generator $P_{m{ heta}}$ and data sample x^j

MLE Training via Variational Inference

Let us now represent sample ELBO estimate computed at x as

ELBO
$$(\mathbf{w}, \boldsymbol{\theta} | \boldsymbol{x}) = \hat{\mathbb{E}}_{z \sim Q_{\mathbf{w}}} \{ \log P_{\boldsymbol{\theta}} (\boldsymbol{x} | \boldsymbol{z}) \} - D_{\mathrm{KL}} (Q_{\mathbf{w}} \| \mathcal{N}^{0})$$

We maximize this sample ELBO over ${f w}$ to find log-likelihood; thus, MLE is

$$\max_{\theta} \log \mathcal{L}(\theta) = \max_{\theta} \hat{\mathbb{E}}_{x \sim P_{\text{data}}} \{ \log P_{\theta}(x) \}$$
$$= \max_{\theta} \hat{\mathbb{E}}_{x \sim P_{\text{data}}} \{ \max_{\mathbf{w}} \text{ELBO}(\mathbf{w}, \theta | x) \}$$

Let's think algorithmic about computing log-likelihood

6/38

Full Loop via Variational Inference

$$\log \mathcal{L}\left(\boldsymbol{\theta}\right) = \hat{\mathbb{E}}_{x \sim P_{\text{data}}} \left\{ \max_{\mathbf{w}} \text{ELBO}\left(\mathbf{w}, \boldsymbol{\theta} | x\right) \right\}$$

Compute_LL(\mathbf{w}, θ):

1: Sample a batch of data samples
$$\{x^j : j = 1, ..., n\}$$

2: for j = 1, ..., n do

- 3: Sample a batch of latent samples $\{z^{\ell} : \ell = 1, \dots, r\}$ from $Q_{\mathbf{w}}$
- 4: Compute ELBO $(\mathbf{w}, \theta | x^j)$ over latent batch
- 5: **for** *T* iterations **do**
- 6: Iterate with $\nabla_{\mathbf{w}} \text{ELBO}(\mathbf{w}, \theta | x^j)$ to maximize ELBO at \mathbf{w}^*
- 7: end for

8: Set ELBO^{*j*}
$$\leftarrow$$
 ELBO ($\mathbf{w}^{\star}, \boldsymbol{\theta} | \boldsymbol{x}^{j}$)

9: end for

- 10: Estimate log-likelihood as $\log \mathcal{L} \leftarrow \text{mean} \{ \text{ELBO}^j \}$
- 11: return log-likelihood estimate $\log \mathcal{L}$

This means that log-likelihood optimization requires a two-tier loop

→ This is computationally expensive

7/38

Approximate Loop via Variational Inference

Using Jensen's inequality: we can write

$$\hat{\mathbb{E}}_{x \sim P_{\text{data}}} \left\{ \max_{\mathbf{w}} \text{ELBO}\left(\mathbf{w}, \boldsymbol{\theta} | x\right) \right\} \geq \max_{\mathbf{w}} \hat{\mathbb{E}}_{x \sim P_{\text{data}}} \left\{ \text{ELBO}\left(\mathbf{w}, \boldsymbol{\theta} | x\right) \right\}$$

This means that the MLE loop can be bounded as

$$\max_{\theta} \log \mathcal{L}(\theta) = \max_{\theta} \hat{\mathbb{E}}_{x \sim P_{\text{data}}} \left\{ \max_{\mathbf{w}} \text{ELBO}(\mathbf{w}, \theta | x) \right\}$$
$$\geq \max_{\theta} \max_{\mathbf{w}} \hat{\mathbb{E}}_{x \sim P_{\text{data}}} \left\{ \text{ELBO}(\mathbf{w}, \theta | x) \right\}$$

Hoping that this bound is tight enough, we could simplify the MLE loop as

$$\max_{\theta} \log \mathcal{L}\left(\theta\right) \approx \max_{\theta} \max_{\mathbf{w}} \hat{\mathbb{E}}_{x \sim P_{\text{data}}} \left\{ \text{ELBO}\left(\mathbf{w}, \theta | x\right) \right\}$$

Approximate Loop via Variational Inference

This makes log-likelihood optimization a classical risk minimization with

$$\hat{R}(\mathbf{w}, \boldsymbol{\theta}) = \hat{\mathbb{E}}_{x \sim P_{\text{data}}} \left\{ -\text{ELBO}\left(\mathbf{w}, \boldsymbol{\theta} | x\right) \right\}$$

which can be readily performed by a single gradient iteration loop

9/38

Completing Computational Model

Though the training is formulated: there are a few questions

- + How should we build the model $Q_{\mathbf{w}}(z|x)$?
- It needs to be a probability distribution computed from a sample x
- It should marginalize to prior latent distribution
- + How easy is it to compute the required sample gradients, i.e.,

 $\nabla_{\mathbf{w}} \text{ELBO}\left(\mathbf{w}, \boldsymbol{\theta} | x\right)$ and $\nabla_{\boldsymbol{\theta}} \text{ELBO}\left(\mathbf{w}, \boldsymbol{\theta} | x\right)$

- Well! They are mostly trivial except a tiny tricky part

Probabilistic Generation: Decoding

The computational model given by this probabilistic generation describes an

Autoencoder (AE) \equiv encoder $x \mapsto z$ + decoder $z \mapsto x$

$$z \longrightarrow \qquad P_{\theta}\left(x|z\right) \longrightarrow x$$

Decoder

The decoder is indeed probabilistic generator $P_{\theta}(x|z)$ which consists of

1 a computational model $G_{\theta} : \mathbb{R}^m \mapsto \mathbb{R}^d$

2 a Gaussian sampler that decodes latent z by sampling

$$P_{\theta}\left(x|\boldsymbol{z}\right) = C \exp\left\{-\frac{\|x - G_{\theta}\left(\boldsymbol{z}\right)\|^{2}}{2}\right\}$$

Learning Latent Distribution: Encoding

To computationally model $Q_{\mathbf{w}}(z|x)$: we note that this model

- takes x as input and returns a $Q_{\mathbf{w}}\left(z|x
 ight)$ that we can sample
- approximates P(z|x) meaning that it should marginalize to latent prior

$$\int Q_{\mathbf{w}}(z|x) P_{\text{data}}(x) \, \mathrm{d}x \approx \int P(z|x) P_{\text{data}}(x) \, \mathrm{d}x = P(z)$$

The model should be capable of giving such approximation!

This model describes an encoder which encodes x to its latent representation

$$x \longrightarrow Q_{\mathbf{w}}(z|x) \longrightarrow z \longrightarrow P_{\theta}(x|z) \longrightarrow x$$

•

Modeling Encoder

+ How can we design a model that marginalizes to \mathcal{N}^0 ?!

Recall: Universality of Gaussian Mixtures

Gaussian mixture model describes a dense set of distributions

Let's take another look: we want to set $Q_{\mathbf{w}}(z|x)$ such that

$$\hat{P}_{\mathbf{w}}\left(z\right) = \int Q_{\mathbf{w}}\left(z|x\right) P_{\text{data}}\left(x\right) \mathrm{d}x$$

be a good approximator of latent prior $\mathcal{N}^0 \leadsto$ setting

$$Q_{\mathbf{w}}(\boldsymbol{z}|\boldsymbol{x}) = \mathcal{N}(\eta_{\mathbf{w}}(\boldsymbol{x}), \Sigma_{\mathbf{w}}(\boldsymbol{x}))$$

we get a Gaussian mixture $\hat{P}_{\mathbf{w}}\left(z\right)$

 $\,\,\,\downarrow\,\,$ It approximates most distributions including \mathcal{N}^0

Encoding via Gaussian Model

- + How can we design a model that marginalizes to \mathcal{N}^0 ?!
- We just set it to be a Gaussian whose mean and covariance are learned

Encoder

The encoder $Q_{\mathbf{w}}\left(\boldsymbol{z}|\boldsymbol{x}\right)$ consists of

- (1) a computational model $\eta_{\mathbf{w}}: \mathbb{R}^d \mapsto \mathbb{R}^m$ that computes the mean
- 2 a computational model $\Sigma_{w} : \mathbb{R}^{d} \mapsto \mathbb{R}^{m \times m}$ that computes covariance
 - Covariance should be positive semi-definite
 - → The model should always compute a positive semi-definite output
- \bigcirc a Gaussian sampler that encodes data x by sampling

$$Q_{\mathbf{w}}(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\eta_{\mathbf{w}}(\mathbf{x}), \Sigma_{\mathbf{w}}(\mathbf{x}))$$

Encoding via Gaussian Model

Such a model is easy to realize

Encoding: Building Positive-Definite Covariance

In practice: we usually learn a diagonal covariance

$$\Sigma = \operatorname{diag}\left\{\sigma_1^2, \dots, \sigma_m^2\right\}$$

This corresponds to z with independent entries whose distribution is

$$Q_{\mathbf{w}}\left(z|x\right) = \frac{1}{\prod_{i} \sqrt{2\pi\sigma_{\mathbf{w},i}^{2}\left(x\right)}} \exp\left\{-\sum_{i} \frac{\left(z_{i} - \eta_{\mathbf{w},i}\left(x\right)\right)^{2}}{2\sigma_{\mathbf{w},i}^{2}\left(x\right)}\right\}$$

This is preferred computationally because

- It is readily realized using $\Sigma_{\mathbf{w}} : \mathbb{R}^{d} \mapsto \mathbb{R}^{m}_{+}$ and setting $\Sigma = \operatorname{diag} \{\Sigma_{\mathbf{w}}(x)\}$
- It guarantees that the covariance is positive-definite
- It is much easier to sample from
 - \downarrow since the entries of *z* are independent

Variational AE: End-to-End Architecture

General VAE

A variational autoencoder (VAE) consists of

- an encoder which learns latent by sampling a conditional Gaussian
- a decoder that generates from latent by sampling a Gaussian generator

$$x \longrightarrow \boxed{Q_{\mathbf{w}}\left(z|x\right)} \xrightarrow{} z \longrightarrow \boxed{P_{\theta}\left(x|z\right)} \xrightarrow{} x$$

Attention

Similar to discriminator of GANs, the encoder in VAEs

- → is used to implicitly compute the log-likelihood
- └→ is used only for training and is not required for generation

However, a trained encoder can also give us latent representation if we want

VAE: Few Notes

- + Should we always consider Gaussian encoder and decoder?
- It's not a must! We can use other encoder and decoders, but
 - └→ universality tells us that Gaussian is good enough
 - Gaussian distribution is easy to sample Gaussian distribution is easy to sample
- + Why don't we learn the covariance in decoder?
- In theory we can do that! We don't do it in practice though since
 - → we might face numerical challenges while training VAEs
 - → We will get some idea about this in Assignment 3

Training VAEs: ELBO Estimate

For training, we maximize ELBO: the ELBO estimate is given by

ELBO
$$(\mathbf{w}, \boldsymbol{\theta} | \boldsymbol{x}) = \hat{\mathbb{E}}_{z \sim Q_{\mathbf{w}}} \{ \log P_{\boldsymbol{\theta}} (\boldsymbol{x} | \boldsymbol{z}) \} - D_{\mathrm{KL}} (Q_{\mathbf{w}} \| \mathcal{N}^{0})$$

Let's look at the first term: considering Gaussian generator, we have

$$\log P_{\theta}\left(x|z\right) = \log C + \log \exp\left\{-\frac{\|x - G_{\theta}\left(z\right)\|^{2}}{2}\right\}$$
$$= C' + -\frac{\|x - G_{\theta}\left(z\right)\|^{2}}{2}$$

Therefore, the first term is given by

$$\hat{\mathbb{E}}_{z \sim Q_{\mathbf{w}}} \{ \log P_{\theta} \left(x | z \right) \} = C_0 - \frac{1}{2} \hat{\mathbb{E}}_{z \sim Q_{\mathbf{w}}} \left\{ \| x - G_{\theta} \left(z \right) \|^2 \right\}$$

Deep Generative Models

Estimating ELBO in VAE

The second term is determined more compactly

$$D_{\mathrm{KL}}\left(Q_{\mathbf{w}}\|\mathcal{N}^{0}\right) = \mathbb{E}_{z\sim Q_{\mathbf{w}}}\left\{\log\frac{Q_{\mathbf{w}}\left(z|x\right)}{\mathcal{N}^{0}\left(z\right)}\right\}$$
$$= \mathbb{E}_{z\sim Q_{\mathbf{w}}}\left\{\log\frac{\exp\left\{-\sum_{i}\frac{\left(z_{i}-\eta_{\mathbf{w},i}\left(x\right)\right)^{2}}{2\sigma_{\mathbf{w},i}^{2}\left(x\right)}\right\}}{\prod_{i}\sqrt{2\pi\sigma_{\mathbf{w},i}^{2}\left(x\right)}}\frac{\left(\sqrt{2\pi}\right)^{m}}{\exp\left\{-\sum_{i}\frac{z_{i}^{2}}{2}\right\}}\right\}$$
$$= \mathbb{E}_{z\sim Q_{\mathbf{w}}}\left\{-\frac{1}{2}\sum_{i}\left[\log\sigma_{\mathbf{w},i}^{2}\left(x\right)+\frac{\left(z_{i}-\eta_{\mathbf{w},i}\left(x\right)\right)^{2}}{\sigma_{\mathbf{w},i}^{2}\left(x\right)}-z_{i}^{2}\right]\right\}$$
$$= -\frac{1}{2}\sum_{i}\log\sigma_{\mathbf{w},i}^{2}\left(x\right)+1-\eta_{\mathbf{w},i}^{2}\left(x\right)-\sigma_{\mathbf{w},i}^{2}\left(x\right)$$

Training VAE

Estimating ELBO in VAE

Let us define this simple function: $A(\cdot) : \mathbb{R}^m \mapsto \mathbb{R}$ is

$$A\left(u\right) = \sum_{i} \log \frac{1}{u_{i}} + u_{i}$$

We can then say

The second term is given by $D_{\mathrm{KL}}(Q_{\mathbf{w}} \| \mathcal{N}^{0}) = \frac{1}{2} A(\Sigma_{\mathbf{w}}(x)) + \frac{1}{2} \| \eta_{\mathbf{w}}(x) \|^{2} - \frac{m}{2}$

This term only depends on the mean and covariance networks!

Training VAE

Training VAEs: Risk Function

MLE in VAEs is equivalent to ELBO maximization

$$\max_{\theta} \log \mathcal{L}(\theta) \approx \max_{\theta} \max_{\mathbf{w}} \hat{\mathbb{E}}_{x \sim P_{\text{data}}} \left\{ \text{ELBO}\left(\mathbf{w}, \theta | x\right) \right\}$$

If we drop constants and coefficients, the sample risk reduces to

$$R(\mathbf{w}, \boldsymbol{\theta} | \boldsymbol{x}) \propto - \text{ELBO}(\mathbf{w}, \boldsymbol{\theta} | \boldsymbol{x})$$
$$= \hat{\mathbb{E}}_{\boldsymbol{z} \sim Q_{\mathbf{w}}} \left\{ \| \boldsymbol{x} - \boldsymbol{G}_{\boldsymbol{\theta}}(\boldsymbol{z}) \|^2 \right\} + A\left(\boldsymbol{\Sigma}_{\mathbf{w}}(\boldsymbol{x}) \right) + \| \boldsymbol{\eta}_{\mathbf{w}}(\boldsymbol{x}) \|^2$$

MLE via ELBO Maximization

MLE training is equivalent to the following empirical risk minimization

$$\min_{\mathbf{w},\boldsymbol{\theta}} \hat{R}(\mathbf{w},\boldsymbol{\theta}) = \min_{\mathbf{w},\boldsymbol{\theta}} \hat{\mathbb{E}}_{x \sim P_{\text{data}}} \left\{ R\left(\mathbf{w},\boldsymbol{\theta}|x\right) \right\}$$

Numerically, we are going to use a gradient-based optimizer which needs

 $\nabla_{\mathbf{w}} R(\mathbf{w}, \boldsymbol{\theta} | \boldsymbol{x})$ and $\nabla_{\boldsymbol{\theta}} R(\mathbf{w}, \boldsymbol{\theta} | \boldsymbol{x})$

Let's start looking into $\nabla_{\theta} R$: we can expand the gradient as

$$\begin{split} \nabla_{\theta} R &= \nabla_{\theta} \hat{\mathbb{E}}_{z \sim Q_{\mathbf{w}}} \left\{ \| x - G_{\theta} \left(z \right) \|^{2} \right\} + \underbrace{\nabla_{\theta} A \left(\Sigma_{\mathbf{w}} \left(x \right) \right)}_{0} + \underbrace{\nabla_{\theta} \| \eta_{\mathbf{w}} \left(x \right) \|^{2}}_{0} \\ &= \hat{\mathbb{E}}_{z \sim Q_{\mathbf{w}}} \left\{ \nabla_{\theta} \| x - G_{\theta} \left(z \right) \|^{2} \right\} \\ &= \hat{\mathbb{E}}_{z \sim Q_{\mathbf{w}}} \left\{ \nabla_{\mu} \| x - \mu \|^{2} \Big|_{\mu = G_{\theta}(z)} \circ \underbrace{\nabla_{\theta} G_{\theta} \left(z \right)}_{\text{Backpropagation}} \right\} \end{split}$$

This is readily computed by backpropagation over the model G_{θ} 🗸

It's good to think about it algorithmic

 $\texttt{Compute}_{\texttt{Grad}}_{\texttt{Dec}}(x, Q_{w}, G_{\theta})$

- 1: Sample a batch of latent samples $\{z^{\ell} : \ell = 1, ..., n\}$ from $Q_{w}(z|x)$
- 2: for $\ell=1,\ldots,n$ do
- 3: Pass z^{ℓ} forward and backward over G_{θ}
- 4: Use chain rule to compute $\nabla^{\ell} = \nabla_{\theta} \|x G_{\theta}(z^{\ell})\|^2$
- 5: end for
- 6: Estimate gradient w.r.t. decoder as $\nabla_{\theta} R(\mathbf{w}, \theta | x) = \text{mean} \{ \nabla^{\ell} \}$
- 7: return Gradient $\nabla_{\theta} R$ at sample x

Now, let's look into $\nabla_{w} R$: we can expand the gradient as

$$\nabla_{\mathbf{w}}R = \underbrace{\nabla_{\mathbf{w}}\hat{\mathbb{E}}_{z \sim Q_{\mathbf{w}}}\left\{\|x - G_{\theta}\left(z\right)\|^{2}\right\}}_{\textbf{?}} + \underbrace{\nabla_{\mathbf{w}}A\left(\Sigma_{\mathbf{w}}\left(x\right)\right)}_{\text{Backprop}} + \underbrace{\nabla_{\mathbf{w}}\|\eta_{\mathbf{w}}\left(x\right)\|^{2}}_{\text{Backprop}}$$

- Latter two are computed by basic backpropagation
- **×** Former is though **not** a conventional gradient computation

Note that in the former, the gradient cannot go inside the expectation

$$\nabla_{\mathbf{w}} \mathbb{E}_{z \sim Q_{\mathbf{w}}} \left\{ \| x - G_{\boldsymbol{\theta}}(z) \|^{2} \right\} = \nabla_{\mathbf{w}} \int \| x - G_{\boldsymbol{\theta}}(z) \|^{2} Q_{\mathbf{w}}(z|x) \, \mathrm{d}z$$
$$= \int \| x - G_{\boldsymbol{\theta}}(z) \|^{2} \nabla_{\mathbf{w}} Q_{\mathbf{w}}(z|x) \, \mathrm{d}z$$
$$\neq \mathbb{E}_{z \sim Q_{\mathbf{w}}} \left\{ \nabla_{\mathbf{w}} \| x - G_{\boldsymbol{\theta}}(z) \|^{2} \right\}$$

Naively speaking, we have

$$\mathbb{E}_{z \sim Q_{\mathbf{w}}}\left\{\nabla_{\mathbf{w}} \| \boldsymbol{x} - G_{\boldsymbol{\theta}}(z) \|^{2}\right\} = 0$$

But indeed z is a stochastic function of w through its distribution!

+ How can we compute the gradient of a stochastic function?!

Gradient of Stochastic Function

We can formulate the problem as follows: say we have

 $R\left(\mathbf{w}\right) = \mathbb{E}_{\boldsymbol{z} \sim Q_{\mathbf{w}}}\left\{F\left(\boldsymbol{z}\right)\right\}$

Function $R(\mathbf{w})$ depends on \mathbf{w} through samples $z \sim Q_{\mathbf{w}}$:its gradient reads

$$\nabla_{\mathbf{w}} R(\mathbf{w}) = \nabla_{\mathbf{w}} \mathbb{E}_{z \sim Q_{\mathbf{w}}} \{F(z)\}$$
$$= \nabla_{\mathbf{w}} \int F(z) Q_{\mathbf{w}}(z) dz$$

which can be computed by two tricks; namely,

- Importance Sampling
- **2** Reparameterization Trick

Importance Sampling

Let's open up the expression: we can write

$$abla_{\mathbf{w}}R(\mathbf{w}) = \int F(z) \nabla_{\mathbf{w}}Q_{\mathbf{w}}(z) \,\mathrm{d}z$$

We can use the simple fact that

$$\nabla_{\mathbf{w}} \log Q_{\mathbf{w}}\left(z\right) = \frac{\nabla_{\mathbf{w}} Q_{\mathbf{w}}\left(z\right)}{Q_{\mathbf{w}}\left(z\right)}$$

Using this fact, we can write the gradient as

$$\nabla_{\mathbf{w}} R(\mathbf{w}) = \int F(z) \nabla_{\mathbf{w}} \log Q_{\mathbf{w}}(z) Q_{\mathbf{w}}(z) dz$$
$$= \mathbb{E}_{z \sim Q_{\mathbf{w}}} \{F(z) \nabla_{\mathbf{w}} \log Q_{\mathbf{w}}(z)\}$$

Importance Sampling

Computing Gradient by Importance Sampling

For any function F and distribution $Q_{\rm w}$, we can estimate gradient as

$$\nabla_{\mathbf{w}} \mathbb{E}_{\boldsymbol{z} \sim Q_{\mathbf{w}}} \left\{ F\left(\boldsymbol{z}\right) \right\} = \hat{\mathbb{E}}_{\boldsymbol{z} \sim Q_{\mathbf{w}}} \left\{ F\left(\boldsymbol{z}\right) \nabla_{\mathbf{w}} \log Q_{\mathbf{w}}\left(\boldsymbol{z}\right) \right\}$$

 $ImpSampling(Q_w)$

1: Sample a batch of samples $\{z^{\ell} : \ell = 1, ..., n\}$ from $Q_{w}(z)$

2: for
$$\ell = 1, \ldots, n$$
 do

- 3: Pass z^{ℓ} forward and backward over $\log Q_{w}$
- 4: end for
- 5: Estimate the gradient as $\nabla_{\mathbf{w}} R = \text{mean} \left\{ F\left(\boldsymbol{z}^{\boldsymbol{\ell}}\right) \nabla_{\mathbf{w}} \log Q_{\mathbf{w}}\left(\boldsymbol{z}^{\boldsymbol{\ell}}\right) \right\}$
- 6: return Gradient $\nabla_{\mathbf{w}} R$

Reparameterization Trick

There is also an alternative trick: say we could find some $\varepsilon \sim Q_0$ such that

 $\boldsymbol{z} = f_{\mathbf{w}}\left(\boldsymbol{\varepsilon}\right)$

is distributed by $z \sim Q_w$: we can then write

$$\begin{aligned} \nabla_{\mathbf{w}} R\left(\mathbf{w}\right) &= \nabla_{\mathbf{w}} \mathbb{E}_{z \sim Q_{\mathbf{w}}} \left\{ F\left(z\right) \right\} \\ &= \nabla_{\mathbf{w}} \mathbb{E}_{\varepsilon \sim Q_{0}} \left\{ F\left(f_{\mathbf{w}}\left(\varepsilon\right)\right) \right\} \\ &= \mathbb{E}_{\varepsilon \sim Q_{0}} \left\{ \nabla_{z} F\left(z = f_{\mathbf{w}}\left(\varepsilon\right)\right) \circ \underbrace{\nabla_{\mathbf{w}} f_{\mathbf{w}}\left(\varepsilon\right)}_{\text{Backprop}} \right\} \end{aligned}$$

which we can be readily estimated by sampling

Reparameterization Trick

Computing Gradient by Reparameterization

Assuming $\pmb{z} = f_{\mathbf{w}}\left(\varepsilon \right)$ for some $\varepsilon \sim Q_{0}$, we can estimate gradient as

$$\nabla_{\mathbf{w}} \mathbb{E}_{z \sim Q_{\mathbf{w}}} \left\{ F\left(z\right) \right\} = \hat{\mathbb{E}}_{\varepsilon \sim Q_{0}} \left\{ \nabla_{z} F\left(z = f_{\mathbf{w}}\left(\varepsilon\right)\right) \circ \nabla_{\mathbf{w}} f_{\mathbf{w}}\left(\varepsilon\right) \right\}$$

 $\texttt{ReparamTrick}(Q_{\mathbf{w}} \longleftrightarrow f_{\mathbf{w}}, Q_{\mathbf{0}})$

1: Sample a batch of samples $\{\varepsilon^{\ell} : \ell = 1, \dots, n\}$ from Q_0

2: for
$$\ell = 1, \ldots, n$$
 do

3: Pass
$$\varepsilon^{\ell}$$
 forward and backward over f_{w}

- 4: end for
- 5: Estimate the gradient as $\nabla_{\mathbf{w}} R = \text{mean} \left\{ \nabla_{\mathbf{z}} F \left(f_{\mathbf{w}} \left(\varepsilon^{\ell} \right) \right) \circ \nabla_{\mathbf{w}} f_{\mathbf{w}} \left(\varepsilon^{\ell} \right) \right\}$
- 6: return Gradient $\nabla_{\mathbf{w}} R$

Training VAE: Reparameterization Trick

Back to our problem: we need to compute

$$\nabla_{\mathbf{w}} \mathbb{E}_{z \sim Q_{\mathbf{w}}} \left\{ \| x - G_{\boldsymbol{\theta}} \left(z \right) \|^2 \right\}$$

We note that for a given x, we can build $z \sim Q_w(z|x)$ from $\varepsilon \sim \mathcal{N}^0$ as

$$\boldsymbol{z} = \eta_{\mathbf{w}}\left(\boldsymbol{x}\right) + \sqrt{\Sigma_{\mathbf{w}}\left(\boldsymbol{x}\right)} \boldsymbol{\varepsilon}$$

So we can use reparameterization trick to estimate this gradient with

$$\mathbb{\hat{E}}_{\varepsilon \sim \mathcal{N}^{0}}\left\{ \nabla_{\mathbf{z}} \| x - G_{\theta}\left(\mathbf{z}\right) \|^{2} \circ \left[\nabla_{\mathbf{w}} \eta_{\mathbf{w}}\left(x\right) + \varepsilon \circ \nabla_{\mathbf{w}} \sqrt{\Sigma_{\mathbf{w}}\left(x\right)} \right] \right\}$$

which is computed by sampling \checkmark

Training with ELBO Maximization

Recall that we needed

 $abla_{\mathbf{w}} R\left(\mathbf{w}, \boldsymbol{\theta} | \boldsymbol{x}\right) \quad \text{and} \quad \nabla_{\boldsymbol{\theta}} R\left(\mathbf{w}, \boldsymbol{\theta} | \boldsymbol{x}\right)$

which are now given by

• With respect to θ , we use standard backpropagation

$$\nabla_{\boldsymbol{\theta}} R = \hat{\mathbb{E}}_{z \sim Q_{\mathbf{w}}} \left\{ \nabla_{\boldsymbol{\mu}} \| \boldsymbol{x} - G_{\boldsymbol{\theta}} \left(z \right) \|^{2} \circ \nabla_{\boldsymbol{\theta}} G_{\boldsymbol{\theta}} \left(z \right) \right\}$$

• With respect to \mathbf{w} , we use backpropagation and reparameterization

$$\nabla_{\mathbf{w}}R = \underbrace{\nabla_{\mathbf{w}}\hat{\mathbb{E}}_{z \sim Q_{\mathbf{w}}}\left\{\|x - G_{\theta}\left(z\right)\|^{2}\right\}}_{\text{reparameterization}} + \underbrace{\nabla_{\mathbf{w}}A\left(\Sigma_{\mathbf{w}}\left(x\right)\right)}_{\text{Backprop}} + \underbrace{\nabla_{\mathbf{w}}\|\eta_{\mathbf{w}}\left(x\right)\|^{2}}_{\text{Backprop}}$$

Summarv

VAE: Training Loop

 $Train_VAE(Q_w: Enc, P_{\theta}: Dec)$ 1: Initiate the decoder $P_{\theta} \equiv G_{\theta}$ and encoder $Q_{\mathbf{w}} \equiv (\eta_{\mathbf{w}}, \Sigma_{\mathbf{w}})$ with some θ and \mathbf{w} 2: for multiple epochs do Sample a batch of data samples $\{x^j : j = 1, ..., n\}$ from \mathbb{D} 3: 4: for j = 1, ..., n do Pass x^{j} forward the encoder to compute η^{j} and Σ^{j} 5: Sample $\{\varepsilon^{\ell} : \ell = 1, ..., k\}$ from \mathcal{N}^0 and compute latent $z^{\ell} = \eta^j + \sqrt{\Sigma^j} \varepsilon^{\ell}$ 6: Compute $\nabla_{\mathbf{w}} R^j$ by backpropagation and reparameterization with ε^{ℓ} 7: 8: for $\ell = 1, \ldots, k$ do Pass latent z^{ℓ} forward and backward the decoder 9: 10: end for 11: Compute $\nabla_{\theta} R^{j}$ averaging backpropagation on decoder 12: end for 13: Update w using Opt_avg $\{\nabla_{\mathbf{w}} R^j\}$ Update θ using Opt_avg $\{\nabla_{\theta} R^j\}$ 14: 15[.] end for 16: return trained encoder $(\eta_{\mathbf{w}}, \Sigma_{\mathbf{w}})$ and decoder G_{θ}

Summarv

VAE: Generation

$Sample_VAE(G_w:Dec)$

- 1: Sample latent $z \sim \mathcal{N}^0$
- 2: Compute mean value $\mu = G_{\mathbf{w}}(\boldsymbol{z})$
- 3: Sample $\varepsilon \sim \mathcal{N}^0$
- 4: Compute generated sample as $x = \mu + \varepsilon$
- 5: return Sample x

Comparing VAEs to Vanilla AEs

- + Why we call them autoencoder?! It looks different than what we do with vanilla AEs!
- Indeed, vanilla AEs are the special case of them

Consider the case where we set the encoder to be deterministic

$$Q_{\mathbf{w}}\left(z|x\right) = \begin{cases} 1 & z = \eta_{\mathbf{w}}\left(x\right) \\ 0 & z \neq \eta_{\mathbf{w}}\left(x\right) \end{cases}$$

if we forget about the KL divergence in the loss, we have

$$R\left(\mathbf{w}, \boldsymbol{\theta} | \boldsymbol{x}\right) = \hat{\mathbb{E}}_{z \sim Q_{\mathbf{w}}} \left\{ \|\boldsymbol{x} - \boldsymbol{G}_{\boldsymbol{\theta}}\left(\boldsymbol{z}\right)\|^{2} \right\}$$
$$= \|\boldsymbol{x} - \boldsymbol{G}_{\boldsymbol{\theta}}\left(\boldsymbol{\eta}_{\mathbf{w}}\left(\boldsymbol{x}\right)\right)\|^{2}$$

Comparing VAEs to Vanilla AEs

This sample loss

$$R(\mathbf{w}, \boldsymbol{\theta} | \boldsymbol{x}) = \| \boldsymbol{x} - G_{\boldsymbol{\theta}} \left(\eta_{\mathbf{w}} \left(\boldsymbol{x} \right) \right) \|^{2}$$

describes a vanilla AE with deterministic encoder and decoder

Intuitive Connection to AEs

VAE is an AE with probabilistic encoder and decoder

VAEs: Wrap Up

In a nutshell, VAEs

- use a probabilistic generator to sample data distribution
- invoke variational inference to implicitly maximize likelihood
 - □ an encoder learns the posterior latent distribution
 - → MLE is performed by maximizing ELBO
 - → reparameterization trick is invoked to estimate gradient

As compared to GANs

- VAEs are more stable while training
- VAEs are able to compute latent representation of data
 - □ Trained encoder can encode data samples in latent space
- X Samples of VAE are less sharp as compared to GAN
 - → This is due to probabilistic generation in VAEs

Next stop: some well-known VAEs

38/38