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Recap: Probabilistic Generator

Let's get back to our original problem: we have a probab:hstlc generator

________________________________

Mean 1. is computed from latent z v~ x is sampled from N (., 1)

Latent-space Generator

The sample x is generated conditionally from latent z as

By (z]2) = N (Go (2),1)
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Recap: Sampling Probabilistic Generator

Sampling is exactly as in flow-based models
@ Sample latent as z ~ N (0,1) = N©
L, Simply generate m independent Gaussian scalars
@ Pass forward latent through the model as ;1 = Gy (2)
© Sample data as x ~ N (p, 1)

L, Simply sample & ~ N©
L, Computex = 1+ ¢

il Gol2) p (D— o~ N (1)
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Implicit MLE via Variational Inference
MLE Training: Formulation

Let's consider training via MLE: say we have a batch of data samples
D= {:Uj ~ Piata 1 J = 1,...,n}

In MLE we maximize log-likelihood which is
1 .
1 0) = — Y log Py (2’
max og L (0) mgtxn; og Py (/)
= maxE,p,,, {log P (1)}
= max Eovpy.,. {log JP@ (z]|2) P (2) dz}

to handle this challenging computation, we developed ELBO
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Variational Autoencoding Implicit MLE via Variational Inference

MLE Training via Variational Inference

Computational ELBO

Variational inference indicates that
log Py (/) = max ELBOj .5 (Qw)
for some computational model Q. (z|27)

+ Why do we index ELBO by 0 and z7?
- Well! Just write the ELBO down
Recall that ELBO is given by

ELBOy i (Qw) = Ez~q,, {log Py (27|2)} — Dx1, (Qw|N?)

which obviously depends on the generator P, and data sample 7

Deep Generative Models Chapter 5: VAEs © A. Bereyhi 2025 5/38



Implicit MLE via Variational Inference
MLE Training via Variational Inference

Let us now represent sample ELBO estimate computed at x as
ELBO (w,0]z) = E.~q,, {log Py (z|2)} — Dk, (Qw|N?)
We maximize this sample ELBO over w to find log-likelihood; thus, MLE is
max log £ (0) = max E.py.,. {log Py (z)}

= max Eoupy.,. {max ELBO (w, G\x)}
w

Let’s think algorithmic about computing log-likelihood
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Variational Autoencoding Implicit MLE via Variational Inference

Full Loop via Variational Inference
log £(0) = Epp,.,. {max ELBO (w, 0|x)}

Compute_LL(w,0) :

1: Sample a batch of data samples {z7 : j = 1,...,n}
2: forj=1,...,ndo
3:  Sample a batch of latent samples {z* : £ = 1,...,7} from Qw

4:  Compute ELBO (w,0|z7) over latent batch

5: for T iterations do

6: Iterate with V. ELBO (w, 0|z7) to maximize ELBO at w*
7:  end for

8:  Set ELBO’ « ELBO (w*,0|z7)

9: end for

10: Estimate log-likelihood as log £ < mean {ELBO’ }
11: return log-likelihood estimate log £

This means that log-likelihood optimization requires a two-tier loop

L, This is computationally expensive

Deep Generative Models Chapter 5: VAEs © A. Bereyhi 2025

7/38



Implicit MLE via Variational Inference
Approximate Loop via Variational Inference

Using Jensen's inequality: we can write
B Py {max ELBO (w, 0]2) } > max E,p,, {ELBO (w, 62)}
This means that the MLE loop can be bounded as
max log £ (0) = max Eovpy.,. {m‘gx ELBO (w, 9|x)}
> max max [Ew~Pdata {ELBO (w, 0|z)}

Hoping that this bound is tight enough, we could simplify the MLE loop as

max log £ (0) ~ max max E.~p,.. {ELBO (w,0|z)}
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Variational Autoencoding Implicit MLE via Variational Inference

Approximate Loop via Variational Inference

Approx_Compute_LL(w,0) :

1: Sample a batch of data samples {z’ : j = 1,...,n}

2: forj=1,...,ndo

3:  Sample a batch of latent samples {z* : £ = 1,...,7} from Qw

4:  Compute ELBO (w,0|z7) over latent batch

5:  Set ELBO’ — ELBO (w,9|wj) #no inner optimization loop
6: end for

7: Estimate log-likelihood as log £ < mean {ELBO’ }

8: return log-likelihood estimate log L

This makes log-likelihood optimization a classical risk minimization with

~ A~

R (W7 0) = Ei~Piaca {_ELBO (W, 9|:L‘)}

which can be readily performed by a single gradient iteration loop
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Completing Computational Model

Though the training is formulated: there are a few questions
+ How should we build the model Q+, (z|x)?
It needs to be a probability distribution computed from a sample x

It should marginalize to prior latent distribution

+

How easy is it to compute the required sample gradients, i.e.,

VwELBO (w.0|z)  and  V¢ELBO (w.0|z)

Well! They are mostly trivial except a tiny tricky part
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Probabilistic Generation: Decoding
The computational model given by this probabilistic generation describes an

Autoencoder (AE) = encoder © — z + decoder z — x

z Py (z|2) x

Decoder

The decoder is indeed probabilistic generator Py (x|z) which consists of
@ a computational model Gy : R™ — R?
® a Gaussian sampler that decodes latent z by sampling

Py (z2) = oexp{_w}
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Learning Latent Distribution: Encoding

To computationally model Q (z|x): we note that this model
* takes x as input and returns a Q-+, (z|z) that we can sample
e approximates P (z|x) meaning that it should marginalize to latent prior

JQW (z]2) Pyata () dz ~ JP (z|x) Pyata (x) dz = P (2)

The model should be capable of giving such approximation!

This model describes an encoder which encodes x to its latent representation
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Modeling Encoder

+ How can we design a model that marginalizes to N/V?!

Recall: Universality of Gaussian Mixtures

Gaussian mixture model describes a dense set of distributions

Let’s take another look: we want to set Qv (z|x) such that
Py (2) = JQW (z|x) Pyata (z) dz
be a good approximator of latent prior NV «~~ setting

Qw (Z|$) =N (nw (‘1) ) Y (x)>

we get a Gaussian mixture Py, (z)

L, It approximates most distributions including \/°
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Variational Autoencoding VAE Architecture

Encoding via Gaussian Model

+ How can we design a model that marginalizes to N/V?!

- We just set it to be a Gaussian whose mean and covariance are learned

Encoder
The encoder Qy, (z|z) consists of

@ a computational model 7, : R? — R that computes the mean
@ a computational model ¥, : R% — R*™ that computes covariance

! Covariance should be positive semi-definite
L, The model should always compute a positive semi-definite output

® a Gaussian sampler that encodes data x by sampling

Qw (2]z) = N (nw (7) , Bw (2))

Deep Generative Models Chapter 5: VAEs © A. Bereyhi 2025 14/38



Encoding via Gaussian Model

Such a model is easy to realize

+ z2~N(nX)

€
)

P
TR
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Variational Autoencoding VAE Architecture

Encoding: Building Positive-Definite Covariance
In practice: we usually learn a diagonal covariance

2

m

Ezdiag{af,...,a

This corresponds to z with independent entries whose distribution is

_ o § = s ()" }
H4 /27['0 P { 203v,i (:C)

This is preferred computationally because
* Itis readily realized using ¥, : RY — R and setting ¥ = diag {Zw ()}
e |t guarantees that the covariance is positive-definite

® |t is much easier to sample from
L, since the entries of z are independent

Qw (z|2)
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Variational AE: End-to-End Architecture

General VAE

A variational autoencoder (VAE) consists of
® an encoder which learns latent by sampling a conditional Gaussian

® g decoder that generates from latent by sampling a Gaussian generator

! Attention
Similar to discriminator of GANSs, the encoder in VAEs
L, is used to implicitly compute the log-likelihood
L, is used only for training and is not required for generation
However, a trained encoder can also give us latent representation if we want
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VAE: Few Notes

+

Should we always consider Gaussian encoder and decoder?
It's not a must! We can use other encoder and decoders, but

L, universality tells us that Gaussian is good enough
L, Gaussian distribution is easy to sample

+

Why don’t we learn the covariance in decoder?
In theory we can do that! We don't do it in practice though since

L. we might face numerical challenges while training VAEs
L, We will get some idea about this in Assignment 3
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Training VAEs: ELBO Estimate

For training, we maximize ELBO: the ELBO estimate is given by
ELBO (w,0]z) = E.~q,, {log Py (z|2)} — Dk, (Qw|N?)

Let’s look at the first term: considering Gaussian generator, we have

_ 2
log Py (x|z) = log C' + log exp {—w}
oy lz=Go)?
2
Therefore, the first term is given by
. 1.
E.~qu {108 Py (2]2)} = Co = 5Eunan, {llo = Go (2)%}
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Estimating ELBO in VAE

The second term is determined more compactly

_ (Zi—??w,i(x))Q
exp{ L7502, ) } (var)"

= Ez~Qw log

~Eeo. {—%2 llogosv,i <x>+W—z§] }

)

:——Zlogav” )+1=n i () — 0o ()
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Estimating ELBO in VAE
Let us define this simple function: A () : R™ — Ris

1
A (u) =Zlog;+ui

We can then say

The second term is given by

Dit, (QulA) = 54 (S (@) + S llnw @) =5

This term only depends on the mean and covariance networks!
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Training VAEs: Risk Function
MLE in VAEs is equivalent to ELBO maximization

max log £ () ~ MAX max E,-p,.. {ELBO (w,0|z)}
If we drop constants and coefficients, the sample risk reduces to

R (w,0|x)oc — ELBO (w, 0|z)
= Exvou {llz = Go ()17} + A(Zw (2)) + [l ()11

MLE via ELBO Maximization
MLE training is equivalent to the following empirical risk minimization

miéll—:i (w,0) = miél Eopy,, {R(wW,0|z)}
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ELBO Maximization by Gradient Descent

Numerically, we are going to use a gradient-based optimizer which needs
VwR (w,0|z) and  VyR(w,0|z)

Let’s start looking into Vy R: we can expand the gradient as

VoR = VoEangn, {lo — Go (2)]2} + VoA (S () + Vol (2)]2

0 0
= E.nq. {Vollz — Go (2)]1}

= [E2~Qw V;LH‘T - /U||2

o VyGy(z)
—_——

BaCckpPropaaation

pn=Go(z)

This is readily computed by backpropagation over the model Gy «
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ELBO Maximization by Gradient Descent
It’s good to think about it algorithmic

Compute_Grad_Dec(x,Qw,Go)
1: Sample a batch of latent samples {=* : ¢ = 1,...,n} from Qw (z|z)

2: for{=1,...,ndo

3 Pass =* forward and backward over G

4:  Use chain rule to compute V' = Vy|z — Gy (ze) I

5

6

7

: end for
: Estimate gradient w.r.t. decoder as Vo R (w, 0|z) = mean {V*}
: return Gradient VR at sample x
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ELBO Maximization by Gradient Descent

Now, let’s look into V, R: we can expand the gradient as

VwR = YW[EZ~QW {||x -Gy (Z)||2} + YWA (Ew (z)) + YWHWW (@“f

Y Y
7 BackpProp BackpProp

« Latter two are computed by basic backpropagation
% Former is though not a conventional gradient computation
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ELBO Maximization by Gradient Descent

Note that in the former, the gradient cannot go inside the expectation
VwEsngu {llz = Go (2)|*} = VwJHx — Gy (2)IPQw (2]x) dz

= [llz = Go DIPTu s (el d:
# E.v0, {Vwlz — Go (2)[1*}
Naively speaking, we have
S {VWH$ — Gy (z)”2} =0

But indeed z is a stochastic function of w through its distribution!
+ How can we compute the gradient of a stochastic function?!
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Gradient of Stochastic Functions
Gradient of Stochastic Function
We can formulate the problem as follows: say we have
R(w) = E..q, {F(2)}
Function R (w) depends on w through samples = ~ (Q,:its gradient reads

VwR (W) = Vy EZNQW{F( )}

—VJ z)dz

which can be computed by two tricks; namely,
@ Importance Sampling
@® Reparameterization Trick
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Importance Sampling

Let's open up the expression: we can write

W) = [F(2) VuQu(:) =
We can use the simple fact that
VwQw (z)
VwlogQw (2) = ——————=
5 =0

Using this fact, we can write the gradient as

VuR(w) = [F(2) Valog Qu () Qu ()02
=E. ., {F(2) Vwlog Qw (2)}
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Variational Autoencoding Gradient of Stochastic Functions

Importance Sampling

Computing Gradient by Importance Sampling

For any function F' and distribution (Q,, we can estimate gradient as

VwEinqu {F (2)} = Esnq {F (2) Vi log Quw (2))}

ImpSampling (Qw)

1: Sample a batch of samples {=" : ¢ = 1,...,n} from Qw (2)
:for/=1,...,ndo

Pass =" forward and backward over log Q.
end for
: Estimate the gradient as V, R = mean { F (2") Vy, log Qw (=)}
: return Gradient VR
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Reparameterization Trick

There is also an alternative trick: say we could find some € ~ @) such that
7= fw(e)

is distributed by z ~ Q: we can then write

VwR (W) = VwE.q, {F (2)}
= VWEE~QO {F (fw (5))}

=Ecg, | V:F (z =fw (€)) o Vw fw (&)
BACkProp

which we can be readily estimated by sampling
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Variational Autoencoding Gradient of Stochastic Functions

Reparameterization Trick

Computing Gradient by Reparameterization

Assuming z = fy, (¢) for some ¢ ~ @)y, we can estimate gradient as

VarEingu AF (2)} = Eeegy {VF (2 =fu (6)) 0 Vawfuw (6)}

ReparamTrick(Qw <~ fw, Qo)

1: Sample a batch of samples {<“ : ¢ = 1,...,n} from Qo
:fori=1,...,ndo

Pass ¢ forward and backward over [,
end for
: Estimate the gradient as V. R = mean {V.F (fuw (¢)) o Vi fw (¢°)}
: return Gradient VR
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Gradient of Stochastic Functions
Training VAE: Reparameterization Trick

Back to our problem: we need to compute

VwE:~0. {llz — Go ()|}

We note that for a given x, we can build z ~ Q, (z|x) frome ~ N as

2 =nw (T) + V2w (z) €

So we can use reparameterization trick to estimate this gradient with

E. o {vzux Gy (2)|? o [vwnw (2) + £ 0 Vor/ By (x)]}

which is computed by sampling
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Gradient of Stochastic Functions
Training with ELBO Maximization

Recall that we needed
VwR (w,0|z) and  VyR(w,0|z)

which are now given by

e With respect to 0, we use standard backpropagation
ViR = E.vqu {Villz = Go (2)|° 0 Vo Gy (2)}

e With respect to w, we use backpropagation and reparameterization

VwR = VuEsrq, {llr = Go (2)]*} + VA (Bw (2)) + Vwlliw (@)1

g
reparameterization Backprop Backprop
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VAE: Training Loop

Train_VAE(Qw :Enc, Pp:Dec)

1: Initiate the decoder Py = G and encoder QQw, = (1w, Xw ) with some 6 and w
2: for multiple epochs do

3:  Sample a batch of data samples {7 : j = 1,...,n} from D

4 forj=1,...,ndo

5: Pass x7 forward the encoder to compute 1’ and ¥7

6: Sample {* : ¢ = 1,...,k} from N and compute latent 2 = 1)’ + v/Sie’
7.

8

Compute V+, R? by backpropagation and reparameterization with &*
fort=1,...,kdo

9: Pass latent =" forward and backward the decoder
10: end for
11: Compute VR’ averaging backpropagation on decoder
12:  end for

13:  Update w using Opt_avg {Vw R’}

14:  Update 0 using Opt_avg {VoR’}

15: end for

16: return trained encoder (1w, ¥w ) and decoder G
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VAE: Generation

Sample_VAE (G :Dec)

: Sample latent z ~ N°

: Compute mean value ;1 = G (2)

: Sample e ~ N°

: Compute generated sampleas x = 1 + ¢
: return Sample x

aua b wWwNE
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Comparing VAEs to Vanilla AEs

+ Why we call them autoencoder?! It looks different than what we do with

vanilla AEs!
- Indeed, vanilla AEs are the special case of them

Consider the case where we set the encoder to be deterministic

_ 1 z=nw(x)
O (1) {0 Z # N ()

if we forget about the KL divergence in the loss, we have

R (w,0]z) = Eoxq, {llz — Go ()|}
= [lz = Gy (11w ()|
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Comparing VAEs to Vanilla AEs

This sample loss

R(w,0|z) = ||z — G (nw (2))|

describes a vanilla AE with deterministic encoder and decoder

Ao oA w0 -G

Intuitive Connection to AEs

VAE is an AE with probabilistic encoder and decoder
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VAEs: Wrap Up

In a nutshell, VAEs

® use a probabilistic generator to sample data distribution
¢ invoke variational inference to implicitly maximize likelihood

L, an encoder learns the posterior latent distribution
L, MLE is performed by maximizing ELBO
L, reparameterization trick is invoked to estimate gradient

As compared to GANs
« VAEs are more stable while training
« VAEs are able to compute latent representation of data
L, Trained encoder can encode data samples in latent space

% Samples of VAE are less sharp as compared to GAN
L, This is due to probabilistic generation in VAEs

‘ Next stop: some well-known VAEs ‘
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