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Bayesian Setting: Evidence

Let's rewrite the challenge in a Bayesian setting: we know the prior latent
distribution P (z) and generator P (x|z) looking for the so-called evidence

Evidence

In Bayesian formulation, the distribution of a known sample x marginalized over
the latent is called evidence

P(z) = JP (z|2)P (z)dz

+ Isn’t this evidence simply the likelihood?!

- Sure! When it is computed with a learnable model Py, (x|z), it computes
the likelihood of the model
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Computing Evidence: Direct Approach

‘ Complexity of direct evidence computation is exponential in latent size

To see this consider a discrete latent z € Z" with Z having C' elements: the
evidence in this case is computed as

P(x) = P(x2) P ()

which requires C"* additions!
Moral of Story

Direct computation of the evidence is not tractable even though we know both
prior P (z) and generator P (x|z) = direct sampling from a general distribution
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Computing Evidence: Monte Carlo

An alternative approach is to estimate evidence via Monte Carlo: we note that

JP (z|2)P (2)dz = E,.p() { P (z]2)}

We can hence estimate the evidence as

~

P(z)=E. pu){P(z ZP (x])

for samples z; ~ P (z) v this is tractable as we have P (z)and P (x|z), but
L, P (z|z) typically peaks close to x and is very small other points
L, Only few samples z; ~ P (z) would be useful P (x|z;)

Moral of Story

MC estimate is very high variance and needs a huge set of samples, i.e., huge n
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Computing of Evidence by Importance Sampling

There is an intuitive remedy to reduce variance of MC estimate: assume we
know @) (z|z) whose samples are good for the given x; then,

we may use samples z; ~ () (z|z) to estimate evidence

+ But in marginalization, we average over P (z) not some () (z|x)! Right?!
- Right! But we can do a simple modification!

P () =J (2]2)P dz—fP (z2) ) Q (2]z)d=
i

We can now use samples of () (z|z) to estimate evidence P (x)
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Importance Sampling

Importance Sampling

We can estimate the evidence as

with z; sampled from our good distribution z; ~ Q (z|z)

The core idea is that samples z; ~ @ (z|x) are more important
L, z; ~ @ (z|x) are in the region where P (x|z;) is rather large
L, Samples z; ~ @) (z|z) result in useful samples P (x|z;)

Thus, the evidence estimator has less variance
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Variational Inference ELBO

Importance Sampling: Good Distribution for Sampling

+ But, what is this good distribution Q) (z|x)?!
- ldeally, the posterior P (z|x)!

If we set Q (z|x) = P (z|z); then, each sample reads

So, only single sample is enough to estimate evidence with zero variance!

Good Distribution for Importance Sampling

A good choice of () (z|x) is the one that is close to posterior P (z|x)
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Variational Inference ELBO

Importance Sampling: Learning Objective

! Attention
Note that the posterior is given as

P (z[2) P ()

P =
(Z|£L‘) P (.’B) evidence

whose computation is as complex as computing evidence

+ How should we find a good () (z|x) at the end?!
- We try to learn it by approximating P (z|x)!
+ But how can we do this?! We don’t know P (z|x) in the first place!

- We do it by an implicit approach v~ variational inference
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Variational Inference: Right Distribution

Let’s say we have a class of distributions () defined on latent spacel: we can
learn the best choice of () for importance sampling as

Q‘*I = argmin Dk, (Q|xHP|x)
Q (o)

The key challenge is though that we don’t know P (-|x)

Let’s expand this divergence a bit

D017~ [ S} ., fn 2L
Q

We later learn Q by a computational model
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Variational Inference: Right Distribution

We can now use the chain rule to write

Dx1 (Qel P) = Ezng,, {log %}
Q(#l2) P (x)
= B~ {bg W}

=E.<q, {log QP(?S) + log Iz (glc|z) + log P (ac)}

Let’s look at each expression inside the expectation individually
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Variational Inference: Right Distribution

The fist term is a KL divergence

Enq {10g Q;?S) } = Dk (Qo] P:)

which we can estimate easily

@ Collect samples z; ~ ) (z|x)

@ Compute the distribution at each sample, i.e., Q) (z;|z)

© Compute latent distribution at each sample as well, i.e., P (z;)
The estimate of this term is then given by

Q)] _ Ly QL)

P (z) n - P (%)

ZA)KL (Q|z”Pz) = [AEz~Q\w {log
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Variational Inference: Right Distribution

The second term is

1
E. g, {1og W} — —E.-q, {log P (a]2)}

which we can again easily estimate

@ Collect samples as z; ~ Q) (z|x)
® Compute generator at each sample, i.e., P (z;|z)
We then estimate this term as

—E.~q,, {log P (z[2)} = —*ElogP ()
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Variational Inference: Right Distribution

The third term is indeed the log-evidence
Eovoy {log P ()} = [ log P (2)Q () d:

=log P (x) fQ (z]lx)dz =log P ()

|
1

Putting all three terms together

Dx (Qzl|Pe) = DL (Qol P:) — Ezng), {log P (]2)} + log P (z)

This offers a tractable way for estimating the right distribution!
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ELBO: Evidence Lower Bound

Recall that we were looking for

er - ar%min Dk, (Q|zHP7c>

|z

We can use the expansion to write
Ql, = ar%min Dxr (Q| P:) — E.~q,, {log P (z[2)} + log P (x)
£

= argmin D, (Q,|P:) — E.~q,, {log P (z[2)}

|z

= argmax

|

E.~q, {log P (z]2)} — Dk, (Q|g;HPz)

The objective on this maximization can be estimated ~~~ @), can be learned!
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ELBO: Evidence Lower Bound

ELBO: Evidence Lower Bound
For a given ()|, the ELBO is defined as

ELBO (Q\w) = EZ~Q\I {log P (z|2)} — Dkr (Q|xHPz)

which can be estimated by sampling from (). as

ELBO (Q).) = [AEZNQ‘I {log P (z|2)} — Dk1, (Qp|P:)

The key feature of ELBO is that it is maximized via the distribution that lies in
minimum KL divergence of posterior P (z|x), i.e.,

argmin Dxr, (Q‘IHPM) = argmax ELBO (Q‘x)
Q

|z |z
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ELBO Properties: Bounding Evidence
It is easy to see that ELBO is really a lower bound on log-evidence: recall
DKL (Q\xHPz) = DKL (Q|zHPz) — EZ~Q‘Z {logP (:c\z)} + logP (.T)

—~ELBO(Qy.)

We can sort things out and write

log P (x) = Dxr, (Q.|P.) + ELBO (Qy,)
No matter what Q) is v~ we always have Dy, (Q,|P,) =0

ELBO: Bounding Evidence

For any distribution (|,, ELBO bounds the log-evidence from below, i.e.,

log P (z) = ELBO (Q|,)
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ELBO Properties: Optimal ELBO = Log-Likelihood

Let's look again at the identity and think about ideal case
log P (x) = Dk1, (Q.] P.) + ELBO (Q)

if ELBO is ideally optimized «~~ D1, (erupx) ~0
L, This means that the optimal ELBO touches log-evidence

L, Recall that log-evidence computes log-likelihood for us

ELBO: Optimal ELBO = Log-Likelihood

Assuming true posterior P, belongs to class of distributions described by (),

log P (x) = 18X ELBO (Qy,)
|z
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Variational Inference: Wrap Up

Let us now summarize: consider a setting in which we know
@ prior latent distribution P (=), and
@ the conditional generator P (z|z)

We want to compute the evidence = likelihood P (x)

Solution via Variational Inference

@ Find a good estimator of posterior by maximizing the ELBO

Q‘*x = argmax ELBO (Q‘x)
Q

|z
® Use importance sampling to compute the evidence

P(@}

P(z) = EZ~Q|*I {P(:C|Z)Q* (z]z)
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Variational Inference Computational Formulation

Approximating Evidence Computationally

+ How can we implement variational inference is practice?
- We use a computational model!

We first consider a computational model for |, = Qw

VI(P,:latent prior, F,,:model, x:data)
1: Let Qw be a computational model for latent distribution
2: for multiple epochs do
3:  Sample a batch of latent samples {27 : j = 1,...,n} from Qw

4: forj=1,...,ndo )
. . Qw 27

5 Compute ELBO’ = log P (x|zj) —log T

6 Backpropagate over Qs to compute V., ELBO?

7 end for

8:  Update w using Opt_avg { V. ELBO’}

9: end for

10: return trained distribution Qw
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Approximating Evidence Computationally

We then use the trained model to estimate evidence by importance sampling

VI_Evidence (Qw)

1: Sample a batch of latent samples {27 : j = 1,...,n} from Quw
2: forj=1,...,ndo

. N P (7
3:  Compute P’ = P (m|zj) (=)

Qw (27)
4: end for . N
5: Estimate evidence as P (x) < mean {P’ }

6: return Evidence estimator P (z)
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Implicit MLE via Variational Inference

Variational inference provides us a tractable way to train a
computational probabilistic generator

Say we have a probabilistic Py (x|z): MLE trains this model as
max log Py (x) = max log JP@ (z]|2) P (z)dz

which is not tractable! Using variational inference, we can write

max log Py (x) = max max ELBO (Qw)

this leads to the birth of variational autoencoder (VAE) ~~> we check it next
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