Deep Generative Models Chapter 5: Variational Inference and VAEs

Ali Bereyhi

ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering University of Toronto

Summer 2025

Modern Data Generation

Recall that we are looking into modern generative models

modern generative models mainly learn how to sample!

Recall: Generic Model for Generator

Generator Model

Generator model $G_{\mathbf{w}} : \mathbb{R}^m \mapsto \mathbb{R}^d$ is a mapping that maps a latent sample $z \sim P(z)$, typically Gaussian noise, into a data sample

GANs consider deterministic generators

- + Can we also consider a probabilistic generator?!
- Sure! Why not?!
- + But how does it look like?
- Let's build one together!

Modeling Probabilistic Generator

Consider following setting: a model $G_{\mathbf{w}}$ computes some statistics from latent

$$z \xrightarrow{} G_{\mathbf{w}}(z) \xrightarrow{} \mu \xrightarrow{} P(\cdot;\mu) \xrightarrow{} x \sim P_{\mathbf{w}}(x|z)$$
$$P_{\mathbf{w}}(x|z)$$

We use the statistics to specify a distribution $P(x; \mu)$ and sample from it

 $\, \, \downarrow \, \,$ Sample z is drawn as

$$x \sim P\left(x; \mu\right) = P\left(x; G_{\mathbf{w}}\left(z\right)\right)$$

 $\, {igstyle } \,$ The distribution depends on model parameters ${f w}$ and is conditioned on z

$$x \sim P\left(x; \mu\right) \equiv P_{\mathbf{w}}\left(x | \mathbf{z}\right)$$

Probabilistic Generator: Gaussian Example I

Let's look at an example: say $G_{\mathbf{w}} : \mathbb{R}^m \mapsto \mathbb{R}^d$

• Sample a latent *z* and compute a mean value

$$\mu = G_{\mathbf{w}}\left(z\right)$$

Set µ to be the mean of a Gaussian distribution and sample it

 → with identity covariance it's very easy to sample this distribution

$$x \sim P(x;\mu) \equiv \mathcal{N}(\mu,1) = \mathcal{N}(G_{\mathbf{w}}(z),1)$$

We can think of this process as sampling x conditioned to z from $P_{\mathbf{w}}(x|z) = \frac{1}{(2\pi)^{d/2}} \exp\left\{-\frac{\|x - G_{\mathbf{w}}(z)\|^2}{2}\right\}$

5/15

Probabilistic Generator: Gaussian Example II

We can further extend this example: say $G_{\mathbf{w}} : \mathbb{R}^m \mapsto \mathbb{R}^d \times \mathbb{R}^{d \times d}$

• Sample a latent *z* and compute mean and covariance

$$\mu, \Sigma = G_{\mathbf{w}}\left(z\right)$$

Sample a Gaussian distribution with mean μ and covariance Σ

 → with general covariance sampling might need more computation

$$\boldsymbol{x} \sim \boldsymbol{P}\left(\boldsymbol{x};\boldsymbol{\mu},\boldsymbol{\Sigma}\right) \equiv \mathcal{N}\left(\boldsymbol{\mu},\boldsymbol{\Sigma}\right) = \mathcal{N}\left(\boldsymbol{G}_{\mathbf{w}}\left(\boldsymbol{z}\right)\right)$$

We can think of this process as sampling from

$$P_{\mathbf{w}}\left(x|z\right) = \frac{1}{\left(2\pi|\Sigma_{\mathbf{w}}\left(z\right)|\right)^{d/2}} \exp\left\{-\frac{\left(x-\mu_{\mathbf{w}}\left(z\right)\right)^{\mathsf{T}}\Sigma_{\mathbf{w}}^{-1}\left(z\right)\left(x-\mu_{\mathbf{w}}\left(z\right)\right)}{2}\right\}$$

6/15

Probabilistic Generation: General Form

We can formulate a general latent-space probabilistic generation as

Probabilistic Latent-Space Generation

To build a probabilistic latent-space generator

1 Sample latent space as $z \sim P(z)$

- **2** Compute statistics as $\mu = G_{\mathbf{w}}(z)$

3 Sample from
$$P(x; \mu) \equiv P_{\mathbf{w}}(x|z)$$

- Is such model computationally tractable?
- Let's check!

Probabilistic Generation: Practical Setting

Let's take a look at each step

- **1** Sample latent space as $z \sim P(z)$

 - ✓ We set P(z) simply to $\mathcal{N}(0,1)$
- **2** Compute statistics as $\mu = G_{\mathbf{w}}(z)$
 - This is a simple forward pass
- **3** Sample from $P(x; \mu) \equiv P_{\mathbf{w}}(x|z)$

 - ✓ We set $P(x; \mu)$ simply to $\mathcal{N}(\mu, 1)$

Probabilistic Generation in Practice

In practice we work with easy-to-simple distributions \equiv Gaussian

- Wait a moment! Isn't output a Gaussian sample?! Isn't this too limited?!
- Careful! The output is only conditionally Gaussian!

Model Distribution: Example

Consider a scalar example: say $z \sim \text{Unif}[0,1]$ and $G_{\theta} : [0,1] \mapsto \{0,1\}$ is

$$\mu_{ heta}\left(z
ight)=G_{ heta}\left(z
ight)=egin{cases} 0 & z< heta\ 1 & z\geqslant heta\ \end{pmatrix}$$

We set $P(x; \mu)$ to $\mathcal{N}(\mu, 1)$: we thus have

$$P_{\theta}\left(x|z\right) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{\left(x-\mu_{\theta}\left(z\right)\right)^{2}}{2}\right\}$$

This is though the distribution of x for a given z!

Distribution of x is determined by marginalization over latent $P_{\theta}(x) = \int P_{\theta}(x|z) P(z) dz$

Model Distribution: Example

Let's use the marginalization to compute $P_{\theta}(x) \equiv model$ distribution

$$\begin{aligned} P_{\theta}\left(x\right) &= \int_{0}^{1} P_{\theta}\left(x|z\right) P\left(z\right) \mathrm{d}z \\ &= \int_{0}^{1} \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{\left(x-\mu_{\theta}\left(z\right)\right)^{2}}{2}\right\} \cdot 1 \mathrm{d}z \\ &= \int_{0}^{\theta} \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{\left(x-0\right)^{2}}{2}\right\} \mathrm{d}z + \int_{\theta}^{1} \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{\left(x-1\right)^{2}}{2}\right\} \mathrm{d}z \\ &= \frac{\theta}{\sqrt{2\pi}} \exp\left\{-\frac{x^{2}}{2}\right\} + \frac{1-\theta}{\sqrt{2\pi}} \exp\left\{-\frac{\left(x-1\right)^{2}}{2}\right\} \end{aligned}$$

This is a mixture of Gaussian distributions

Model Distribution: Example

Say $\theta = 0.5$: the model distribution is average of the two Gaussians

- $\, {\scriptstyle {\rm L}} \,$ Setting $\theta = 0.1$ gives more weight to unit-mean Gaussian

We can sketch a class of distributions by changing θ

Model Distribution: *Mixture of Gaussians*

In practice, the model distribution is a mixture of infinite Gaussians

$$P_{\mathbf{w}}\left(x\right) = \int P_{\mathbf{w}}\left(x|z\right) P\left(z\right) \mathrm{d}z$$

Here, P(z) is Gaussian itself \rightsquigarrow we can make a large set of dustributions

Universal Model Distribution

Universality of Gaussian Mixtures (informal)

Consider the distribution model on X

$$P_{\mathbf{w}}\left(x\right) = \int P_{\mathbf{w}}\left(x|z\right) P\left(z\right) \mathrm{d}z$$

whose conditional distributions $P_{\mathbf{w}}(x|z)$ are learnable Gaussians: this model describes a dense set of distributions on $\mathbb{X} \leadsto$ for almost any smooth Q(x) there exists a \mathbf{w} that

 $P_{\mathbf{w}}\left(x\right) \approx Q\left(x\right)$

Attention

We could not do this without conditional modeling $P_{\mathbf{w}}(x|z)$

Deep Generative Models

Training via MLE

- Sounds good! How can we then train these probabilistic models?!
- Well, we need to use MLE

The likelihood of the model for a given sample x is

$$P_{\mathbf{w}}(x) = \int P_{\mathbf{w}}(x|z) P(z) dz$$

$$= C \int \exp\left\{-\frac{\|x - G_{\mathbf{w}}(z)\|^2}{2}\right\} \exp\left\{-\frac{\|z\|^2}{2}\right\} dz$$
some constant
$$= C \int \exp\left\{-\frac{\|x - G_{\mathbf{w}}(z)\|^2 + \|z\|^2}{2}\right\} dz$$

 $G_{\mathbf{w}}\left(z
ight)$ is a complex model, e.g., NN \leadsto this is not a tractable task!

MLE Training: Formulating Challenge

Moral of Story

Using a probabilistic generator, we can approximate data distribution very well

→ It's however not tractable to train the model by explicit MLE!

Let's formulate the training challenge: we have access to

- latent distribution P(z), and
- conditional generative model P(x|z)

We intend to compute the marginal generative model which gives us likelihood

$$P(x) = \int P(x|z)P(z) dz$$

We can overcome this challenge using variational inference framework