# Deep Generative Models Chapter 4: Generative Adversarial Networks

### Ali Bereyhi

#### ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering University of Toronto

Summer 2025

# Deep Convolutional GAN: Generator

DCGAN was one of basic architectures with a deep CNN generator<sup>1</sup>



- It uses vanilla GAN to train
- A CNN discriminator is used with Sigmoid output

<sup>&</sup>lt;sup>1</sup>Proposed in 2016

# **DCGAN:** Sample Outputs



## Style GAN: Generator

Style GAN uses a more advanced generator<sup>2</sup>



#### <sup>2</sup>Proposed in 2018

Deep Generative Models

## Style GAN: Sample Outputs



# **BigGAN:** Generator

BigGAN uses residual blocks to build deeper generator<sup>3</sup>



#### <sup>3</sup>Proposed in 2019

Deep Generative Models

## **BigGAN:** Sample Outputs



## **SAGAN:** Generator

### Self-Attention GAN uses attention mechanism at generator<sup>4</sup>



<sup>4</sup>Proposed in 2019

**Deep Generative Models** 

## SAGAN: Sample Outputs



# Wrap Up

### GANs use adversarial networks for generation

- Sampling is similar to flow-based models
  - L→ It is very fast and simple
  - L→ Latent is typically Gaussian
- For training, we solve a min-max game
  - $\lor$  Vanilla min-max  $\equiv$  implicit MLE
  - $\, \, \downarrow \, \,$  Wasserstein min-max  $\equiv$  implicit Wasserstein distance minimization

### GANs have been a real breakthrough

- They are still being state-of-the-art
- They are pretty straightforward to implement

Next Stop: Indirect distribution learning by variational inference