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Wasserstein GAN

W-GAN: Alternative Paradigm
In general a GAN can be built by two networks

‚ Generator that maps latent to data-space
‚ Discriminator that maps generated samples to information for learning

Gw pzqz „ Q x Dϕ pxq y Risk

To train this architecture, we can follow two paradigms
Ë Vanilla GAN which is intuitively inline with a min-max classification game

ë It implicitly maximizes the likelihood ” minimizes the JS divergence
 Wasserstein GAN which is less intuitive

ë It implicitly minimizes the so-called Wasserstein distance

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 2 / 25



Wasserstein GAN Wasserstein Distance

Preliminaries: Coupling Set
To understand Wasserstein GAN paradigm: we need to review a few basic
definitions and get some feeling about them

Coupling Set
Let P and P̂ be two distributions defined on data spaceX: the coupling set of
P and P̂ is defined as

ΠP,P̂ “

!

Q px, x̂q :
ÿ

x̂

Q px, x̂q “ P pxq and
ÿ

x

Q px, x̂q “ P̂ px̂q

)

The coupling set contains all joint distributions whose marginals are P and P̂
‚ Some of distributions have no correlation, e.g.,Q px, x̂q “ P pxqP̂ px̂q

‚ Some could be very correlated, e.g.,
ë If P pxq “ P̂ px̂q, we could set x “ x̂, i.e.,Q px, x̂q “ P pxqδ px ´ x̂q
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Wasserstein Distance
Wasserstein Distance
Wasserstein distance between P and P̂ is defined as

DW

´

P }P̂
¯

“ min
QPΠP,P̂

Epx,x̂q„Q t∥x ´ x̂∥u

Intuitively, Wasserstein distance does the following
1 It looks into all possible distributions whose marginals look like P and P̂
2 It finds the average distance between x and x̂ for each distribution
3 It takes the smallest average distance as the distance between P and P̂

ë Somehow the distance of most correlated case

+ What is special about this metric?
– Let’s see an example
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Wasserstein vs KL and JS: Example
Say we have latent variable z uniformly distributed on p0, 1q, i.e.,1

z „ Unif p0, 1q

Data x is related to z as x “ r0, zs

x lies on a 1D manifold in the 2D space!

We have access to latent and the following generator

For some learnable θ P r´1, 1s, the generator generates x̂ from z as

x̂ “ Gθ pzq “ rθ, zs

Let’s see how various divergence metrics between x and x̂ look like

1This example is taken fromWasserstein GAN paper by M. Arjovsky et al.
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Wasserstein vs KL and JS: Example
Since x̂ “ rθ, zs for θ P r´1, 1s and latent z P r0, 1s, we have

X “ r´1, 1s ˆ r0, 1s

We can also present the data and model distributions as
‚ Data is uniformly distributed on the line x1 “ 0

P pxq “ δ px1q

dirac impulse at x1 “ 0

‚ Model output is uniformly distributed on the line x1 “ θ

P̂θ pxq “ δ px1 ´ θq

dirac impulse at x1 “ θ
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Wasserstein vs KL and JS: Example
For KL divergence, we could write

DKL

´

P }P̂θ

¯

“ Ex„P

#

log
P pxq

P̂θ pxq

+

“

ż 1

0

ż 1

´1
log

δ px1q

δ px1 ´ θq
dx1dx2

‚ If θ “ 0; then, KL divergence reads

DKL

´

P }P̂θ

¯

“

ż 1

0

ż 1

´1
δ px1q log

δ px1q

δ px1q
dx1dx2 “

ż 1

0
log 1dx2 “ 0

‚ If θ ‰ 0; then, KL divergence reads

DKL

´

P }P̂θ

¯

“

ż 1

0

ż 1

´1
δ px1q log

δ px1q

δ px1 ´ θq
loooomoooon

0 for r0´,0`s

dx1dx2 “ `8
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Wasserstein vs KL and JS: Example
So, KL divergence reads

DKL

´

P }P̂θ

¯

“

#

`8 θ ‰ 0

0 θ “ 0

which is minimized when

data distribution P ” model distribution P̂θ

as we expected!

θ

DKL

not really defined ù `8
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Wasserstein vs KL and JS: Example
For JS divergence, we have

DJS

´

P }P̂θ

¯

“ DKL

´

P }AP ,P̂θ

¯

` DKL

´

P̂ }AP ,P̂θ

¯

The average distribution in this case reads

AP ,P̂θ
“

δ px1q ` δ px1 ´ θq

2

‚ If θ “ 0; then, we have

DKL

´

P }AP ,P̂θ

¯

“

ż 1

0

ż 1

´1
δ px1q log

2δ px1q

δ px1q ` δ px1q
dx1dx2

“

ż 1

0
log 1dx2 “ 0
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Wasserstein vs KL and JS: Example
‚ If θ ‰ 0; then, we have

DKL

´

P }AP ,P̂θ

¯

“

ż 1

0

ż 1

´1
δ px1q log

2δ px1q

δ px1q ` δ px1 ´ θq
loooomoooon

0 for r0´,0`s

dx1dx2

“ log 2

We can show thatDKL

´

P̂θ}AP ,P̂

¯

reads the same, i.e.,

DKL

´

P̂θ}AP ,P̂θ

¯

“

#

log 2 θ ‰ 0

0 θ “ 0
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Wasserstein vs KL and JS: Example
So, JS divergence reads

DJS

´

P }P̂θ

¯

“

#

2 log 2 θ ‰ 0

0 θ “ 0

which is again minimized when

data distribution P ” model distribution P̂θ

as we expected!

θ

DJS

defined ù 2 log 2 but no gradient!
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Wasserstein vs KL and JS: Example
For the Wasserstein distance, we have

DW

´

P }P̂θ

¯

“ min
QPΠP,P̂

Epx,x̂q„Q t∥x ´ x̂∥u

Let us compute the expectation of an arbitraryQ

Epx,x̂q„Q t∥r0, zs ´ rθ, zs∥u “ Epx,x̂q„Q t|θ|u “ |θ|

This is independent ofQ; thus, we could say

DW

´

P }P̂θ

¯

“ |θ|

which is again minimized when P“ P̂θ!
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Wasserstein vs KL and JS: Example
All metrics are minimized when P“ P̂θ but look differently against θ

θ

KL is not defined!

JS defined with no gradient!

Wasserstein is well-defined
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Key Observations in Example
From the example, we could say: minimizing all three metrics leads to

model distribution P̂θ converging to data distribution

However, they exhibit different analytical behavior
‚ KL not defined anywhere but at P “ P̂θ

ë It only returns value when we are exactly on data manifold
‚ JS defined everywhere but gives no∇θD to use for training
‚ Wasserstein is smooth giving∇θD everywhere

Moral of Story
It might be better to minimize the Wasserstein distance between the data and
generator distribution instead of KL
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Implicit Distance Minimization
+ But, we did not minimize JS explicitly! Our GAN training was intuitively

derived, as we could not compute the generator distribution! Right?!
– Yes! We did it implicitly with the help of a discriminator
+ How can we minimize Wasserstein distance then? Shall we do this also

implicitly?!
– Right! We can do it using Kantorovich-Rubinstein duality!
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Minimizing Wasserstein Distance
We concluded that GAN implicitly learns

P̂ ‹ “ argmin
P̂

DJS

´

P }P̂
¯

via generatorG: let us know replace this by Wasserstein distance

P̂ ‹ “ argmin
P̂

DW

´

P }P̂
¯

“ argmin
P̂

min
QPΠP,P̂

Epx,x̂q„Q t∥x ´ x̂∥u

This does not seem tractable!
ë It does not sound feasible to searchΠP ,P̂

ë Kantorovich-Rubinstein duality lets us do this indirectly
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Lipschitz Continuity
L-Lipschitz Function
f : X ÞÑ R

m is Lipschitz if for any x and x̂ P X

∥f pxq ´ f px̂q∥ ď L∥x ´ x̂∥

with L being the Lipschitz constant
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Lipschitz Function Space
L-Lipschitz Function Space
The set of all functions f : X ÞÑ R

m that are L-Lipschitz

LL “ tf : f is L-Lipschitzu

U Attention
In practice, we work with computational models of form

fw : X ÞÑ R
m

for such models, we have a set of parametersWL such that

for allw P WL ù fw P LL
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Minimizing Wasserstein Distance
Kantorovich-Rubinstein Duality
Wasserstein distance between P and P̂ is computed as

DW

´

P }P̂
¯

“ max
DPL1

Ex„P tD pxqu ´ Ex„P̂ tD pxqu

Kantorovich-Rubinstein Duality: Computational Modeling
Wasserstein distance between P and P̂ is estimated by modelDϕ as

D̂W

´

P }P̂
¯

“ max
ϕPΦ1

Êx„P tDϕ pxqu ´ Êx„P̂ tDϕ pxqu

with Φ1 is the set of parameters with whichDϕ is 1-Lipschitz
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Minimizing Wasserstein Distance
Back to our problem: we want to minimize Wasserstein distance

P̂ ‹ “ argmin
P̂

DW

´

P }P̂
¯

“ argmin
P̂

max
DPL1

Ex„P tD pxqu ´ Ex„P̂ tD pxqu

We can estimate it by learning a computational discriminatorDϕ

x̂ „ P̂ Dϕ pxq y

x „ P D̂W “ ÊP tyu ´ ÊP̂ tyu

as long as we search over Φ1 to make sure it’s 1-Lipschitz
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Minimizing Wasserstein Distance
+ But, we need to do this implicitly! Right?!
– Exactly! We can use a generator

Sample z „ Q pzq and let x̂G pzq „ P̂ : we find P̂ ‹ implicitly as

G‹ “ argmin
G

max
DPL1

Ex„P tD pxqu ´ Ez„Q tD pG pzqqu

Bingo! This is a GAN with alternative min-max objective

G pzqz „ Q x̂ „ P̂ D pxq y

x „ P D̂W pG,Dq

This is what we call Wasserstein GAN
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Wasserstein GAN: Alternative Paradigm to Train GAN

Gw pzqz „ Q x̂ „ Pw Dϕ pxq y

x „ P LW pw, ϕq

Wasserstein GAN (Computational)
Consider a GAN with generatorGw and discriminatorDϕ which is 1-Lipschitz
for ϕ P Φ1: Wasserstein GAN learns through the min-max game

min
w

max
ϕPΦ1

LW pw, ϕq

with objective function

LW pw, ϕq “ Êx„P tDϕ pxqu ´ Êz„Q tDϕ pGw pzqqu
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W-GAN: Training Loop
Train_WGAN(D:dataset):
1: Initiate the generatorGw and discriminatorDϕ with somew and ϕ2: for multiple epochs do3: Sample a batch of data samples

␣

xj : j “ 1, . . . , n
(

fromD4: Sample latents
␣

zj : j “ 1, . . . , n
(

usingQ and compute x̂j
Ð Gw

`

zj
˘

5: for ξ “ 1, . . . ,Ξ do6: for j “ 1, . . . , n do7: Compute Lj
“ Dϕ

`

xj
˘

´ Dϕ

`

x̂j
˘

8: Backpropagate over discriminator to compute∇ϕLj

9: if ξ “ Ξ then Backpropagate over generator to compute∇wLj

10: end for11: Update ϕ using Opt_avg
␣

∇ϕLj
(

12: end for13: Updatew using Opt_avg
␣

∇wLj
(

14: end for15: return trained generatorGw
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Wasserstein vs Vanilla GAN
Looking at Wasserstein GAN objective

min
w

max
ϕPΦ1

Êx„P tDϕ pxqu ´ Êz„Q tDϕ pGw pzqqu

and comparing it with vanilla GAN
min
w

max
ϕ
Êx„P tlogDϕ pxqu ` Êz„Q tlog p1 ´ Dϕ pGw pzqqqu

we can say
1 Objective does not use cross-entropy anymore, i.e., no log
2 Dϕ in W-GAN does not need to be Sigmoid output anymore
3 Dϕ in W-GAN should be kept 1-Lipschitz
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Imposing Lipschitz Continuity
There are various approaches to restrict discriminator being Lipschitz

1 Weight clipping which is the simplest approach
ë We clip the weights periodically throughout training
ë This way we restrict the variation of the model output

2 Gradient penalty which is more sophisticated
ë We add p∥∇xD pxq∥ ´ 1q

2 as penalty
ë This assures that output variation does not get extremely large

3 Spectral normalization which is again an advanced approach
ë We normalize each layer by its spectral norm

Wℓ Ð
Wℓ

max teig pWℓqu

ë This way we assure the boundedness of the weights
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