Deep Generative Models

Chapter 4: Generative Adversarial Networks
Ali Bereyhi
ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Summer 2025

Deep Generative Models Chapter 4: GANs

mailto:ali.bereyhi@utoronto.ca

W-GAN: Alternative Paradigm

In general a GAN can be built by two networks
® Generator that maps latent to data-space
e Discriminator that maps generated samples to information for learning

To train this architecture, we can follow two paradigms
« Vanilla GAN which is intuitively inline with a min-max classification game
L, It implicitly maximizes the likelihood = minimizes the JS divergence
= Wiasserstein GAN which is less intuitive
L, It implicitly minimizes the so-called Wasserstein distance

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 2/25

Preliminaries: Coupling Set

To understand Wasserstein GAN paradigm: we need to review a few basic
definitions and get some feeling about them

Coupling Set

Let P and P be two distributions defined on data space X: the coupling set of
P and P is defined as

s = {Q): Y0) = Pe) and Y0 (0 5) = P (3}

The coupling set contains all joint distributions whose marginals are P and P
e Some of distributions have no correlation, e.g., Q (x,) = P ()P (i)

e Some could be very correlated, e.g.,
L If P (x) = P (&), wecould set z = e, Q (x,i) = P ()0 (x — &)

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 3/25

Wasserstein GAN Wasserstein Distance

Wasserstein Distance

Wasserstein Distance

Wasserstein distance between P and P is defined as

Dy (PIP) = min Eag {llz —)

P,P

Intuitively, Wasserstein distance does the following
@ It looks into all possible distributions whose marginals look like P and P
@ It finds the average distance between x and Z for each distribution

@ |t takes the smallest average distance as the distance between P and P
L, Somehow the distance of most correlated case

+ What is special about this metric?

- Let’s see an example

Deep Generative Models Chapter 4: GANs

© A. Bereyhi 2025 4/25

Wasserstein vs KL and JS: Example
Say we have latent variable = uniformly distributed on (0, 1), i.e.,*
z ~ Unif (0, 1)

Data z is related to = as x = [0, z]

‘ x lies on a 1D manifold in the 2D space! ‘

We have access to latent and the following generator

For some learnable 0 € [—1, 1], the generator generates i from = as

T=Gy(z)=10,z]

Let’s see how various divergence metrics between x and z look like

IThis example is taken from Wasserstein GAN paper by M. Arjovsky et al.

Deep Generative Models Chapter 4: GANs

© A. Bereyhi 2025 5/25

Wasserstein GAN Wasserstein Distance

Wasserstein vs KL and JS: Example
Since & = [0, z] for 6 € [—1, 1] and latent = € [0, 1], we have

X = [~1,1] x [0, 1]

We can also present the data and model distributions as
e Data is uniformly distributed on the line x1 = 0

P(z) =[0 (1)
dirac impulse at =1 =0
e Model output is uniformly distributed on the line ©1 = 0

Py (w) =[5 (z1 - 0)

dirac impulse at z; =0

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025

6/25

Wasserstein vs KL and JS: Example

For KL divergence, we could write

~ :L‘
DKL (P”Pg) = Ea:~P {log = } J f d:[,‘lda?g
(z))

e |f @ = 0O; then, KL divergence reads

. 1 r1 §(x 1
DKL (PHP@) = J;) J) (5($1) log 6Ex3d$1d$2 = J;) log 1d.1,‘2 =0

e |f 6 # 0; then, KL divergence reads

1 prl
. 0
Dy, (PHP@) = J;) J) 5(1‘1) log %dwldm = 400

0 for [0—,0%]

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 7/25

Wasserstein GAN Wasserstein Distance

Wasserstein vs KL and JS: Example
So, KL divergence reads
N 4+ 0#0
D (P P) _
which is minimized when

data distribution P = model distribution]59

as we expected!

not really defined v +0

0

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025

8/25

Wasserstein vs KL and JS: Example

For JS divergence, we have
DJS (P”]%) = Dgr, (P||AP,I59) + Dk, <p”AP,]59)

The average distribution in this case reads

5(1‘1) ~|—5(l‘1 —9)

APvﬁgz 2

® [f0 = 0; then, we have

Lt 20 (1‘1)
DKL (P‘|AP,IS9> = J;) fl) (561) lOg mdxldt’ZCQ

1
= J log 1dze = 0
0

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 9/25

Wasserstein GAN Wasserstein Distance

Wasserstein vs KL and JS: Example

® |f0 # 0O; then, we have

20 (.2171)
D P A)1
KL H pp J f 5 1’1 og (5 xl) n 5(%1 — 9) dz1daxs

0 for [O ,01]
= log 2

We can show that Dk, (]59 |AL p) reads the same, i.e.,

. log2 0 #0
o (110) - 2 070

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025

10/25

Wasserstein GAN Wasserstein Distance

Wasserstein vs KL and JS: Example
So, JS divergence reads
. 2log2 6 #0
D (P P) -
ss (Pl { 0 00
which is again minimized when

data distribution P = model distribution]59

as we expected!

defined v 2log 2 But NO aradient!

0

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 11/25

Wasserstein vs KL and JS: Example

For the Wasserstein distance, we have
DW<P]39>= min E/, 5. r—I
I72) = guin Esa (I - 2]
Let us compute the expectation of an arbitrary ()

E(z,0)~q {lI[0, 2] = [0, 2][I} = E(z,3)~q {10]} = |0]

This is independent of Q; thus, we could say
Dy (PI7) = 1o

which is again minimized when P= P!

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025

12/25

Wasserstein vs KL and JS: Example
All metrics are minimized when P=]39 but look differently against 6

by /

/ \
KL is not defined! /

JS detined with no aradient!

N

Wasserstein is well-defined

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 13/25

Key Observations in Example
From the example, we could say: minimizing all three metrics leads to
model distribution Py converging to data distribution

However, they exhibit different analytical behavior

e KL not defined anywhere but at P =]59
L, It only returns value when we are exactly on data manifold

® JS defined everywhere but gives no VD to use for training
e Wasserstein is smooth giving V¢ D everywhere

Moral of Story

It might be better to minimize the Wasserstein distance between the data and
generator distribution instead of KL

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 14/25

Implicit Wasserstein Minimization
Implicit Distance Minimization

+ But, we did not minimize JS explicitly! Our GAN training was intuitively
derived, as we could not compute the generator distribution! Right?!

- Yes! We did it implicitly with the help of a discriminator

+ How can we minimize Wasserstein distance then? Shall we do this also
implicitly?!

- Right! We can do it using Kantorovich-Rubinstein duality!

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 15/25

Wasserstein GAN Implicit Wasserstein Minimization

Minimizing Wasserstein Distance
We concluded that GAN implicitly learns

P* = argmin Djg (PHP)
P
via generator G: let us know replace this by Wasserstein distance
P* = argminDyy (PHP)
p
= argmin_min Eq 5 ¢ {[lz — 2(}
P €llp p

This does not seem tractable!
L, It does not sound feasible to search 11, »
L, Kantorovich-Rubinstein duality lets us do this indirectly

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025

16/25

Implicit Wasserstein Minimization
Lipschitz Continuity

L-Lipschitz Function
f: X'— R™ s Lipschitz if for any x and = € X

If (2) = £ (@) < Lz —]

with L being the Lipschitz constant

3 3 3

25 25 25

2 2 2

s 15 15

' 1 1

05 05 05

o o o
T\es/ o a5 1 15 2 25 3 35 4 Toos Jo o5 1 1§ 3 25 FaY T 95 Jo o5 1 15 2 25 3 35 4

05 05 05

1 - 1

o o . 15 - 15

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 17/25

Implicit Wasserstein Minimization
Lipschitz Function Space

L-Lipschitz Function Space
The set of all functions f : X — R™ that are L-Lipschitz

Ly = {f: fis L-Lipschitz}

I Attention

In practice, we work with computational models of form
fw i X—R™
for such models, we have a set of parameters W, such that

forallw e Wy v~ fi, €L

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 18/25

Wasserstein GAN Implicit Wasserstein Minimization

Minimizing Wasserstein Distance

Kantorovich-Rubinstein Duality

Wasserstein distance between P and P is computed as

Dw (PHP) = maxEo.p {D(2)} —E,_p{D(2)}

Kantorovich-Rubinstein Duality: Computational Modeling

Wasserstein distance between P and P is estimated by model D as
Dy (PIP) = maxEsp (D, (@)} ~ E,_p (Do ()

with @1 is the set of parameters with which D, is 1-Lipschitz

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 19/25

Implicit Wasserstein Minimization
Minimizing Wasserstein Distance

Back to our problem: we want to minimize Wasserstein distance
P* = argmin Dy (P\\P)
P

= i E.-p{D —E__s1{D
argglnglea[mé piD (z)} xNP{ (z)}

We can estimate it by learning a computational discriminator D

T~ P Dw =Ep{y} —Ep{y}
i~ P Dy (2) y

as long as we search over ® to make sure it’s 1-Lipschitz

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 20/25

Wasserstein GAN Implicit Wasserstein Minimization

Minimizing Wasserstein Distance

+ But, we need to do this implicitly! Right?!
- Exactly! We can use a generator

Sample z ~ Q (z) and let 2G (z) ~ P: we find P* implicitly as

G* = argmin max Eonr {D (2)} — Esn{D (G (2))}

Bingo! This is a GAN with alternative min-max objective

\ T
z2~Q G (2) i~P— D) y

This is what we call Wasserstein GAN

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 21/25

Implicit Wasserstein Minimization
Wasserstein GAN: Alternative Paradigm to Train GAN

z~P EW(W7¢)
!

Wasserstein GAN (Computational)

Consider a GAN with generator Gy, and discriminator D, which is 1-Lipschitz
for ¢ € ®1: Wasserstein GAN learns through the min-max game

min max Lw (W, @)

W ¢ged,y

with objective function
Ly (w,p) = [Ex~P {Dy (z)} — [EZ~Q {qu (Gw (2))}

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 22/25

Implicit Wasserstein Minimization
W-GAN: Training Loop

Train_WGAN(D:dataset):

1: Initiate the generator G, and discriminator D4 with some w and ¢
2: for multiple epochs do

3: Sample a batch of data samples {7 : j = 1,...,n} from D
4: Sample latents {z’ : j = 1,... n} using Q and compute &7 « G (=)
5 foré =1,...,2do

6: forj=1,...,ndo
7.
8

Compute £7 = Dy, (z7) — Dy (/) _
Backpropagate over discriminator to compute V £’

9: if ¢ = = then Backpropagate over generator to compute V., L7
10: end for
11: Update ¢ using Opt_avg {V 4L’}
12: end for
13: Update w using Opt_avg { VL7 }
14: end for

15: return trained generator G,

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 23/25

Implicit Wasserstein Minimization
Wasserstein vs Vanilla GAN
Looking at Wasserstein GAN objective

min max Exp {Dy (#)} — Eonq {Dy (Gw (2))}

and comparing it with vanilla GAN
min max Euop {log Dy ()} + E.vg {log (1 — Dy (Gw (2)))}

we can say
@ Objective does not use cross-entropy anymore, i.e., no log
@ D, in W-GAN does not need to be Sigmoid output anymore
® Dy in W-GAN should be kept 1-Lipschitz

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025

24/25

Implicit Wasserstein Minimization
Imposing Lipschitz Continuity

There are various approaches to restrict discriminator being Lipschitz
@ Weight clipping which is the simplest approach

L, We clip the weights periodically throughout training
L, This way we restrict the variation of the model output

@® Gradient penalty which is more sophisticated
L, Weadd (||V,D (z)|| — 1)* as penalty
L, This assures that output variation does not get extremely large
® Spectral normalization which is again an advanced approach
L, We normalize each layer by its spectral norm

W,

We = max {eig (W)}

L, This way we assure the boundedness of the weights

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025

25/25

	Wasserstein GAN
	Wasserstein Distance
	Implicit Wasserstein Minimization

