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Implicit MLE Ideal Setting

Questioning Validity of GAN
+ Though intuitive, is there any ways to show that this training approach is

indeed leading to sampling from data distribution?
– Well! We can claim this, if we can show the following
LetGw‹ andDϕ‹ be solutions to the min-max game; then, x “ Gw‹ pzq

for z „ Q pzq is approximately distributed by data distribution

To show this arguments let’s consider the following idealistic assumptions
‚ DiscriminatorDϕ can realize any functionD exactly
‚ GeneratorGw can realize any mappingG exactly

ë Discriminator and generator are infinitely-deep NNs
ë In practice, we can get approximately close with very deep NNs

‚ DatasetD has infinitely large number of samples
ë Our estimated average is accurate, i.e., Ê ù E
ë In practice, we can get approximately close with large batches of data
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Implicit MLE Ideal Setting

Min-Max Game in Idealistic Setting
With an ideal setting: the objective of the min-max problem becomes

L pG,Dq “ Ex„P tlogD pxqu ` Ez„Q tlog p1 ´ D pG pzqqqu

Since we assumeG is any generator: we can say

x “ G pzq can be distributed by any P̂ onX
ë By changingG ù P̂ is changeda

aRecall that P̂ is not necessarily computable!

With these definitions, we could say

L pG,Dq “ Ex„P tlogD pxqu ` Ex„P̂ tlog p1 ´ D pxqqu

” L
´

P̂ ,D
¯
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Implicit MLE Ideal Setting

Min-Max Game in Idealistic Setting

Ideal GAN
In the ideal case with infinitely deep generator and discriminator, as well as
infinitely large dataset, the GAN finds explicitlyG‹ andD‹ as

G‹, D‹ “ min
G

max
D

L pG,Dq

which implicitly finds P̂ ‹ as

P̂ ‹, D‹ “ min
P̂

max
D

LpP̂ ,Dq

where P̂ ‹ is the distribution of x̂ “ G‹ pzq with z „ Q

+ Does P̂ ‹ “ P in this ideal case?
ë If so, then in practice GAN approximates data distribution, i.e., Pw «P
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Implicit MLE Optimal Min-Max Players

Optimal Players: Discriminator
Let’s start with finding theoretically-optimal generator and discriminator: we
could expand the objective as

L
´

P̂ ,D
¯

“ Ex„P tlogD pxqu ` Ex„P̂ tlog p1 ´ D pxqqu

“

ż

X

logD pxqP pxq dx `

ż

X

log p1 ´ D pxqq P̂ pxq dx

“

ż

X

logD pxqP pxq ` log p1 ´ D pxqq P̂ pxq dx

The min-max game first maximizes L overD: we can findD‹ by setting

d

dD
L

´

P̂ ,D
¯

!
“ 0

+ How can we compute derivative with respect to a function?!
– We should use Radon-Nikodym derivative, but let us do it naively!
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Implicit MLE Optimal Min-Max Players

Optimal Discriminator: Naive Analysis
U Attention
Following analysis is super-simplified and not accurate, but reflects key idea

Assume a tiny vicinity V pxq Ă X around x P Rd, where
ë P , P̂ andD are roughly constant

we can then decompose the objective as

L
´

P̂ ,D
¯

“ |V pxq|
”

logD pxqP pxq log p1 ´ D pxqq P̂ pxq

ı

` R

whereR is the integral over the remaining part of the data space,i.e.,

R “

ż

X´V pxq

logD puqP puq ` log p1 ´ D puqq P̂ puqdu

not depending onD pxq
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Optimal Discriminator: Naive Analysis
We want to know the optimal discriminatorD‹

ë at any x, we look for optimal value µ‹ “ D‹ pxq that maximizes objective
ë This is like thinking ofD pxq as an infinitely-large vector

ë D‹ is then the optimal vector
By this intuitive formulation, we could say

L
´

P̂ ,D
¯

“ |V pxq|
”

logD pxqP pxq log p1 ´ D pxqq P̂ pxq

ı

` R

“ |V pxq|
”

logµP pxq log p1 ´ µq P̂ pxq

ı

` R

and µ‹ is found by setting

d

dµ
L

´

P̂ ,D
¯

“ 0
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Implicit MLE Optimal Min-Max Players

Optimal Discriminator: Naive Analysis
Since µ shows up only in the first expression, we can write

d

dµ
L

´

P̂ ,D
¯

“ |V pxq| d
dµ

”

logµP pxq log p1 ´ µq P̂ pxq

ı

“ |V pxq|

«

P pxq

µ
´

P̂ pxq

1 ´ µ

ff

which setting to zero concludes

µ‹ “ D‹ pxq “
P pxq

P pxq ` P̂ pxq
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Optimal Discriminator: Naive Analysis
If we do this analysis more concretely using Radon-Nikodym derivative: we can
conclude that

D‹ pxq “
P pxq

P pxq ` P̂ pxq

is the optimal discriminator that maximizes the objective

Attention
Note thatD‹ pxq is not computable!

ë We have no access to the data distribution
ë We cannot compute explicitly P̂ pxq

But, if the discriminator model is deep enough and we have a large number of
samples ù we can approximate it by a computational modelDϕ
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Implicit MLE Optimal Min-Max Players

Optimal Generator
To find optimal generator: we can useD‹ and solve outer minimization, i.e.,

min
G

max
D

L pG,Dq “ min
G

L pG,D‹q

This means that the is the solution to

min
G

Ex„P

#

log
P pxq

P pxq ` P̂ pxq

+

` Ex„P̂

#

log

˜

1 ´
P pxq

P pxq ` P̂ pxq

¸+

We can alternatively say: distribution of x̂ “ G‹ pzq is

P̂ ‹ “ argmin
P̂

Ex„P

#

log
P pxq

P pxq ` P̂ pxq

+

` Ex„P̂

#

log
P̂ pxq

P pxq ` P̂ pxq

+
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Implicit MLE Optimal Min-Max Players

Optimal Generator: Divergence Minimizer

Average Dist
Let us define the average model and data distribution as

AP,P̂ pxq “ 0.5
´

P pxq ` P̂ pxq

¯

which is still a distribution defined onX

With this definition: we could say
P̂ ‹ “ argmin

P̂

Ex„P

#

log
P pxq

2AP,P̂ pxq

+

` Ex„P̂

#

log
P̂ pxq

2AP,P̂ pxq

+

“ argmin
P̂

Ex„P

#

log
P pxq

AP,P̂ pxq

+

` Ex„P̂

#

log
P̂ pxq

AP,P̂ pxq

+

´ 2 log 2
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Optimal Generator: Divergence Minimizer

Recall: KL Divergence
The KL divergence between P andQ is defined as

DKL pP }Qq “ Ex„P

"

log
P pxq

Q pxq

*

We can thus say that

P̂ ‹ “ argmin
P̂

Ex„P

#

log
P pxq

AP,P̂ pxq

+

` Ex„P̂

#

log
P̂ pxq

AP,P̂ pxq

+

´ 2 log 2

“ argmin
P̂

DKL

´

P }AP,P̂

¯

` DKL

´

P̂ }AP,P̂

¯

divergence metric
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Jensen-Shannon Divergence
Jensen-Shannon Divergence
The Jensen-Shannon divergence between P and P̂ is defined as

DJS

´

P }P̂
¯

“ DKL

´

P }AP ,P̂

¯

` DKL

´

P̂ }AP ,P̂

¯

In Assignment 2: we play around with JS divergence to see the following
KL Divergence vs JS Divergence
Under some regularity conditions on P and P̂ , we can say that

DJS

´

P }P̂
¯

“ 0 ú DKL

´

P }P̂
¯

“ 0 ú P “ P̂
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Optimal Generator: Divergence Minimizer
Assuming those mild conditions fulfilled: we can say

P̂ ‹ “ argmin
P̂

DJS

´

P }P̂
¯

ú P̂ ‹ “ argmin
P̂

DKL

´

P }P̂
¯

In other words, as we train using min-max game

distribution of generated sample x “ G pzq tends to data distribution

Moral of Story: Implicit MLE via GAN
Using min-max training strategy of GAN we implicitly train a generator with
minimal KL divergence ” maximal likelihood at its output
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Sample Outputs of GAN
Trained on the dataset

GAN is able to sample
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Vanilla GAN: Stability Challenge
Vanilla GAN was one of first models that could generate realistic samples: it
however suffers from various issues

‚ Training loop is unstable
ë Since we use gradient descent for min-max it could easily diverge
ë It is very sensitive to hyperparameters

‚ Mode collapse could happen
ë The generator gives a few good samples all the time to fool the discriminator
ë This results in lack of diversity
ë GAN learns distribution in a very tiny part of the data manifold

‚ Computational vanilla GANs are vulnerable to vanishing gradient
ë Objective function returns small gradients

To overcome these issues, Wasserstein GAN was proposed which

replaces the JS divergence with the Wasserstein distance

We learn Wasserstein GANs next!
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