
Deep Generative Models
Chapter 4: Generative Adversarial Networks

Ali Bereyhi
ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Summer 2025

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 1 / 23

mailto:ali.bereyhi@utoronto.ca

Generation by Min-Max Game

Modern Data Generation
As we mentioned at the end of Chapter 2

modern generative models mainly learn how to sample!

t
r
a
in

in
g

g
e
n
e
r
a
t
io

n

z „ Q pzq

Gw pzq�

Im
p
li
c
it

M
a
x
-
L
ik

e
li
h
o
o
d

xi x‹

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 2 / 23

Generation by Min-Max Game Non-invertible Flow

Low-dimensional Latent
From our discussions on latent space: we expect that the latent be of much
lower dimensionm ! d

U We could not work with such latent in flow-based models
ë The flow needs to be invertible
ë Invertibility requires the latent and data space to be of the same dimension!

� We however intuitively expect that a much smaller latent could do the job

+ What if we make a model that maps a low-dimensional latent into the
data space?

– Well! We can try; however, we get into trouble training it!
+ Can’t we use simply MLE?!
– Not explicitly! Let’s take a look

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 3 / 23

Generation by Min-Max Game Non-invertible Flow

Generator: Non-invertible Flow
Generator Model
Generator modelGw : Rm ÞÑ R

d is a mapping that maps a latent sample
z „ Q pzq, typically Gaussian noise, into a data sample

Gw pzqz x

sample noise in Rm
data sample in Rd

+ Isn’t that what we called flow?!
– Not exactly! Flow is invertible

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 4 / 23

Generation by Min-Max Game Non-invertible Flow

Sampling
We can sample from a generator exactly as in flow-based models

Gw pzqz x

sample noise Q pzq data sample

Sample_Generator():
1: Sample latent as z „ Q pzq #Gaussian noise2: Pass through generator x Ð Gw pzq3: return x

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 5 / 23

Generation by Min-Max Game Likelihood Non-Computability

MLE Learning: Generator Distribution
Given z „ Q pzq: generated sample x “ Gw pzq is distributed by some Pw pxq

CDFw pxq “ Pr tGw pzq ď xu

The generator distribution Pw pxq is then given by

Pw pxq “
Bd

Bx1 . . . Bxd
CDFw pxq

SinceGw is not invertible, we should define

Zw pxq “ tz P Rm : Gw pzq ď xu

and compute the generator distribution Pw pxq as

CDFw pxq “

ż

Zwpxq

P pzqdz

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 6 / 23

Generation by Min-Max Game Likelihood Non-Computability

MLE Learning: Generator Distribution
The generator distribution is hence given by

Pw pxq “
Bd

Bx1 . . . Bxd

ż

Zwpxq

P pzqdz

which is a challenging computation!

+ Isn’t this simply computed by chain rule?!
– Not that simple! AsGw is not invertible, the set Zw pxq cannot be simply

characterized! Let’s see an example
Recall
WhenGw is invertable, we can readily specify Zw pxq usingG´1

w

Zw pxq “ G´1
w

´!

u P Rd : u ď x
)¯

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 7 / 23

Generation by Min-Max Game Likelihood Non-Computability

Generator Distribution: Example
Consider a dummy example: z P R and x P R3 with generator

G pzq “
“

´z2, exp t´zu , z
‰

Say, want to find the CDF at x “ rx1, x2, x3s: we need to find

Z pxq “ tz P R : G pzq ď xu

“
␣

z P R : ´z2 ď x1 and exp t´zu ď x2 and z ď x3
(

1 First constraint requires

´z2 ď x1 ù z2 ě ´x1 ù

#

z ě
?

´x1

z ď ´
?

´x1

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 8 / 23

Generation by Min-Max Game Likelihood Non-Computability

Generator Distribution: Example
We need to find

Z pxq “
␣

z P R : ´z2 ď x1 and exp t´zu ď x2 and z ď x3
(

2 Second constraint requires

exp t´zu ď x2 ù ´z ď log x2 ù z ě ´ log x2

3 And, finally the third one restricts z to satisfy

z ď x3

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 9 / 23

Generation by Min-Max Game Likelihood Non-Computability

Generator Distribution: Example
So, at x “ rx1, x2, x3s we have

Z pxq “
`“

´8,´
?

´x1
‰

Y
“?

´x1,`8
‰˘

X r´ log x2,8s X r´8, x3s

� At x “ r´1, exp t2u , 2s, we have

Z pxq “ pr´8,´1s Y r1,8sq X r´2,8s X r´8, 2s

“ r´2,´1s Y r1, 2s

� At x “ r´1, 1, 2s, we have

Z pxq“ r1, 2s

� At x “ ra, 1, 2s with a ą 0, we have

Z pxq“ H

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 10 / 23

Generation by Min-Max Game Likelihood Non-Computability

Generator Distribution: Example
To find generator distribution, we need CDF pxq at all x P R3; however,

computation of CDF pxq changes as x changes

For instance, in our earlier sample points, we have

CDF pxq “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

ż ´1

´2
P pzqdz `

ż 2

1
P pzqdz x “ r´1, exp t2u , 2s

ż 2

1
P pzqdz x “ r´1, 1, 2s

0 x “ ra, 1, 2s and a ą 0
...

...

Expressing P pxq for all x P R3 is quite cumbersome!

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 11 / 23

Generation by Min-Max Game Likelihood Non-Computability

MLE Challenge: Non-Computability of Likelihood
Computability of Generator Distribution
With a non-invertible generatorGw, it is challenging to characterize

Zw pxq “ tz P Rm : Gw pzq ď xu

and thus the output distribution Pw pxq is hard to be computed for all x P Rd

To train the generator by MLE ù we need likelihood at all samples xj

R̂ pwq “ ´
1

n

ÿ

j

logPw

`

xj
˘

?!

Non-Computability of Likelihood
With non-invertible generator, likelihood is not directly computable

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 12 / 23

Generation by Min-Max Game Min-Max Game

Alternative Learning Approach: Adversarial Architecture

Gw pzqz „ Q x̂ „ Pw discriminator y

x „ P

info on difference

Discriminator
Discriminator is a binary classifier that classifies sample x as real or fake

To train with discriminator: we can easily make a labeled dataset
‚ Data samples are labeled as real
‚ Generated samples are labeled as fake

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 13 / 23

Generation by Min-Max Game Min-Max Game

Dataset for Adversarial Architecture
From discriminator viewpoint: we train a classifier on 2n labeled samples

D “
␣`

xj , 1
˘

,
`

x̂j , 0
˘

: j “ 1, . . . , n
(

real data sample fake generated sample

We can compactly write the dataset as

D “
␣`

xj , vj
˘

: j “ 1, . . . , 2n
(

where the true label v is defined as

v “

#

0 x if fake ” x “ Gw pzq

1 x if real ” x „ P pxq

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 14 / 23

Generation by Min-Max Game Min-Max Game

Training Computational Discriminator
We now consider a computational discriminator: a modelDϕ : Rd ÞÑ r0, 1s

which classifies sample x

Dϕ pxqx y “ P pv|xq

Recall
This is a discriminative model! This explains the appellation⌣

This is a classical classification problem ù we use cross-entropy loss

CE py, vq “ ´v log y ´ p1 ´ vq log p1 ´ yq

“

#

´ log y if x is real ” v “ 1

´ log p1 ´ yq if x is fake ” v “ 0

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 15 / 23

Generation by Min-Max Game Min-Max Game

Empirical Risk of Adversarial Architecture
To train on this labeled dataset ù we minimize the empirical risk, i.e.,

R̂ pw, ϕq “
1

2n

ÿ

j

CE
`

yj , vj
˘

“
1

2n

ÿ

j

CE
`

Dϕ

`

xj
˘

, vj
˘

“
1

n

ÿ

j

CE
`

Dϕ

`

xj
˘

, 1
˘

`
1

n

ÿ

j

CE
`

Dϕ

`

Gw

`

zj
˘˘

, 0
˘

“ Êx„P tCE pDϕ pxq , 1qu ` Êz„Q tCE pDϕ pGw pzqq , 0qu

“ Êx„P t´ logDϕ pxqu ` Êz„Q t´ log p1 ´ Dϕ pGw pzqqqu

“ ´

”

Êx„P tlogDϕ pxqu ` Êz„Q tlog p1 ´ Dϕ pGw pzqqqu

ı

Empirical risk depends on both generator and discriminator

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 16 / 23

Generation by Min-Max Game Min-Max Game

Training by Min-Max Game: Discriminator’s Role
To train the adversarial architecture by the empirical risk
R̂ pw, ϕq “ ´

”

Êx„P

␣

logDϕ

`

xj
˘(

` Êz„Q

␣

log
`

1 ´ Dϕ

`

Gw

`

zj
˘˘˘(

ı

we let the discriminator and generator play a game

Discriminator tries its best to correctly classify fake sample from true ones, i.e.,

min
ϕ

R̂ pw, ϕq ” max
ϕ
Êx„P

␣

logDϕ

`

xj
˘(

` Êz„Q

␣

log
`

1 ´ Dϕ

`

Gw

`

zj
˘˘˘(

” max
ϕ

L pw, ϕq

After maximization, discriminator’s best try gets the objective1

L‹ pwq “ max
ϕ

L pw, ϕq

1Recall that L pw, ϕq is indeed the classifier likelihood!
Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 17 / 23

Generation by Min-Max Game Min-Max Game

Training by Min-Max Game: Generator’s Role
Generator tries its best to confuse discriminator
� This way discriminator cannot distinguish between fake and true samples

ë This means that fake samples look the same as the true ones
� The generator can only play with its parametersw

Generator tries to make discriminator’s best try as bad as possible, i.e.,

min
w

L‹ pwq “ min
w

max
ϕ

L pw, ϕq

Statistical Perspective
Generator minimizes discriminator’s maximal likelihood ù discriminator
remains confused between generated and true samples even if it does its best

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 18 / 23

Generation by Min-Max Game Vanilla GAN

GAN: Generative Adversarial Network
Generative Adversarial Network
GAN consists of a generatorGw and discriminatorDϕ that are jointly learned
through the min-max game

min
w

max
ϕ

L pw, ϕq

with objective function

L pw, ϕq “ Êx„P tlogDϕ pxqu ` Êz„Q tlog p1 ´ Dϕ pGw pzqqqu

Gw pzqz „ Q x̂ „ Pw Dϕ pxq y

x „ P L pw, ϕq

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 19 / 23

Generation by Min-Max Game Vanilla GAN

GAN: Training Loop
Train_vanillaGAN(D:dataset):
1: Initiate the generatorGw and discriminatorDϕ with somew and ϕ2: for multiple epochs do3: Sample a batch of data samples

␣

xj : j “ 1, . . . , n
(

fromD4: Sample latents
␣

zj : j “ 1, . . . , n
(

usingQ and compute x̂j
Ð Gw

`

zj
˘

5: for ξ “ 1, . . . ,Ξ do6: for j “ 1, . . . , n do7: Compute Lj
“ logDϕ

`

xj
˘

` log
`

1 ´ Dϕ

`

x̂j
˘˘

8: Backpropagate over discriminator to compute∇ϕLj

9: if ξ “ Ξ then Backpropagate over generator to compute∇wLj

10: end for11: Update ϕ using Opt_avg
␣

∇ϕLj
(

12: end for13: Updatew using Opt_avg
␣

∇wLj
(

14: end for15: return trained generatorGw

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 20 / 23

Generation by Min-Max Game Vanilla GAN

GAN Training: Few Notes
There are a few tricks to make training work

1 We update discriminator for Ξ steps before updating generator once
ë This allows the inner maximization to slightly converge

min
w

max
ϕ

L pw, ϕq

ë Typical choices are 5 ď Ξ ď 10

2 To update generator, we only need to compute derivative of second term

∇wLj “ ∇wlogDϕ

`

xj
˘

loooooooomoooooooon

0

` ∇wlog
`

1 ´ Dϕ

`

Gw

`

zj
˘˘˘

ë This gives very small gradients first and exploding later
ë FirstDϕ

`

Gw

`

zj
˘˘

« 0 and later when it’s fooledDϕ

`

Gw

`

zj
˘˘

« 1
ë This is opposite of what we want!

ë Heuristic remedy is to use ´∇wlogDϕ

`

Gw

`

zj
˘˘

instead
ë Some people call Lj

G “ ´logDϕ

`

Gw

`

zj
˘˘

generator loss

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 21 / 23

Generation by Min-Max Game Vanilla GAN

GAN: Sampling
Sampling is exactly as in flow-based models

Sample_GAN():
1: Sample latent as z „ Q pzq #Gaussian noise2: Pass through generator x Ð Gw pzq3: return generated sample x

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 22 / 23

Generation by Min-Max Game Vanilla GAN

Vanilla GAN
+ Why you called the training “vanilla”?!
– Because we used a basic loss for our adversarial network
+ Can we do better?
– Yes! That’s what we do inWasserstein GAN!

Though working with tricks, the vanilla GAN training is generally unstable

Wasserstein GAN addresses this issue by a very smart trick

To understand the trick used by Wasserstein GAN, we need to first learn the
statistical interpretation of vanilla GAN training

Next Stop: Interpreting GAN training as divergence minimization

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 23 / 23

	Generation by Min-Max Game
	Non-invertible Flow
	Likelihood Non-Computability
	Min-Max Game
	Vanilla GAN

