
Deep Generative Models
Chapter 4: Generative Adversarial Networks

Ali Bereyhi
ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Summer 2025

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 1 / 23

mailto:ali.bereyhi@utoronto.ca

Generation by Min-Max Game

Modern Data Generation
As we mentioned at the end of Chapter 2

modern generative models mainly learn how to sample!

t
r
a
in

in
g

g
e
n
e
r
a
t
io

n

z „ Q pzq

Gw pzq

Im
p
li
c
it

M
a
x
-
L
ik

e
li
h
o
o
d

xi x‹

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 2 / 23

Generation by Min-Max Game Non-invertible Flow

Low-dimensional Latent
From our discussions on latent space: we expect that the latent be of much
lower dimensionm ! d

U We could not work with such latent in flow-based models
ë The flow needs to be invertible
ë Invertibility requires the latent and data space to be of the same dimension!

 We however intuitively expect that a much smaller latent could do the job

+ What if we make a model that maps a low-dimensional latent into the
data space?

– Well! We can try; however, we get into trouble training it!
+ Can’t we use simply MLE?!
– Not explicitly! Let’s take a look

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 3 / 23

Generation by Min-Max Game Non-invertible Flow

Generator: Non-invertible Flow
Generator Model
Generator modelGw : Rm ÞÑ R

d is a mapping that maps a latent sample
z „ Q pzq, typically Gaussian noise, into a data sample

Gw pzqz x

sample noise in Rm
data sample in Rd

+ Isn’t that what we called flow?!
– Not exactly! Flow is invertible

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 4 / 23

Generation by Min-Max Game Non-invertible Flow

Sampling
We can sample from a generator exactly as in flow-based models

Gw pzqz x

sample noise Q pzq data sample

Sample_Generator():
1: Sample latent as z „ Q pzq #Gaussian noise2: Pass through generator x Ð Gw pzq3: return x

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 5 / 23

Generation by Min-Max Game Likelihood Non-Computability

MLE Learning: Generator Distribution
Given z „ Q pzq: generated sample x “ Gw pzq is distributed by some Pw pxq

CDFw pxq “ Pr tGw pzq ď xu

The generator distribution Pw pxq is then given by

Pw pxq “
Bd

Bx1 . . . Bxd
CDFw pxq

SinceGw is not invertible, we should define

Zw pxq “ tz P Rm : Gw pzq ď xu

and compute the generator distribution Pw pxq as

CDFw pxq “

ż

Zwpxq

P pzqdz

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 6 / 23

Generation by Min-Max Game Likelihood Non-Computability

MLE Learning: Generator Distribution
The generator distribution is hence given by

Pw pxq “
Bd

Bx1 . . . Bxd

ż

Zwpxq

P pzqdz

which is a challenging computation!

+ Isn’t this simply computed by chain rule?!
– Not that simple! AsGw is not invertible, the set Zw pxq cannot be simply

characterized! Let’s see an example
Recall
WhenGw is invertable, we can readily specify Zw pxq usingG´1

w

Zw pxq “ G´1
w

´!

u P Rd : u ď x
)¯

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 7 / 23

Generation by Min-Max Game Likelihood Non-Computability

Generator Distribution: Example
Consider a dummy example: z P R and x P R3 with generator

G pzq “
“

´z2, exp t´zu , z
‰

Say, want to find the CDF at x “ rx1, x2, x3s: we need to find

Z pxq “ tz P R : G pzq ď xu

“
␣

z P R : ´z2 ď x1 and exp t´zu ď x2 and z ď x3
(

1 First constraint requires

´z2 ď x1 ù z2 ě ´x1 ù

#

z ě
?

´x1

z ď ´
?

´x1

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 8 / 23

Generation by Min-Max Game Likelihood Non-Computability

Generator Distribution: Example
We need to find

Z pxq “
␣

z P R : ´z2 ď x1 and exp t´zu ď x2 and z ď x3
(

2 Second constraint requires

exp t´zu ď x2 ù ´z ď log x2 ù z ě ´ log x2

3 And, finally the third one restricts z to satisfy

z ď x3

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 9 / 23

Generation by Min-Max Game Likelihood Non-Computability

Generator Distribution: Example
So, at x “ rx1, x2, x3s we have

Z pxq “
`“

´8,´
?

´x1
‰

Y
“?

´x1,`8
‰˘

X r´ log x2,8s X r´8, x3s

 At x “ r´1, exp t2u , 2s, we have

Z pxq “ pr´8,´1s Y r1,8sq X r´2,8s X r´8, 2s

“ r´2,´1s Y r1, 2s

 At x “ r´1, 1, 2s, we have

Z pxq“ r1, 2s

 At x “ ra, 1, 2s with a ą 0, we have

Z pxq“ H

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 10 / 23

Generation by Min-Max Game Likelihood Non-Computability

Generator Distribution: Example
To find generator distribution, we need CDF pxq at all x P R3; however,

computation of CDF pxq changes as x changes

For instance, in our earlier sample points, we have

CDF pxq “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

ż ´1

´2
P pzqdz `

ż 2

1
P pzqdz x “ r´1, exp t2u , 2s

ż 2

1
P pzqdz x “ r´1, 1, 2s

0 x “ ra, 1, 2s and a ą 0
...

...

Expressing P pxq for all x P R3 is quite cumbersome!

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 11 / 23

Generation by Min-Max Game Likelihood Non-Computability

MLE Challenge: Non-Computability of Likelihood
Computability of Generator Distribution
With a non-invertible generatorGw, it is challenging to characterize

Zw pxq “ tz P Rm : Gw pzq ď xu

and thus the output distribution Pw pxq is hard to be computed for all x P Rd

To train the generator by MLE ù we need likelihood at all samples xj

R̂ pwq “ ´
1

n

ÿ

j

logPw

`

xj
˘

?!

Non-Computability of Likelihood
With non-invertible generator, likelihood is not directly computable

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 12 / 23

Generation by Min-Max Game Min-Max Game

Alternative Learning Approach: Adversarial Architecture

Gw pzqz „ Q x̂ „ Pw discriminator y

x „ P

info on difference

Discriminator
Discriminator is a binary classifier that classifies sample x as real or fake

To train with discriminator: we can easily make a labeled dataset
‚ Data samples are labeled as real
‚ Generated samples are labeled as fake

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 13 / 23

Generation by Min-Max Game Min-Max Game

Dataset for Adversarial Architecture
From discriminator viewpoint: we train a classifier on 2n labeled samples

D “
␣`

xj , 1
˘

,
`

x̂j , 0
˘

: j “ 1, . . . , n
(

real data sample fake generated sample

We can compactly write the dataset as

D “
␣`

xj , vj
˘

: j “ 1, . . . , 2n
(

where the true label v is defined as

v “

#

0 x if fake ” x “ Gw pzq

1 x if real ” x „ P pxq

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 14 / 23

Generation by Min-Max Game Min-Max Game

Training Computational Discriminator
We now consider a computational discriminator: a modelDϕ : Rd ÞÑ r0, 1s

which classifies sample x

Dϕ pxqx y “ P pv|xq

Recall
This is a discriminative model! This explains the appellation⌣

This is a classical classification problem ù we use cross-entropy loss

CE py, vq “ ´v log y ´ p1 ´ vq log p1 ´ yq

“

#

´ log y if x is real ” v “ 1

´ log p1 ´ yq if x is fake ” v “ 0

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 15 / 23

Generation by Min-Max Game Min-Max Game

Empirical Risk of Adversarial Architecture
To train on this labeled dataset ù we minimize the empirical risk, i.e.,

R̂ pw, ϕq “
1

2n

ÿ

j

CE
`

yj , vj
˘

“
1

2n

ÿ

j

CE
`

Dϕ

`

xj
˘

, vj
˘

“
1

n

ÿ

j

CE
`

Dϕ

`

xj
˘

, 1
˘

`
1

n

ÿ

j

CE
`

Dϕ

`

Gw

`

zj
˘˘

, 0
˘

“ Êx„P tCE pDϕ pxq , 1qu ` Êz„Q tCE pDϕ pGw pzqq , 0qu

“ Êx„P t´ logDϕ pxqu ` Êz„Q t´ log p1 ´ Dϕ pGw pzqqqu

“ ´

”

Êx„P tlogDϕ pxqu ` Êz„Q tlog p1 ´ Dϕ pGw pzqqqu

ı

Empirical risk depends on both generator and discriminator

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 16 / 23

Generation by Min-Max Game Min-Max Game

Training by Min-Max Game: Discriminator’s Role
To train the adversarial architecture by the empirical risk
R̂ pw, ϕq “ ´

”

Êx„P

␣

logDϕ

`

xj
˘(

` Êz„Q

␣

log
`

1 ´ Dϕ

`

Gw

`

zj
˘˘˘(

ı

we let the discriminator and generator play a game

Discriminator tries its best to correctly classify fake sample from true ones, i.e.,

min
ϕ

R̂ pw, ϕq ” max
ϕ
Êx„P

␣

logDϕ

`

xj
˘(

` Êz„Q

␣

log
`

1 ´ Dϕ

`

Gw

`

zj
˘˘˘(

” max
ϕ

L pw, ϕq

After maximization, discriminator’s best try gets the objective1

L‹ pwq “ max
ϕ

L pw, ϕq

1Recall that L pw, ϕq is indeed the classifier likelihood!
Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 17 / 23

Generation by Min-Max Game Min-Max Game

Training by Min-Max Game: Generator’s Role
Generator tries its best to confuse discriminator
 This way discriminator cannot distinguish between fake and true samples

ë This means that fake samples look the same as the true ones
 The generator can only play with its parametersw

Generator tries to make discriminator’s best try as bad as possible, i.e.,

min
w

L‹ pwq “ min
w

max
ϕ

L pw, ϕq

Statistical Perspective
Generator minimizes discriminator’s maximal likelihood ù discriminator
remains confused between generated and true samples even if it does its best

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 18 / 23

Generation by Min-Max Game Vanilla GAN

GAN: Generative Adversarial Network
Generative Adversarial Network
GAN consists of a generatorGw and discriminatorDϕ that are jointly learned
through the min-max game

min
w

max
ϕ

L pw, ϕq

with objective function

L pw, ϕq “ Êx„P tlogDϕ pxqu ` Êz„Q tlog p1 ´ Dϕ pGw pzqqqu

Gw pzqz „ Q x̂ „ Pw Dϕ pxq y

x „ P L pw, ϕq

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 19 / 23

Generation by Min-Max Game Vanilla GAN

GAN: Training Loop
Train_vanillaGAN(D:dataset):
1: Initiate the generatorGw and discriminatorDϕ with somew and ϕ2: for multiple epochs do3: Sample a batch of data samples

␣

xj : j “ 1, . . . , n
(

fromD4: Sample latents
␣

zj : j “ 1, . . . , n
(

usingQ and compute x̂j
Ð Gw

`

zj
˘

5: for ξ “ 1, . . . ,Ξ do6: for j “ 1, . . . , n do7: Compute Lj
“ logDϕ

`

xj
˘

` log
`

1 ´ Dϕ

`

x̂j
˘˘

8: Backpropagate over discriminator to compute∇ϕLj

9: if ξ “ Ξ then Backpropagate over generator to compute∇wLj

10: end for11: Update ϕ using Opt_avg
␣

∇ϕLj
(

12: end for13: Updatew using Opt_avg
␣

∇wLj
(

14: end for15: return trained generatorGw

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 20 / 23

Generation by Min-Max Game Vanilla GAN

GAN Training: Few Notes
There are a few tricks to make training work

1 We update discriminator for Ξ steps before updating generator once
ë This allows the inner maximization to slightly converge

min
w

max
ϕ

L pw, ϕq

ë Typical choices are 5 ď Ξ ď 10

2 To update generator, we only need to compute derivative of second term

∇wLj “ ∇wlogDϕ

`

xj
˘

loooooooomoooooooon

0

` ∇wlog
`

1 ´ Dϕ

`

Gw

`

zj
˘˘˘

ë This gives very small gradients first and exploding later
ë FirstDϕ

`

Gw

`

zj
˘˘

« 0 and later when it’s fooledDϕ

`

Gw

`

zj
˘˘

« 1
ë This is opposite of what we want!

ë Heuristic remedy is to use ´∇wlogDϕ

`

Gw

`

zj
˘˘

instead
ë Some people call Lj

G “ ´logDϕ

`

Gw

`

zj
˘˘

generator loss

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 21 / 23

Generation by Min-Max Game Vanilla GAN

GAN: Sampling
Sampling is exactly as in flow-based models

Sample_GAN():
1: Sample latent as z „ Q pzq #Gaussian noise2: Pass through generator x Ð Gw pzq3: return generated sample x

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 22 / 23

Generation by Min-Max Game Vanilla GAN

Vanilla GAN
+ Why you called the training “vanilla”?!
– Because we used a basic loss for our adversarial network
+ Can we do better?
– Yes! That’s what we do inWasserstein GAN!

Though working with tricks, the vanilla GAN training is generally unstable

Wasserstein GAN addresses this issue by a very smart trick

To understand the trick used by Wasserstein GAN, we need to first learn the
statistical interpretation of vanilla GAN training

Next Stop: Interpreting GAN training as divergence minimization

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 23 / 23

	Generation by Min-Max Game
	Non-invertible Flow
	Likelihood Non-Computability
	Min-Max Game
	Vanilla GAN

