Deep Generative Models

Chapter 4: Generative Adversarial Networks
Ali Bereyhi
ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Summer 2025

Deep Generative Models Chapter 4: GANs

mailto:ali.bereyhi@utoronto.ca

Modern Data Generation

As we mentioned at the end of Chapter 2

modern generative models mainly learn how to sample!

| 1
3 z~1Q(2) |
| O | |
L L ! !
3 ‘ |
-J
L% P Gw(2) "
]
2 ‘ 1
- | i
=1 R)
< = | E
g < : 9
|
-P: Z; ! Tx :J
! |
\]

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 2/23

Low-dimensional Latent

From our discussions on latent space: we expect that the latent be of much
lower dimension m « d
! We could not work with such latent in flow-based models
L, The flow needs to be invertible
L, Invertibility requires the latent and data space to be of the same dimension!

@ We however intuitively expect that a much smaller latent could do the job

+

What if we make a model that maps a low-dimensional latent into the
data space?

Well! We can try; however, we get into trouble training it!

+

Can’t we use simply MLE?!

Not explicitly! Let’s take a look

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 3/23

Generator: Non-invertible Flow

Generator Model

Generator model G, : R™ — R? is a mapping that maps a latent sample
z ~ @ (2), typically Gaussian noise, into a data sample

sample Nnoise in R™ data sample in R?

+ Isn’t that what we called flow?!

- Not exactly! Flow is invertible

Deep Generative Models Chapter 4: GANs

© A. Bereyhi 2025 4/23

Sampling

We can sample from a generator exactly as in flow-based models

sample noise Q (z) data sample
Sample_Generator():
1: Sample latentas z ~ Q (z) #Gaussian noise
2: Pass through generator © «— G (z)
3: return z

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 5/23

MLE Learning: Generator Distribution
Given z ~ () (z): generated sample = = G+, (z) is distributed by some P, ()

CDFy (2) = Pr{Gw (2) < z}

The generator distribution Py, (x) is then given by

ad
Py = ————CDFy

Since G, is not invertible, we should define
Zy (x) ={z€eR":Gw (2) <z}

and compute the generator distribution Py, (x) as

CDFy (z) = fz ()P (2)dz

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 6/23

MLE Learning: Generator Distribution

The generator distribution is hence given by

od
61'1 ce a.’L‘d sz(x) P (Z>dz

which is a challenging computation!

Py () =

+ Isn’t this simply computed by chain rule?!

- Not that simple! As G+ is not invertible, the set Z, (x) cannot be simply
characterized! Let’s see an example

Recall

When G, is invertable, we can readily specify Z, (x) using G',!
Zy (z) = GGt ({u eR:u< a:})

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 7/23

Generation by Min-Max Game Likelihood Non-Computability

Generator Distribution: Example
Consider a dummy example: z € R and = € R3 with generator

G (2) = [~2% exp{—7} 2]
Say, want to find the CDF at x = [x1, x2, x3]: we need to find

Z(x)={zeR:G(2) <z}
—{zEIR —22 < 21 and exp{—z} <z and z < fcg}

@ First constraint requires

v=n
—v=a

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025

2 2 z
z g{]leV\f)z > Tl v
s

VANA\Y%

8/23

Generation by Min-Max Game Likelihood Non-Computability

Generator Distribution: Example
We need to find

{ZE[R <z and exp{—z} <z and z < mg}

® Second constraint requires
exp{—z} < xg v —z <logxy v 2z = —log o
® And, finally the third one restricts z to satisfy

z < x3

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 9/23

Generator Distribution: Example

So, at x = [z1, x2, x3] we have

Z (z) = ([-o0, —v—z1] U [V=21, +%0]) n [~ logza, 0] N [~20, 23]

© Atx = [—1,exp{2},2], we have

Z (z) = ([~o0, 1] U [1,]) A [~2, 0] A [~0, 2]
—[-2,-1] U[L,2]

© Atz =[-1,1,2], we have
Z(z)=[1,2]
© Atx = [a,1,2] with a > 0, we have
Z(z)=
© A. Bereyhi 2025

10/283

Generator Distribution: Example

To find generator distribution, we need CDF (z) at all z € R3; however,

computation of CDF (z) changes as x changes ‘

For instance, in our earlier sample points, we have

~1 2
J P(z)dz—i—f P(z)dz z=[-1,exp{2},2]
-2 1

2
CDF (z) = { L P (z)dz r=[-1,1,2]

0 z=la,1,2] and a >0

Expressing P (z) for all z € R? is quite cumbersome!

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 11/23

Likelihood Non-Computability
MLE Challenge: Non-Computability of Likelihood

Computability of Generator Distribution

With a non-invertible generator G, it is challenging to characterize
Zyw () ={zeR":Gw (2) < z}
and thus the output distribution Py, (x) is hard to be computed for all = € R4

To train the generator by MLE v~ we need likelihood at all samples z7

A == Dfee R)
’ 2

Non-Computability of Likelihood

With non-invertible generator, likelihood is not directly computable

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 12/23

Generation by Min-Max Game Min-Max Game

Alternative Learning Approach: Adversarial Architecture

info on difference

Discriminator

Discriminator is a binary classifier that classifies sample x as real or fake

To train with discriminator: we can easily make a labeled dataset
e Data samples are labeled as real

® Generated samples are labeled as fake

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 13/23

Dataset for Adversarial Architecture

From discriminator viewpoint: we train a classifier on 2n labeled samples

D= e 0 d =1}

real data sample fake cenerated sample

We can compactly write the dataset as
D = {(:z:j,vj) 1] = 1,...,2n}
where the true label v is defined as

by 0 =ziffake=x =Gy (2)
|1 zifreal =~ P (2)

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 14/23

L GenestionbyMinMaxGome JUEER
Training Computational Discriminator

We now consider a computational discriminator: a model D : R? + [0, 1]
which classifies sample x

r—| Dy(x) y = P (vl)

Recall

This is a discriminative model! This explains the appellation ©
This is a classical classification problem ~~~» we use cross-entropy loss

CE (y,v) = —vlogy — (1 —v)log (1 — y)

) —logy ifrisreal=v =1
—log (1 —vy) ifxisfake=v =0

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 15/23

Empirical Risk of Adversarial Architecture

To train on this labeled dataset «~» we minimize the empirical risk, i.e.,

R(W,(Z)) = %ZCE (yj,vj)
= - YR (D, (+9) ,+7)

=~ SICE (Dy () 1) + - 3 1CE (Dy (Gw (7)) ,0)

= Eunp {CE (Dg (z), 1)} + [EZ~Q {CE (Dg (Gw (2)),0)}
= By {—log Dy (@)} + Eavq {~10g (1 = Dy (Gw ()}
— — [Eavp log Dy (@)} + Exvg {log (1 = Dy (G (2)))}]

‘ Empirical risk depends on both generator and discriminator ‘

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 16/23

Training by Min-Max Game: Discriminator’s Role
To train the adversarial architecture by the empirical risk
R(w,0) = — [Evep {log Dy (7)) + E.q {log (1~ Dy (G (+))))}]

we let the discriminator and generator play a game

Discriminator tries its best to correctly classify fake sample from true ones, i.e.,
mqgnf% (w,) = mgxi[AEzNP {log D, (a:])} + [EZNQ {log (1 — Dy (Gw (Z])))}|
= o fE .0

After maximization, discriminator’s best try gets the objective®

L (w) = max L(w,p)

'Recall that L (w, ¢) is indeed the classifier likelihood!

Training by Min-Max Game: Generator’s Role

Generator tries its best to confuse discriminator
@ This way discriminator cannot distinguish between fake and true samples
L, This means that fake samples look the same as the true ones

@ The generator can only play with its parameters w

Generator tries to make discriminator’s best try as bad as possible, i.e.,

min £* (w) = min max L (w, ¢)

Statistical Perspective

Generator minimizes discriminator’s maximal likelihood ~~~ discriminator
remains confused between generated and true samples even if it does its best

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 18/23

GAN: Generative Adversarial Network

Generative Adversarial Network
GAN conisists of a generator G, and discriminator D that are jointly learned
through the min-max game
min max £ (w, ¢)
W ¢

with objective function

L (w,$) = Egop {log Dy ()} + Exnq {log (1 — Dy (Gw (2)))}

xr~P ‘C(W7¢)
!
z2~Q Gw (2) &~ Py Dy () Yy

Deep Generative Models

Chapter 4: GANs © A. Bereyhi 2025 19/23

GAN: Training Loop

Train_vanillaGAN(D:dataset):

1: Initiate the generator G, and discriminator D4 with some w and ¢
2: for multiple epochs do

3: Sample a batch of data samples {7 : j = 1,...,n} from D
4: Sample latents {z’ : j = 1,... n} using Q and compute &7 « G (=)
5 foré =1,...,2do

6: forj=1,...,ndo
7.
8

Compute L7 = log Dy, (') +1log (1 — Dy (7))
Backpropagate over discriminator to compute V £’

9: if ¢ = = then Backpropagate over generator to compute V., L7
10: end for
11: Update ¢ using Opt_avg {V 4L’}
12: end for
13: Update w using Opt_avg { VL7 }
14: end for

15: return trained generator G,

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 20/23

GAN Training: Few Notes

There are a few tricks to make training work
@ We update discriminator for = steps before updating generator once
L, This allows the inner maximization to slightly converge
min max L(w,)
L, Typical choicesare 5 < Z < 10

@ To update generator, we only need to compute derivative of second term

Vol = Vwlog Dy (xj) + Vwlog (1 — Dy (GW (zj)))
——
0
L, This gives very small gradients first and exploding later

L, First Dy (Gw (2”)) ~ 0 and later when it’s fooled Dy (Gw (27)) ~ 1
L, This is opposite of what we want!

L, Heuristic remedy is to use —Vlog Dy, (Gvw (27)) instead
L, Some people call L1, = —log D, (Gw (27)) generator loss

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 21/23

GAN: Sampling

Sampling is exactly as in flow-based models

Sample_GAN() :

1: Sample latent as =z ~ Q) (z) #Gaussian noise
2: Pass through generator © «— G+ (z)

3: return generated sample x

Deep Generative Models Chapter 4: GANs

Generation by Min-Max Game Vanilla GAN

Vanilla GAN

+ Why you called the training “vanilla”?!
- Because we used a basic loss for our adversarial network

+ Can we do better?
- Yes! That's what we do in Wasserstein GAN!

Though working with tricks, the vanilla GAN training is generally unstable

‘ Wasserstein GAN addresses this issue by a very smart trick ‘

To understand the trick used by Wasserstein GAN, we need to first learn the
statistical interpretation of vanilla GAN training

‘ Next Stop: Interpreting GAN training as divergence minimization ‘

Deep Generative Models Chapter 4: GANs © A. Bereyhi 2025 23/23

	Generation by Min-Max Game
	Non-invertible Flow
	Likelihood Non-Computability
	Min-Max Game
	Vanilla GAN

