
Deep Generative Models
Chapter 3: Generation by Explicit Distribution Learning

Ali Bereyhi
ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Summer 2025

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 1 / 34

mailto:ali.bereyhi@utoronto.ca


Flow-based Models Latent Space

Latent Space: Motivation
As we have seen several times: although data samples are high-dimensional,
their valid cases are significantly limited within the data space

samples might be thought as if processed from a much easier origin

+ What do you mean by an easy origin?
– We have seen such things a lot! An example makes life easier

Example:We listen to a set of audio signals. We know that these signals have at
mostm known harmonics, i.e.,

x ptq “

m
ÿ

j“1

zj sin p2πfjtq

where zj is the amplitude of harmonic j. We want to learn data distribution.

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 2 / 34



Flow-based Models Latent Space

Latent Representation: Example
To make data samples, we could work directly in time domain: we sample d " 1
time samples according to Nyquist theorem

t

xptq

So, data-space in this case is Rd with d being potentially very large!

x “ rx1, x2, . . . , xds

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 3 / 34



Flow-based Models Latent Space

Latent Representation: Example
We however know that many combinations of samples are impossible!

t

xptq

Examples: Though data-space is Rd, samples of exponential-like signals are not
happening ù invalid data samples!

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 4 / 34



Flow-based Models Latent Space

Latent Representation: Example
An alternative way of describing data distribution is to learn the distribution of
harmonic amplitudes, i.e.,

z “ rz1, . . . , zms

If we know P pzq: we can sample z „ P pzq and generate an audio signal as

x ptq “

m
ÿ

j“1

zj sin p2πfjtq

This gives a very simple example of what is known as

latent representation of data

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 5 / 34



Flow-based Models Latent Space

Data Manifold
Valid data is typically concentrated in a

narrow (low-dimensional) manifold hidden in the data-space

+ What do you mean by a manifold?!
- Think of a spherical surface: it looks 3D, but we can only move 2D when
we are on it ù it’s a 2D manifold embedded in 3D space

Valid data-points are also the same
ë They are high-dimensional
ë They lie on a thin manifold

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 6 / 34



Flow-based Models Latent Space

Latent Space
Latent Space
Latent space can be thought of as a coordinate system for (or a transformed
version of) data manifold, potentially in lower dimensions

‚

data x

‚
lanet z

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 7 / 34



Flow-based Models Latent Space

Working with Latent Representation
Considering the notion of latent space: in most cases, it’s more efficient to
work with latent representations of data

‚ Many times, it’s easier to learn the distribution of latent representation
ë In audio example: assuming time samples in x being i.i.d. is completely

non-sense; however, having i.i.d. latent z could make sense!
ë Even if P̂ pzq is not accurate, a poor sample z can still lead to a sensible

audio signal
‚ Typically, latent representation is much lower in dimensions than data

ë MNIST images could have as small as 8D latent space
‚ But, we could have latent representation of the same dimension

ë In this case, the latent space deforms the complicated data manifold into a
simpler manifold in the same space

ë e.g., a complicated 2D surface in 3D is transformed to a simple 2D plane in 3D

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 8 / 34



Flow-based Models Latent Space

Latent Representation: Statistical Interpretation
From statistical viewpoint: we can look at the latent representation as the root
which has been processed to a visible form of data

P px|zqz xlatent „ P pzq data „ P pxq

mapping from origin to data

In this formulation, we can say

P pz, xq “ P px|zqP pzq ù P pxq “
ÿ

z

P pz, xq “
ÿ

z

P px|zqP pzq

Attention
There is no unique latent space: we have various (potentially infinite) choices for
latent space ù each choice has its own P pzq and mapping P px|zq

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 9 / 34



Flow-based Models Normalizing Flow

Normalizing Flow: A Simple Probability Problem
Assume that we have the continuous random variable z

z „ Q pzq

We pass it through function f : R ÞÑ R and compute x

x “ f pzq

with f having the following properties
‚ f is invertible, i.e., we can find z “ f´1 pxq

‚ f is strictly increasing, i.e., z1 ă z2 ù f pz1q ă f pz2q

ë This concludes that f´1 is also strictly increasing

We want to find the density of x

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 10 / 34



Flow-based Models Normalizing Flow

Change of Variable
Let’s start with computing the cumulative distribution of x

CDFx paq “ Pr tx ď au “ Pr tf pzq ď au

“ Pr
␣

z ď f´1 paq
(

“ CDFz

`

f´1 paq
˘

By definition, the distribution of x is the derivative of CDF, i.e.,

density of x at a ” P paq “
d

da
CDFx paq

“
d

da
CDFz

`

f´1 paq
˘

“
d

du
CDFz puq |u“f´1paq

d

da
f´1 paq

“ Q
`

f´1 paq
˘ d

da
f´1 paq

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 11 / 34



Flow-based Models Normalizing Flow

Change of Variable
Replacing a with x for simplicity, we have

P pxq “ Q
`

f´1 pxq
˘ d

dx
f´1 pxq

As we know f is invertible, we can write

z “ f´1 pxq ú f pzq “ x

Taking derivative, we have

dz “
d

dx
f´1 pxqdx

9f pzqdz “ dx

,

/

/

.

/

/

-

ù
d

dx
f´1 pxq “

1

9f pzq
“

1

9f pf´1 pxqq

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 12 / 34



Flow-based Models Normalizing Flow

Change of Variable: Scalar Result
It is easy to show that

‚ Having an increasing f is not needed
ë For decreasing f , everything holds with a sign change

‚ It’s though necessary for f to be invertible

Change of Variable (Scalar)
If we pass z „ Q pzq through an invertible transform x “ f pzq; then,

x „ P pxq “
Q
`

f´1 pxq
˘

| 9f pf´1 pxqq|

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 13 / 34



Flow-based Models Normalizing Flow

Change of Variable: Array Variables
Change of Variable (Vectorized)
Let z P Rd be distributed by z „ Q pzq and f : Rd ÞÑ R

d be invertible and
differentiable. Then, the transform x “ f pzq is distributed by

x „ P pxq “
Q pzq

det |∇f pzq|
with z “ f´1 pxq

1 ∇f is a d ˆ d Jacobian matrix

∇f pzq “

»

—

–

dx1{dz1 ¨ ¨ ¨ dx1{dzd
... . . . ...

dxd{dz1 ¨ ¨ ¨ dxd{dzd

fi

ffi

fl

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 14 / 34



Flow-based Models Normalizing Flow

Change of Variable: Array Variables
Change of Variable (Vectorized)
Let z P Rd be distributed by z „ Q pzq and f : Rd ÞÑ R

d be invertible and
differentiable. Then, the transform x “ f pzq is distributed by

x „ P pxq “
Q pzq

det |∇f pzq|
with z “ f´1 pxq

2 f should be differentiable to∇f exists and invertible to

det|∇f pzq| ‰ 0

3 To have an invertible transform, z and x should be of the same dimension!

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 15 / 34



Flow-based Models Flow Learning

Flow: Learnable Mapping from Latent to Data
It is hard to learn distribution directly in the data-space

‚ It lies close to a very thin manifold hidden in the data-space
ë Data distribution is very complex and the model can hardly fit to it

‚ Even if we learn it ù it’s very hard to sample from it!

+ What if we focus on a latent space with simple distribution?

fw pzqz x

easy-to-sample „ Q pzq data sample „ P pxqdeep model

Assuming mapping to be deterministic and learnable ù data distribution is
specified in terms of this model using change of variable

Pw pxq “
Q pzq

det |∇fw pzq|
with z “ f´1

w pxq

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 16 / 34



Flow-based Models Flow Learning

Flow Process: Chain of Mappings
Typically, we deal with deep models, i.e., we process features sequentially: if

‚ every transform in the model is invertible and differentiable
Then, distribution of each feature is given by change of variable

fw1 pzq fw2

`

u1
˘

fwk

`

uk´1
˘

z x
u1 u2

This describes a flow process in which

an easy-to-sample latent representation gradually evolves to a data sample

We can make this happen if we design fw1 , . . . , fwk
such that

the distribution of final output matches the data distribution

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 17 / 34



Flow-based Models Flow Learning

Flow Process
Flow Process
Flow process describes sequential evolution of latent z to data sample x as

z “ u0
fw1
ÝÑ u1

fw2
ÝÑ ¨ ¨ ¨

fwk´1
ÝÑ uk´1 fwk

ÝÑ uk “ x

We recover latent representation of data sample x by inverse flow as

z “ u0
f´1
w1

ÐÝ u1
f´1
w2

ÐÝ ¨ ¨ ¨
f´1
wk´1
ÐÝ uk´1 f´1

wk
ÐÝ uk “ x

and evaluate distribution of each flow sample ui using normalizing flow as

Pi

`

ui
˘

“
Pi´1

`

ui´1
˘

det |∇fwi pui´1q|
with ui “ f´1

wi

`

ui
˘

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 18 / 34



Flow-based Models Flow Learning

Flow-based Models
Flow-based Model
A flow-based model learns a flow process which evolves a predefined latent
distribution P pzq to the data distribution

fw pzqz x

latent distribution P pzq data distribution P pxq

flow model1

In flow-based models
‚ Latent distribution is an easy-to-sample one, e.g., standard Gaussian
‚ Flow model needs to be invertible1

1We represent overall deep model compactly by fw
Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 19 / 34



Flow-based Models Flow Learning

Flow-based Models: Sampling
Sampling is very easy with flow-based models

fw pzqz x

sample noise P pzq data sample

pass through model

Sample_Flow():
1: Sample latent as z „ P pzq #Simple noise distribution2: Pass through flow model x Ð fw pzq3: return x

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 20 / 34



Flow-based Models Flow Learning

Flow-based Models: MLE Learning
To train: we can maximize the likelihood of the normalized flow

fw pzqz x

P pzq Pw
!

« Pdata

normalizing flow

For given sample x ù compute latent as zw “ f´1
w pxq and then likelihood as

Pw pxq “
P pzwq

det |∇fw pzwq|

The log-likelihood is hence given by

logPw pxq “ logP pzwq ´ log det |∇fw pzwq|

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 21 / 34



Flow-based Models Flow Learning

Flow-based Models: MLE Learning
On a batch of n data samples

␣

xj „ Pdata : j “ 1, . . . , n
(

, we have

R̂ pwq “ ´
1

n

ÿ

j

logPw pxq

“
1

n

ÿ

j

“

log det
ˇ

ˇ∇fw
`

zjw
˘
ˇ

ˇ ´ logP
`

zjw
˘‰

“ Êx„Pdata
tlog det |∇fw pzwq| ´ logP pzwqu

where zjw “ f´1
w

`

xj
˘

+ Is it an easy to differentiate risk then?
– Let’s take a look!

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 22 / 34



Flow-based Models Flow Learning

Flow-based Models: MLE Learning
Looking at the MLE risk function

R̂ pwq “ Êx„Pdata
tlog det |∇fw pzwq| ´ logP pzwqu

‚ We do know P pzq ù we can write chain rule

∇wP pzwq “ ∇zP pzwq ˝ ∇wzw

backpropagation on f´1
w

ë It’s easily computed by standard backpropagation
‚ For first term, we use∇X log det|X| “

`

X´1
˘T with chain rule to write

∇w log det |∇fw pzwq| “

´

∇fw pzwq
´1
¯T

˝ ∇w r∇fw pzwqs

ë It needs inverse of Jacobian and backpropagation over Jacobian
ë It can be computationally expensive, though yet feasible

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 23 / 34



Flow-based Models Flow Learning

Flow-based Models: Training
Train_Flow(D:dataset):
1: Initiate the flow model fw with somew2: for multiple epochs do3: Sample a batch of data samples

␣

xj : j “ 1, . . . , n
(

fromD4: for j “ 1, . . . , n do5: Invert flow to get latent representation zj Ð f´1
w

`

xj
˘

6: Compute R̂j
“ log det

ˇ

ˇ∇fw
`

zj
˘
ˇ

ˇ ´ logP
`

zj
˘

by forward passing zj

7: Backpropagate to compute∇wR̂j

8: end for9: Updatew using Opt_avg
!

∇wR̂j
)

10: end for11: return trained flow model fw

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 24 / 34



Flow-based Models Computational Flow-based Models

Real-valued Non-Volume Preserving
Real NVP develops deep flow network for visual generation

‚ It uses a unit flow model for multiple steps
ë The inverse flow is of a dual form

‚ It starts with Gaussian latent
‚ Flow model is designed to keep training computationally easy

ë It’s designed to keep the derivation of

Êx„Pdata
tlog det |∇fw pzq|u

simple

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 25 / 34



Flow-based Models Computational Flow-based Models

Real NVP: Flow
xďr xąr

`

tθ ˆ

sβ

zďr ząr

For some r ă d, let

sβ :Rr ÞÑ R
d´r Ð scaling

tθ :R
r ÞÑ R

d´r Ð translation

be two computational models: we build flow as

xďr “ zďr

xąr “ ząr d exp tsβ pzďrqu ` tθ pzďrq

whose model parameters arew “ rθ, βs, i.e.,

x “ fw pzq

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 26 / 34



Flow-based Models Computational Flow-based Models

Real NVP: Inverse Flow
xďr xąr

´

tθ

ˆ

sβ

zďr ząr

The flow is readily inverted

zďr “ xďr

ząr “ pxąr ´ tθ pxďrqq d exp t´sβ pxďrqu

we can compactly show it as

z “ f´1
w pxq

which is of dual form to direct flow fw pzq

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 27 / 34



Flow-based Models Computational Flow-based Models

Real NVP: Jacobian
By standard derivation: we can show that

∇fw pzq “

»

—

—

—

–

Idˆd 0dˆd´r

∇xďr tθ pxďrq

»

—

–

exp ts1u . . . 0
... . . . ...
0 . . . exp tsd´ru

fi

ffi

fl

fi

ffi

ffi

ffi

fl

where s1, . . . , sd´r are the outputs of scaling model, i.e.,

DataType ts1, . . . , sd´ru Ð sβ pxďrq

This is an upper-triangle matrix whose determinant ” product of main diagonal

det |∇fw pzq| “

d´r
ź

j“1

exp tsju “ exp

#

ÿ

j

sj

+

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 28 / 34



Flow-based Models Computational Flow-based Models

Real NVP: Training
As a result

log det |∇fw pzq| “
ÿ

j

sj “ sum rsβ pxďrqs

whose gradient is readily given by

∇w log det |∇fw pzwq| “ sum r∇βsβ pxďrqs

Also, if we consider standard Gaussian latent, we have

logP pzq “ ´
1

2
∥z∥2 ´ Constant

and thus, the gradient is readily computed by backpropagation

∇w logP pzq “ ´
1

2
∇∥f´1

w pxq∥2

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 29 / 34



Flow-based Models Computational Flow-based Models

Real NVP: Sample Output
Data samples from CelebA

Samples from the flow network

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 30 / 34



Flow-based Models Computational Flow-based Models

Variants of Real NVP: NICE
Real NVP was indeed the extension of an initial architecture

NICE: Non-linear Independent Component Estimation (NICE)

which mainly had a simpler flow

xďr “ zďr

xąr “ ząr ` tθ pzďrq

This model was one of earliest computational flow-based models
Ë It was simple to train due to simple risk function
é It was not too expressive, i.e., limited in capacity

The latter issue was the reason for Real NVP proposal

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 31 / 34



Flow-based Models Computational Flow-based Models

Variants of Real NVP: Glow
Real NVP was later extended to more flexible architecture called

Glow: Generative Flow

in which permutation of data entries, i.e., xi’s in x, is learned as well
‚ Glow uses 1 ˆ 1 convolution to combine entries in the flow

ë This enables the possibility to learn how to couple channels
ë Remember that in Real NVP, the coupling is fixed

ë We fix choice of r and combine xďr with xąr

‚ The training may need more computation
‚ Generation quality is generally better

Some other known extensions are
‚ FFJORD, Flow++, VFlow, Wavelet Flow

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 32 / 34



Flow-based Models Final Notes

Flow-based Models: Wrap Up
Flow-based models sound classic: they are

‚ easy to sample ù pass noise sample z „ P pzq through flow network
ë Faster than AR models
ë Both faster and easier than EBMs

‚ imposing high computation for training, as we need to solve

min
w
Êx„Pdata

tlog det |∇fw pzq| ´ logP pzqu with z “ f´1
w pxq

which can be computationally expensive
ë Generally, more complex than classic AR models
ë Definitely easier than EBMs

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 33 / 34



Flow-based Models Final Notes

Final Notes
We are over with explicit methods: in all these methods

we directly targeted to learn data distribution

These three methods, i.e., AR, EBMs and Flow-based make the foundation

Make More Explicit Approaches!
We can combine these methods to come up with other approaches

‚ In AR flow-based modeling, we learn autoregressive conditional
distributions by flow-based models

Though effective, these approaches limit us in various senses
U In flow-based models we had to use same-dimension latent space

ë We know that we can have much smaller latent space!
We next study approaches in which we learn data distribution implicitly!

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 34 / 34


	Flow-based Models
	Latent Space
	Normalizing Flow
	Flow Learning
	Computational Flow-based Models
	Final Notes


