Deep Generative Models

Chapter 3: Generation by Explicit Distribution Learning
Ali Bereyhi
ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Summer 2025

Deep Generative Models Chapter 3: Explicit Methods

mailto:ali.bereyhi@utoronto.ca

Latent Space: Motivation

As we have seen several times: although data samples are high-dimensional,
their valid cases are significantly limited within the data space

‘ samples might be thought as if processed from a much easier origin

+ What do you mean by an easy origin?
- We have seen such things a lot! An example makes life easier

Example: We listen to a set of audio signals. We know that these signals have at
most m known harmonics, i.e.,

x(t) = Z zjsin (27 f;t)

J=1

where z; is the amplitude of harmonic j. We want to learn data distribution.

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 2/34

Latent Representation: Example

To make data samples, we could work directly in time domain: we sample d » 1
time samples according to Nyquist theorem

x(t)

[y

So, data-space in this case is R% with d being potentially very large!

x = [z1,22,...,24]

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 3/34

Latent Representation: Example

We however know that many combinations of samples are impossible!

t
K
’
7
’
’
’

Examples: Though data-space is R%, samples of exponential-like signals are not
happening ~~ invalid data samples!

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 4/34

Latent Representation: Example

An alternative way of describing data distribution is to learn the distribution of
harmonic amplitudes, i.e.,

z =21, 2m]

If we know P (z): we can sample = ~ P (z) and generate an audio signal as

m
x(t) = sz sin (27 f;t)
j=1
This gives a very simple example of what is known as

latent representation of data

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 5/34

Data Manifold
Valid data is typically concentrated in a
narrow (low-dimensional) manifold hidden in the data-space

+ What do you mean by a manifold?!

- Think of a spherical surface: it looks 3D, but we can only move 2D when
we are on it v~~~ it's a 2D manifold embedded in 3D space

Valid data-points are also the same
L, They are high-dimensional
L, They lie on a thin manifold

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 6/34

Latent Space

Latent Space

Latent space can be thought of as a coordinate system for (or a transformed
version of) data manifold, potentially in lower dimensions

lanet z

data z
Deep Generative Models Chapter 3: Explicit Methods

© A. Bereyhi 2025 7/34

Working with Latent Representation

Considering the notion of latent space: in most cases, it’s more efficient to
work with latent representations of data
e Many times, it’s easier to learn the distribution of latent representation
L, In audio example: assuming time samples in x being i.i.d. is completely
non-sense; however, having i.i.d. latent = could make sense!
L, Evenif P (=) is not accurate, a poor sample z can still lead to a sensible
audio signal
e Typically, latent representation is much lower in dimensions than data
L, MNIST images could have as small as 8D latent space
® But, we could have latent representation of the same dimension

L, In this case, the latent space deforms the complicated data manifold into a
simpler manifold in the same space

L, e.g., a complicated 2D surface in 3D is transformed to a simple 2D plane in 3D

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 8/34

Latent Representation: Statistical Interpretation

From statistical viewpoint: we can look at the latent representation as the root
which has been processed to a visible form of data

latert ~ P (2) P (z]2) data ~ P (z)
MaPPING from oriain to data
In this formulation, we can say
P(z,2) = P(z]z) P(2) »wo> P(2) = Y. P(z,2) = Y. P(x|2) P (2)
z 2

Attention

There is no unique latent space: we have various (potentially infinite) choices for
latent space ~~~ each choice has its own P (z) and mapping P (x|z)

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 9/34

Flow-based Models Normalizing Flow

Normalizing Flow: A Simple Probability Problem

Assume that we have the continuous random variable z

z~Q(z)
We pass it through function f : R — R and compute x

z=[(2)

with f having the following properties
* fisinvertible, i.e., wecanfind z = f~1 (z)
o fisstrictly increasing, i.e., z1 < za »~ f (21) < f (22)
L, This concludes that =1 is also strictly increasing

‘ We want to find the density of x ‘

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 10/34

Change of Variable

Let’s start with computing the cumulative distribution of

CDF; (a) =Pr{z <a} =Pr{f(z) <a}
=Pr{z < ! (a)} = CDF. (f " (a)

By definition, the distribution of x is the derivative of CDF, i.e.,

d
densityof zata = P (a) = @CDFm (a)

d _
= -CDF. (f " (a))
d d
= @CDFZ (u) |u=f*1(a)@f ' (a)

Q@) i @

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 11/34

Flow-based Models Normalizing Flow

Change of Variable
Replacing a with x for simplicity, we have
d
P@)=Q(f @) (@)

As we know f is invertible, we can write

s= [@) e [() = 2

Taking derivative, we have

d
dz = @f_l () dz

f(2)dz =da d i) fU)

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025

12/34

Change of Variable: Scalar Result

It is easy to show that
® Having an increasing f is not needed
L, For decreasing f, everything holds with a sign change

e |t's though necessary for f to be invertible

Change of Variable (Scalar)

If we pass z ~ Q) (z) through an invertible transform x = f (z); then,

Q@)

P(x) = —
) 1f(f (@))]

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025

13/34

Change of Variable: Array Variables

Change of Variable (Vectorized)

Let z € R? be distributed by z ~ Q (z) and f : R — R be invertible and
differentiable. Then, the transform x = f (z) is distributed by

_ Q> e e
J;~P(m)—m with z = f=1 (z)

@ Vfisad x dJacobian matrix

dxl/dzl cee d:Cl/dZd
Vi =| i
deg/dzy -+ dzg/dzg

Deep Generative Models Chapter 3: Explicit Methods

© A. Bereyhi 2025 14/34

Flow-based Models Normalizing Flow

Change of Variable: Array Variables

Change of Variable (Vectorized)

Let z € R? be distributed by z ~ Q (z) and f : R — R be invertible and
differentiable. Then, the transform x = f (z) is distributed by

_ Q> e e
J;~P(m)—m with z = f=1 (z)

@ [should be differentiable to V f exists and invertible to

det|Vf(2)] #0

® To have an invertible transform, z and x should be of the same dimension!

Deep Generative Models Chapter 3: Explicit Methods

© A. Bereyhi 2025 15/34

Flow: Learnable Mapping from Latent to Data

It is hard to learn distribution directly in the data-space
e |t lies close to a very thin manifold hidden in the data-space
L, Data distribution is very complex and the model can hardly fit to it

e Fven if we learn it v~~~ it’s very hard to sample from it!

+ What if we focus on a latent space with simple distribution?

easy—to-sample ~ @ (z) deep model data sample ~ P (x)

Assuming mapping to be deterministic and learnable -~ data distribution is
specified in terms of this model using change of variable

Q(2)

P () = det |V fw (2)]

with z = f,} ()

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 16/34

Flow-based Models Flow Learning

Flow Process: Chain of Mappings

Typically, we deal with deep models, i.e., we process features sequentially: if
e every transform in the model is invertible and differentiable

Then, distribution of each feature is given by change of variable

e e) R T

This describes a flow process in which

an easy-to-sample latent representation gradually evolves to a data sample

We can make this happen if we design fw,, ..., fw, such that

the distribution of final output matches the data distribution

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 17/34

_ Fowbwed Mo JULER
Flow Process

Flow Process

Flow process describes sequential evolution of latent z to data sample x as

9

1 fwe Fwa pq g
z=u —u — - — U S

=z
We recover latent representation of data sample x by inverse flow as

_ — —1 =il
fort fwa fwp1 g fw
JONE VI WS U TR i s U A/ Y

and evaluate distribution of each flow sample w* using normalizing flow as

_ P ()
= det IV fu, ()

P; (u’) with w; = f,,} (uz)

Wi

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 18/34

Flow-based Models

Flow-based Model

A flow-based model learns a flow process which evolves a predefined latent
distribution P (z) to the data distribution

latent distrisution P (z) data distrieution P (z)

flow model’

In flow-based models

e | atent distribution is an easy-to-sample one, e.g., standard Gaussian
* Flow model needs to be invertible®

We represent overall deep model compactly by fu

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 19/34

Flow-based Models: Sampling

Sampling is very easy with flow-based models

sample noise P (z) data sample

pass throuch model

Sample_Flow() :

1: Sample latent as z ~ P (z) #Simple noise distribution
2: Pass through flow model x < f (2)

3: return

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025

20/34

Flow-based Models: MLE Learning

To train: we can maximize the likelihood of the normalized flow

!
szpdata

normalizing £low

For given sample - v~ compute latent as =y, = f,;' (x) and then likelihood as

P (zw)

P () = det |V fo (2o0)]

The log-likelihood is hence given by

log Py () = log P (zw) — log det |V fuw (2w)]

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 21/34

Flow-based Models: MLE Learning

On a batch of n data samples {27 ~ Pyata : j = 1,...,n}, we have
R(w) = ! Zlo Py ()
=T : g I'w

= %Z [log det |V f (sz)‘ —log P (Z%V)]
j

= Ez~p,,,, {logdet |V fy (2w)| —log P (zw)}

where =), = Tl (ZL‘j)
+ Is it an easy to differentiate risk then?
- Let’s take a look!

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025

22/34

Flow-based Models Flow Learning

Flow-based Models: MLE Learning
Looking at the MLE risk function

A~ ~

R(w) = Ezopy,,, {logdet |V fy (2w)| — log P (2w)}

. . BaCkPropaGation on fy'
* We do know P (z) v~ we can write chain rule /

VwP (2w) = VP (2w) o

L, It’s easily computed by standard backpropagation
* For first term, we use Vx log det|X| = (X‘l)T with chain rule to write

.
YV logdet |V fu (2w)| = (Vfuw (5w) ") © Vo [V fuw ()]

L, It needs inverse of Jacobian and backpropagation over Jacobian
L, It can be computationally expensive, though yet feasible

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 23/34

Flow-based Models Flow Learning

Flow-based Models: Training

Train_Flow(D:dataset):

Initiate the flow model fy, with some w

2: for multiple epochs do

3: Sample a batch of data samples {7 : j = 1,...,n} from D
4 forj=1,...,ndo

5: Invert flow to get latent representation =/ « fi* (z7)

6

7

8

=

Compute R = log det |V fu, (27)| — log P (27) by forward passing =’
Backpropagate to compute \va

end for N
9: Update w using Opt_avg {VWRJ }
10: end for

11: return trained flow model f,

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 24/34

Computational Flow-based Models
Real-valued Non-Volume Preserving

Real NVP develops deep flow network for visual generation
® |t uses a unit flow model for multiple steps
L, The inverse flow is of a dual form
e |t starts with Gaussian latent
¢ Flow model is designed to keep training computationally easy
L, It's designed to keep the derivation of

Ez"’Pdata {log det |vfw (Z)‘}

simple

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025

25/34

Flow-based Models Computational Flow-based Models

Real NVP: Flow

For some r < d, let

s :R" — R « sesline

tp :R" — R « transiation
be two computational models: we build flow as

Z<r

<

Tsp = Zsr O €Xp {SB (z<r)} +to (2<r)

whose model parameters are w = [0, 3], i.e.,

x = fw(2)

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 26/34

Flow-based Models Computational Flow-based Models

Real NVP: Inverse Flow

The flow is readily inverted

T<r

X

Zop = (T=r — g (<)) O exp {—s5 (v<r)}
we can compactly show it as
2= fa' (@)

which is of dual form to direct flow fy, (2)

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 27/34

Real NVP: Jacobian

By standard derivation: we can show that

Idxd ded—r
exp{si} ... 0
\v4 —
S (2) Ve, to (<) : ..
0 .. exp{sq_r}
where s1, ..., 84—, are the outputs of scaling model, i.e.,

DataType {S1,...,84—r} < 55 (z</)

This is an upper-triangle matrix whose determinant = product of main diagonal
d—r
det |V fw (2)] = [[exp{s;} = exp {Z 3]}
Jj=1 J

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 28/34

Real NVP: Training

As a result

logdet |V f (2)] = ZSJ' = sum [85 (r<r)]
J

whose gradient is readily given by

Vwlogdet |V fw (2w)| = sum[Vss (2<r)]

Also, if we consider standard Gaussian latent, we have
log P (=) —% |2]1% — Constant

and thus, the gradient is readily computed by backpropagation
Vwlog P (2) = 2 VIIfy! @)

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025

29/34

Computational Flow-based Models
Real NVP: Sample Output

Data samples from CelebA

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 30/34

Computational Flow-based Models
Variants of Real NVP: NICE

Real NVP was indeed the extension of an initial architecture
NICE: Non-linear Independent Component Estimation (NICE)

which mainly had a simpler flow

Ty = 2<r

Tsr = 2oy + 1 (Zér)

This model was one of earliest computational flow-based models
It was simple to train due to simple risk function
® It was not too expressive, i.e., limited in capacity

The latter issue was the reason for Real NVP proposal

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 31/34

Computational Flow-based Models
Variants of Real NVP: Glow

Real NVP was later extended to more flexible architecture called
Glow: Generative Flow

in which permutation of data entries, i.e., x;’s in x, is learned as well
® Glow uses 1 x 1 convolution to combine entries in the flow

L, This enables the possibility to learn how to couple channels
L, Remember that in Real NVP, the coupling is fixed

L, We fix choice of r and combine x <, with z~,
¢ The training may need more computation
e Generation quality is generally better
Some other known extensions are
® FFJORD, Flow++, VFlow, Wavelet Flow

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025

32/34

Flow-based Models: Wrap Up

Flow-based models sound classic: they are
® easy to sample ~~ pass noise sample z ~ P (z) through flow network

L, Faster than AR models
L, Both faster and easier than EBMs

® imposing high computation for training, as we need to solve
minE,p, . {logdet |V fy (2)| —log P (2)} with =z = f,! (z)
which can be computationally expensive

L, Generally, more complex than classic AR models
L, Definitely easier than EBMs

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025

33/34

Final Notes
We are over with explicit methods: in all these methods
we directly targeted to learn data distribution
These three methods, i.e., AR, EBMs and Flow-based make the foundation
Make More Explicit Approaches!

We can combine these methods to come up with other approaches

¢ |n AR flow-based modeling, we learn autoregressive conditional
distributions by flow-based models

Though effective, these approaches limit us in various senses

! In flow-based models we had to use same-dimension latent space
L, We know that we can have much smaller latent space!

We next study approaches in which we learn data distribution implicitly!

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 34/34

	Flow-based Models
	Latent Space
	Normalizing Flow
	Flow Learning
	Computational Flow-based Models
	Final Notes

