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Energy-based Models Building Distribution

Distribution Model: Requirements
We need to a model that computes distribution at any sample
+ Can’t you just use a Softmax?!
– Well! Not if I think about the whole x

ë Recall how large the data space gets with large d
ë What if we have a continuous data space?

Properties of Distributions
A distribution model Pw pxq should

1 be non-negative at any point, i.e., Pw pxq ě 0

2 add up to one, i.e.,
ÿ

xPX

Pw pxq “ 1

ż

X

Pw pxqdx “ 1
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Energy-based Models Building Distribution

Boltzmann Distribution
Say we have a model fw pxq : X ÞÑ R: we can build a distribution out of it by

1 computing an exponential function of it: for any θ

exp

"

´
fw pxq

θ

*

2 normalizing it to its marginalization

Pw pxq “
1

Z pw, θq
exp

"

´
fw pxq

θ

*

where Z pw, θq is defined as

Z pw, θq “
ÿ

x

exp

"

´
fw pxq

θ

*
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Energy-based Models Building Distribution

Boltzmann’s Recipe for Building Distributions
+ Can we confirm that this is a distribution?
– Sure! Just check the requirements

It is easy to see that both requirements are satisfied by this expression
1 The exponential function is always non-negative

Pw pxq “
1

Z pw, θq
exp

"

´
fw pxq

θ

*

ą 0

2 The distribution adds up to one
ÿ

x

Pw pxq “
ÿ

x

1

Z pw, θq
exp

"

´
fw pxq

θ

*

“
1

Z pw, θq

˜

ÿ

x

exp

"

´
fw pxq

θ

*

¸

looooooooooooomooooooooooooon

Zpw,θq

“ 1
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Energy-based Models Building Distribution

Boltzmann Distribution
Boltzmann Distribution
The following distribution is called Boltzmann distribution at temperature θ

Pw pxq “
1

Z pw, θq
exp

"

´
fw pxq

θ

*

Good to Know
Boltzmann distribution is the solution to the second law of thermodynamics: it
describes the distribution of micro-state at its thermal equilibrium when

1 The energy of the system is described by Hamiltonian fw pxq

2 The system is isolated from the outside world
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Energy-based Models Building Distribution

Boltzmann Distribution: Components
Despite its origins in physics: for us

Boltzmann builds distribution from an arbitrary function fw

We focus on the case with θ “ 1,1 and refer to
1 the model fw pxq as the energy model
2 the normalization term Z pwq as the partition function

Z pwq “
ÿ

x

exp t´fw pxqu

Attention
Although the partition function does not depend on the sample point x, it still
depends on the model parameterw

1We don’t really need to keep it general, as our model has enough parameters inw
Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 6 / 43



Energy-based Models Building Distribution

EBMs: Energy-based Models
Using Boltzmann distribution: we can convert any learning model fw into a
model for data distribution

such models are called energy-based models (EBMs)

Energy-based Models
An EBM describes a Boltzmann distribution whose energy model is given by a
learnable model, e.g., a deep NN

+ Is there any reason we are interested on these models?!
– Well! They are quite generic
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Energy-based Models Building Distribution

Universality of EBMs: Gaussian Example
Universality Argument (informal)
For almost any well-defined distributionQ, there exists a function f such that
Q is expressed as a Boltzmann distribution with energy function f

Example: Say x P R is distributed withN p0, 1q, i.e.,

Q pxq “
1

?
2π

exp

"

´
x2

2

*

Setting the energy function to f pxq “ x2{2, it is easy to see that

Z “

ż

exp

"

´
x2

2

*

dx “
?
2π ù P pxq “

1
?
2π

exp

"

´
x2

2

*

“ Q pxq
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Energy-based Models Building Distribution

Universality of EBMs: Bernoulli Example
Example: Say x P t0, 1u is distributed with Ber ppq, i.e.,

Q pxq “

#

p x “ 0

1 ´ p x “ 1

Let σ´1 denote inverse of Sigmoid function, i.e., β “ σ´1 ppq implies p “ σ pβq.
Setting energy function to f pxq “ σ´1 ppqx, the partition function reads

Z “
ÿ

x

exp
␣

´σ´1 ppqx
(

“ 1 ` exp
␣

´σ´1 ppq
(

and thus, the Boltzmann distribution reads

P p0q “
1

1 ` exp t´σ´1 ppqu
“ σ

`

σ´1 ppq
˘

“ p “ Q p0q

ù P pxq “ Q pxq
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Energy-based Models Computational EBMs

Computational EBMs
We can use Boltzmann’s formula to convert

any computational model, e.g., deep NN, to a computational EBM

the computational EBMs can be roughly divided into two groups
‚ Boltzmann Machines (BMs)

ë which consider a simple quadratic energy function with learnable weights
ë BMs are the basic forms of computational EBMs

ë Somehow like linear models for regression and classification
ë They are inspired by the Ising or SK model in statistical physics

‚ Neural EBMs
ë which consider a deep NN as the energy function
ë They are essentially the nonlinear version of BMs
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Energy-based Models Computational EBMs

Computational EBMs: Boltzmann Machine

Boltzmann Machine (BM)
Consider data x P t0, 1u

d: BM models the distribution of x as a Boltzmann
distribution with energy model

fW pxq “ ´ xWx;xy

for a learnableW P Rdˆd which is symmetric with diagonal zero

We can think of energy model in this case as a single linear layer

´Wx y ¨

fW pxq
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Energy-based Models Computational EBMs

Few Notes on Boltzmann Machine
This form of BM is often called

Fully Visible BM (FVBM)

as the energy model contain only the visible data elements, i.e., xi’s
+ Can we have anything hidden?
– Yes! Latent representation, but we are not considering them yet

ë We get to know them in the next section
BMs can be extended to other data spaces

‚ Continuous data space, i.e., xi P R

ë BM describes a Gaussian distribution with learnable covariance
ë Some people call this model the Gaussian BM

‚ Discrete but not binary data space, e.g., xi P t0, . . . , 255u

ë Not too different from the basic BM
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Energy-based Models Computational EBMs

Computational EBMs: Neural EBMs
Neural EBMs are the general form of an EBM

‚ Data is not restricted to have binary entries
‚ Energy model does not be the simple quadratic one

We can think of neural EBMs as nonlinear BMs, i.e.,

Wx y ¨
fw pxq

where fw pxq : X ÞÑ R can be a very deep network
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Energy-based Models Sampling and Training EBMs

Sampling EBMs
Say we trained an EBM: we need to sample from it!
+ But, didn’t you say sampling from a joint distribution is hard?
– Indeed! And, we can see it more clearly here!

Say we are given trained energy model ù we should compute distribution

x fw pxq exp t¨u

ř

x

˜ Pw pxq

# of operation 9Cd

It’s exponentially hard to compute EBMs from their energy models!
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Energy-based Models Sampling and Training EBMs

Training EBMs
+ Oh! What about training EBMs then? Sounds to be the same!
– Right! It’s the same!

Say we are to train an EBM with energy model fw pxq on dataset

D “
␣

xj : j “ 1, . . . , n
(

We use MLE ù let’s look at the log-likelihood

logL pwq “
1

n

ÿ

j

logPw

`

xj
˘

“
1

n

ÿ

j

log
exp

␣

´fw
`

xj
˘(

Z pwq

“
1

n

ÿ

j

“

´fw
`

xj
˘

´ logZ pwq
‰

“ ´ logZ pwq ´
1

n

ÿ

j

fw
`

xj
˘

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 15 / 43



Energy-based Models Sampling and Training EBMs

Training EBMs
We can define the empirical expectation of the energy model as

Êx„P tfw pxqu “
1

n

ÿ

j

fw
`

xj
˘

which based on LLN goes to expectation on P as n Ñ 8, since xj „ P

The log-likelihood can then be written as

logL pwq “ ´

”

Êx„P tfw pxqu ` logZ pwq

ı

So, we can apply MLE training by minimizing negative log-likelihood

R̂ pwq “ Êx„P tfw pxqu ` logZ pwq

computed on dataset # of operation 9Cd
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Energy-based Models Sampling and Training EBMs

EBMs: Complexity Challenge
Complexity of EBM: Training and Generation
It is computationally complex to sample and train EBMs, since both

‚ evaluation of Pw for sampling, and
‚ computation of MLE objective R̂ pwq for training

need computation of partition function which is exponentially hard

+ We saw before that sampling is expoentially hard! So, this means that we
are facing two exponentially hard tasks in EBMs! Right?!

- Well! Indeed, these two hard tasks are the same thing
ë If we could sample Pw, we could compute MLE objective as well!

+ How does it come?
‚ Let’s take a look at training again!
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Energy-based Models Sampling and Training EBMs

Training EBMs by Sampling Them
Assumption: Genie-aided Sampling
Assume that we have access to a genie which can sample Pw pxq by only
knowing its energy function fw pxq

For training: we start with somew and iteratively update using∇R̂ pwq

ë We need∇R̂ pwq to compute the gradient
Let’s compute the gradient

∇R̂ pwq “ ∇Êx„P tfw pxqu ` ∇ logZ pwq

“ Êx„P t∇fw pxqu ` ∇ logZ pwq

backpropagation on energy model ?!

So, the main challenge is to compute∇ logZ pwq!

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 18 / 43



Energy-based Models Sampling and Training EBMs

Training EBMs by Sampling Them
Let’s focus on the challenging gradient

∇ logZ pwq “
∇Z pwq

Z pwq

From the definition of partition function, we have

∇Z pwq “
ÿ

x

∇ exp t´fw pxqu

“ ´
ÿ

x

∇fw pxq exp t´fw pxqu

So, we could say

∇ logZ pwq “ ´
ÿ

x

∇fw pxq
exp t´fw pxqu

Z pwq

Pw pxq
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Energy-based Models Sampling and Training EBMs

Training EBMs by Sampling Them
This means that

∇ logZ pwq “ ´
ÿ

x

∇fw pxqPw pxq “ ´Ex„Pw t∇fw pxqu

“ ´∇Ex„Pw tfw pxqu

Since the genie can give us samples from Pw, we can estimate this expectation
using samples drawn from the EBM, i.e.,

Ex„Pw tfw pxqu « Êx„Pw tfw pxqu

and hence estimate∇ logZ pwq as

∇ logZ pwq “ ´∇Êx„Pw tfw pxqu
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Energy-based Models Sampling and Training EBMs

Training Metric in EBMs
So, the gradient of the MLE objective can be estimated as

∇R̂ pwq “ ∇Êx„P tfw pxqu ´ ∇Êx„Pw tfw pxqu

MLE Learning for EBMs
We can perform MLE learning using the gradients of the divergence metric

D̂ pwq “ Êx„P tfw pxqu ´ Êx„Pw tfw pxqu

sampling from data distribution sampling from model

This is an interesting expression: in MLE we try to simultaneously
‚ reduce the energy at data samples, i.e., fw

`

xj
˘

for xj „ P

‚ increase the energy at model samples, i.e., fw
`

x̃j
˘

for x̃j „ Pw
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Energy-based Models Sampling and Training EBMs

Sampling and Training EBMs: Summary
To train and sample with EBMs, we only need a sampling genie
Sampling Genie

It can sample Pw pxq only knowing its energy function fw pxq

Train_EBM(D:dataset):
1: Initiate the energy model fw with somew2: for multiple epochs do3: Sample a batch of data samples

␣

xj : j “ 1, . . . , n
(

fromD4: Sample a batch of model samples
␣

x̃j : j “ 1, . . . , n
(

Ð SamplingGenie(fw)5: for j “ 1, . . . , n do6: Compute∇fw
`

xj
˘

and∇fw
`

x̃j
˘

by backpropagation over energy model7: end for8: Updatew using Opt_avg
␣

∇fw
`

xj
˘

´ ∇fw
`

x̃j
˘(

9: end for10: return trained energy model fw
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Energy-based Models Sampling and Training EBMs

Sampling and Training EBMs: Summary
To train and sample with EBMs, we only need a sampling genie
Sampling Genie

It can sample Pw pxq only knowing its energy function fw pxq

Sample_EBM():
1: Generate a sample as x̃ Ð SamplingGenie(fw)2: return x̃
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Energy-based Models Sampling EBMs via MCMC

Key Challenge: Sampling EBMs
We need to figure out a way to sample EBMs
+ But, you said in the first section that this is exponentially hard!
– Well! We talked about direct sampling

ë In direct sampling, we generate an exact sample in one shot

Since direct sampling is not tractable

we need to come up with an approximate way of sampling

A well-established way is to use Markov Chain Monte Carlo (MCMC) algorithms
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Energy-based Models Sampling EBMs via MCMC

Sampling viaMarkov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC)
In MCMC sampling, a Markov chain

xp0q Ñ xp1q Ñ ¨ ¨ ¨ Ñ xptq Ñ ¨ ¨ ¨

is defined which starting from an easy-to-sample xp0q „ P 0, it progresses in
time such that the chain converges in distribution to the target Pw

Example: Say xp0q „ P 0 for an arbitrary P 0, we can define MCMC

xptq “
?
1 ´ εxpt´1q `

?
εzt

for some small ε and zt sampled i.i.d. fromN p0, 1q at each t
ë We can show that as t Ñ 8, sample xptq converges to x̃ „ N p0, 1q
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Energy-based Models Sampling EBMs via MCMC

MCMC: Zero and First Order Methods
MCMC methods can be roughly classified as

‚ Zero-order MCMC methods, which use target distribution Pw pxq directly
to build the Markov chain

ë Simplest MCMCs in terms in terms of computation
ë Take often long time to mix, i.e., start to converge at large t
ë Most famous over is Gibbs sampling which we learn next

‚ First-order methods, which use∇x logPw pxq to build Markov chain
ë More computation is needed
ë Mix faster than zero-order methods, i.e., start to converge at smaller t
ë Most famous over is Langevin dynamics which we learn

‚ Second-order methods that use Hessian
ë Computationally expensive
ë We do not consider them here
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Energy-based Models Sampling EBMs via MCMC

MCMC0: Gibbs Sampling
Gibbs sampling is a famous zero-order MCMC algorithm

Gibbs_Sampling():

1: Initiate sample xp0q

2: for t “ 1, . . . , T do3: for i “ 1, . . . , d do
4: Sample xptq

i „ Pw

´

xi|x
ptq

ăi ,x
pt´1q

ąi

¯

5: end for6: end for7: return xpT q for T larger than burn-in period

+ What is burn-in period?
– This is time needed for xptq to start converging Pw in some sense

ë The amount of time needed to forget bad initialization
ë T is often set by heuristics, e.g., T “ 1000

Note that at each t we loop over dimensions ù d samplings
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Energy-based Models Sampling EBMs via MCMC

MCMC0: Gibbs Sampling
Gibbs Sampling: Theoretical Guarantee
Under some mild conditions, sample xpT q converges to sample x̃ „ Pw pxq in
distribution as T Ñ 8

+ Sounds nice! But, we still need to work with target distribution Pw!– Yes! But we need to only work with 1D conditionals
ë Similar to what we saw in AR modeling, they are much easier to sample
ë With EBMs ù We don’t need to compute partition function

Good to Know
Gibbs sampling is efficient for simple EBMs like basic BM
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Energy-based Models Sampling EBMs via MCMC

Boltzmann Machine: Gibbs Sampling
Let’s consider the example of Boltzmann Machine: in this model, the data
space isX P t0, 1u

d and the energy model is set to

fW pxq “ ´ xWx;xy “ ´
ÿ

i

ÿ

ℓ‰i

Wi,ℓxixℓ

whereWi,ℓ is the entry at row i and column ℓ ofW
ë W is symmetric, i.e.,Wi,ℓ “ Wℓ,i

ë W has zero diagonal, i.e.,Wi,i “ 0

ë xi P t0, 1u for any i “ 1, . . . , d

The corresponding EBM is then written as

PW pxq “
exp t´fW pxqu

Z pWq
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Energy-based Models Sampling EBMs via MCMC

Boltzmann Machine: Gibbs Sampling
For Gibbs sampling, we need conditional distributions: we use Bayes rule

PW pxi|xăi,xąiq “
PW pxăi,xi, xąiq

PW pxăi,xąiq
“

PW pxq

PW pxăi,xąiq

By marginalization, we can write

PW pxăi,xąiq “
ÿ

xi

PW pxăi,xi, xąiq

“ PW pxăi,0, xąiq ` PW pxăi,1, xąiq

So, we have

PW pxi|xăi,xąiq “
PW pxq

PW pxăi,0, xąiq ` PW pxăi,1, xąiq
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Energy-based Models Sampling EBMs via MCMC

Boltzmann Machine: Gibbs Sampling
We can further simplify as

PW pxi|xăi,xąiq “

exp t´fW pxqu

Z pWq

exp t´fW pxăi,0, xąiqu

Z pWq
`

exp t´fW pxăi,1, xąiqu

Z pWq

“
exp t´fW pxqu

exp t´fW pxăi,0, xąiqu ` exp t´fW pxăi,1, xąiqu

which does not depend on the partition function!
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Energy-based Models Sampling EBMs via MCMC

Boltzmann Machine: Gibbs Sampling
This is indeed a simple Bernoulli distribution

PW p0|xăi,xąiq “
exp t´fW pxăi,0, xąiqu

exp t´fW pxăi,0, xąiqu ` exp t´fW pxăi,1, xąiqu

“
1

1 ` exp tfW pxăi,0, xąiq ´ fW pxăi,1, xąiqu

“ σ pfW pxăi,1, xąiq ´ fW pxăi,0, xąiqq

“ σ p∆fW pxăi,xąiqq

So we could write

PW pxi|xăi,xąiq “

#

σ p∆fW pxăi,xąiqq xi “ 0

1 ´ σ p∆fW pxăi,xąiqq xi “ 1
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Sampling BMs by Gibbs Sampling
In Boltzmann machine: the energy difference is rather easy

∆fW pxăi,xąiq “ ´
ÿ

ℓ‰i

Wi,ℓxℓ “ ´ xwi,ăi;xăiy ´ xwi,ąi;xąiy

which is a linear transform on all xℓ except xi

Gibbs_Sampling(T,W):

1: Initiate sample xp0q

2: for t “ 1, . . . , T do3: for i “ 1, . . . , d do
4: Sample xptq

i „ Ber
´

´

A

wi,ăi;x
ptq

ăi

E

´

A

wi,ąi;x
pt´1q

ąi

E¯

5: end for6: end for7: return xpT q for T larger than burn-in period
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Energy-based Models Sampling EBMs via MCMC

Training BMs by Gibbs Sampling
Train_BM(D:dataset):
1: InitiateW2: for multiple epochs do3: Sample

␣

xj : j “ 1, . . . , n
(

fromD4: Sample
␣

x̃j : j “ 1, . . . , n
(

Ð Gibbs_Sampling(T,W)5: for j “ 1, . . . , n do6: Compute ´xjxjT and ´x̃j x̃jT #∇fW pxq “ ´xxT

7: end for8: Update asW Ð W ´ ηOpt_avg
␣

x̃j x̃jT
´ xjxjT

(

9: end for10: return trainedW

Sample_BM(T,W):
1: Generate a sample as x̃ Ð Gibbs_Sampling(T,W)2: return x̃
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Energy-based Models Sampling EBMs via MCMC

MCMC1: Langevin Dynamics
For neural EBMs, it’s better to deploy first order MCMC algorithms

zero-order MCMC algorithms often take to long to converge

A well-known first-order algorithm is Langevin dynamics
Langevin_Sampling():

1: Initiate sample xp0q and choose a converging series tϵtu2: for t “ 1, . . . , T do3: Sample ηt „ N p0, 1q

4: Update xptq
Ð xpt´1q

`
ϵt
2
∇x logPw

´

xpt´1q
¯

`
?
ϵtηt

5: end for6: return xpT q for T larger than burn-in period
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Energy-based Models Sampling EBMs via MCMC

Langevin Dynamics with EBMs
In EBMs, Langevin dynamics find an favorable form: we have

Pw pxq “
exp t´fw pxqu

Z pwq

Thus, we can write

logPw pxq “ ´fw pxq ´ logZ pwq

Noting that Z pwq does not depend on x, we can write

∇x logPw pxq “ ´∇xfw pxq
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Energy-based Models Sampling EBMs via MCMC

MCMC1: Langevin Dynamics in EBMs

Langevin_Sampling():

1: Initiate sample xp0q and choose a converging series tϵtu2: for t “ 1, . . . , T do3: Sample ηt „ N p0, 1q

4: Update xptq
Ð xpt´1q

´
ϵt
2
∇xfw

´

xpt´1q
¯

`
?
ϵtηt

5: end for6: return xpT q for T larger than burn-in period

This algorithm can sample from Pw by knowing only energy function
ë This is indeed the sampling genie
ë The algorithm however still needs large T to converge
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Energy-based Models Sampling EBMs via MCMC

Conservative Sampling via Langevin Dynamics
Requiring large T to converge makes it impractical for training

ë A simple remedy is to use conservative sampling for training

Conservative Sampling
In conservative sampling, we start from data sample as xp0q and apply a few
steps of Langevin dynamics

CS(k, xp0q):

1: Choose a converging tϵtu #sample xp0q
„ P pxq is given2: for t “ 1, . . . , k do3: Sample ηt „ N p0, 1q

4: Update xptq
Ð xpt´1q

´
ϵt
2
∇xfw

´

xpt´1q
¯

`
?
ϵtηt

5: end for6: return xpkq
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Energy-based Models Sampling EBMs via MCMC

Train EBMs by Conservative Divergence
With conservative sampling we can build efficient training loop for neural EBMs

CDTrain_EBM(k,D:dataset):
1: Initiatew2: for multiple epochs do3: Sample a batch of data samples

␣

xj : j “ 1, . . . , n
(

fromD4: for j “ 1, . . . , n do5: Sample model as x̃j
Ð CS(k, xj)6: Compute conservative divergence CDj

k “ ∇fw
`

xj
˘

´ ∇fw
`

x̃j
˘

7: end for8: Updatew using Opt_avg
␣

CDj
k

(

9: end for10: return trainedW

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 39 / 43



Energy-based Models Sampling EBMs via MCMC

Sample EBMs after Training Conservative Divergence
Attention
We cannot use conservative sampling for generation, since we do not have
access to data samples anymore!

Sampling_EBM(fw):

1: Initiate sample xp0q
„ N p0, 1q and choose converging tϵtu2: for t “ 1, . . . , T do3: Sample ηt „ N p0, 1q

4: Update xptq
Ð xpt´1q

´
ϵt
2
∇xfw

´

xpt´1q
¯

`
?
ϵtηt

5: end for6: return xpT q for T larger than burn-in period
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Wrap Up
In summary, we could say

‚ EBMs convert any model to a distribution using Boltzmann formula
‚ They are not easy to sample ù this impacts both sampling and training

ë We cannot sample them directly, as it is exponentially complex
ë We can use MCMC approaches to sample them

ë These approaches are still slow, as they need time to converge
ë We can use tricks like conservative sampling to improve speed in training

Good to Know
EBMs can also be extended to include latent variables as well

‚ We get to know latent space in the next section
‚ Since EBMs are not very practical, we leave latent-space EBMs

ë If interested, take a look at restricted Boltzmann machine
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Grandfather of Diffusion Models
+ If not practical, why did we spend time learning them?!
– What we learned here serves us well in understanding diffusion models

Indeed, EBMs are the grandfathers of diffusion models: Langevin dynamics was
inspired by Brownian motion which is

fundamental model for describing the diffusion process

Looking at the process of sampling with Langevin dynamics, Hyvärinen came up
with an interesting conclusion in 2005

We would be fine if we try to learn so-called score function∇x logP pxq
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Score Matching: A Short Overview
Hyvärinen observed that in Langevin dynamics, we update

xptq Ð xpt´1q `
ϵt
2
∇x logPw

´

xpt´1q
¯

`
?
ϵtηt

which means that we mainly make use of the score function

sw pxq “ ∇x logPw pxq

Hyvärinen showed that it is feasible to match this learnable function to the true
score function, i.e., to find a way to feasibly minimize

J pwq “ Ex„P

␣

|sw pxq ´ s pxq|2
(

This is called score-matching which is efficient alternative way to train EBMs
ë We learn them in Chapter 5, as diffusion models also rely on learning score!
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