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Overview and LMs
We have already worked a lot with AR models: in Chapter 1

we built various LMs -~~~ they are AR models

People have tried AR modeling for other modalities as well
e |t has been largely developed for visual modalities like images

e Various challenges like causality are faced there too

L, Concepts like masked decoding or positional encoding were developed there
L, Modern LMs indeed borrow lots of those notions

In this section, we go through some major computational AR models
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RNN-based AR Models

Recurrent AR models are one of primary computational AR models: we have
already seen the recurrent LMs

In these models, we use RNN to build conditional distribution
@ The model samples x1 from a learned prior

® Given z; and the state of RNN at i — 1, the model

L, updates its state to represent the context at i
L, computes Softmax-activated output of context to estimate P (4 1|x<;+1)

® The model iterates till d entries are over
Key Observation

We cannot do parallel processing ~~ training is also slow
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PixelRNN: Visual Recurrent AR Model
Proposed in 2016, PixelRNN uses LSTM to extract context
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PixelRNN: Visual Recurrent AR Model
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PixelRNN: Visual Recurrent AR Model
Proposed in 2016, PixelRNN uses LSTM to extract context
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PixelRNN: Visual Recurrent AR Model

Proposed in 2016, PixelRNN uses LSTM to extract context
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PixelRNN: Visual Recurrent AR Model
Proposed in 2016, PixelRNN uses LSTM to extract context
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Proposed in 2016, PixelRNN uses LSTM to extract context

h1 - LSTM m I3|m<2 i‘*

saMPle

Z3

.

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 4/26



PixelRNN: Visual Recurrent AR Model
Proposed in 2016, PixelRNN uses LSTM to extract context
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PixelRNN: Visual Recurrent AR Model
Proposed in 2016, PixelRNN uses LSTM to extract context

{ Py (iy1]|T<iv1) = fw (x5, hi—1) P (zit1|r<isr)
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PixelRNN: Training

We can readily train this model via MLE

Train_PixelRNN(D:dataset):

1: for multiple epochs do

2:  Sample a batch of nimages {z? : j = 1,...,n}
3: forj=1:ndo

4: p{, c,h <« LSTM() #define (J to be start pixel
5: fori =1,...,d—1do

6: pl. 1, ¢, h < LSTM(z/, c, h)

7: end for

8: end for

9:  Update model using Opt_avg {Z Vlog p! [z]] }
10: end for

11: return trained model
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PixelRNN: Generation

It’s good to think how we can generate with this model

Sample_PixelRNN( ):
P1,¢,h « LSTM(Z)
21 <—multinomial(p,, #smpl=1) #sample first pixel
fori=1,...,d—1do

Pi+1,¢, h < LSTM(x;, c, h)

ZTit1 < multinomial (piy1, #smpl=1) #AR generation
: end for
: return x = DataType {z1,...,2Z4}

Nouhowobre
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Examples of AR Models Recurrent AR Models

PixelRNN: Multi-channel

For multi-channel data, we typically first process in depth
L, We expect that RGB pixels are heavily correlated

[ P (@s|z<:) = fw (hiZy) J

N

Z1|T4 2 Z3

Channel | Channel 2. Channel 3
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Examples of AR Models Recurrent AR Models

PixelRNN: Row Processing

Basic PixelRNN goes through images row-wise ~~» processing time ocd”

* For generation we need to complete these d° steps
¢ For training we can treat each row independently ~ truncated BPTT
L, Faster at the price of capturing less spatial correlation
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PixelRNN: Diagonal Processing

Alternatively, we can process each pixel conditioned on its top and left pixels

e We can process multiple pixels in parallel
e Total processing time for a single image is 2d — 1 or ocd
L, Fast with less loss in capturing spatial correlation
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PixelRNN: Diagonal Processing - Reduced AR Modeling

x1 2

Z7

Attention
Note that we get the benefit of parallel processing due to reduced AR modeling

P(a:2|x1) P(x7|x1,x2) ~ P(.T7|x1) P(.T7|x1)

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 10/26



Convolutional AR Models

When we work with visual data: it sounds natural that we work with CNNs

+ But, CNNs cannot capture context? We need some sort of state!
- But, we could extract context with Transformers

® They only consist of bunch of MLP-like layers
® We made context without an explicit state

This is in fact a well-developed idea!

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 11/26



Spatial Context via Convolution

We can compute a distribution for a single pixel using multiple kernels
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Valid Conditional Distribution

+ Wait a moment! The conditional distribution however depends on all pixels
in the receptive field! Including the pixel itself! Right?!

- Yes! You are right!

+ Then, this cannot be a valid conditional distribution!

® We need to compute distribution conditioned to what we had before!
® This distribution depends on the pixel itself and some future ones!

- We can resolve this using masked filter
® We did the same in Transformers!
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Masking Kernels
We mask kernels at the pixel position and the future positions

loaits
—

22

—> Softmax P (x)
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Masked Convolution

We can hence compute valid context via masked convolution
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Examples of AR Models AR Models with Masked CNNs

Masked Convolution: Valid Conditional Distribution
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Examples of AR Models AR Models with Masked CNNs

Short Range Conditioning

Short Range Impact of Masked Convolution

The computed conditional distributions are valid; however, they are conditioned
only on nearby pixels within the receptive field of kernel

In terms of AR modeling, we assume

P (ziglroir) ~ P(xip

wneighbors)

[Ti1,0-1] Ti-1,0 |Ti-1,0+1

which weakens spatial correlation capturing
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Recap: Receptive Field of Deep CNN

Recap: Deep Convolution

Recall as we go deeper in CNN ~~»> effective receptive field expands

o8 g g
oo g% o9
g 12 0z
iﬂ" ﬁﬁ" ;5"

Solution: Deep Masked Convolution

Using deep masked CNN ~~~» effective receptive field covers all previous pixels
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Examples of AR Models

Deep Masked Convolution

As we go deep with masked convolutional layers
e receptive field expands to the whole image scene
® since all kernels are masked, the final receptive field is also masked
e this extracts an autoregressive context that we need
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Examples of AR Models

Pixel CNN: AR Model with Deep Masked Convolution
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PixelCNN: Few Notes

——

AL

Softmax

In practical implementation of PixelCNN
® Typically the network is quite deep > 15
L, To guarantee accurate conditioning
e Deep networks can quickly experience vanishing gradients
L, We use skip connextions and gating to reduce vanishing gradients

® Final layer extracts 256 features for each pixel
L, Like PixelRNN, we typically condition RGB channels right after each other
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PixelCNN: Training
We can train PixelCNN via MLE

Train_PixelCNN(D:dataset):
1: for multiple epochs do
Sample a batch of nimages {z’ : j = 1,...,n}
forj=1:ndo
p)., < MaskedCNN(z)
end for

3

4

5:

6:  Update model using Opt _avg {Z Vlogp! [z]] }
7: '

8:

end for
return trained model

Parallel Processing

Using masked convolution, we can process all pixels in parallel while we train
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PixelCNN: Generation

Generation is still autoregressive

Sample_PixelCNN( ):

: Setz(® = #prior sampling
:fori=1,...,ddo
Pi:d — MaskedCNN (z(~1)
z; < multinomial (p;, #smpl=1)
Update z(® Replace z; in 2D
end for
return z(?

Nouhowodbe
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Transformer-Based AR

We can use the same approach as in LMs to extract context via transformers

loaits

Add & Norm

Feed
Forward

Add & Norm

Masked
Multi-Head
Attention

Masked

Positional - > Empeddina position
Encoding

Output
Embedding

x

‘ This is exactly LM with time = position and tokens = pixels
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ImageGPT: Extending LMs to Generate Pixels
A good example is ImageGPT:

‘ it interprets pixels as tokens -~~~ image is a long sequence of tokens ‘

e Vocalbulary has only 256 tokens

L, We can patch multiple pixels together to make larger vocabulary
L, With patch-pixels, we can use tokenization to reduce vocabulary size

e FEach pixel-patch is embedded with an embedding layer

L, This embedding can be in general smaller than vocabulary size
L, It will give us a numerical representation of the image patches

* As we use self-attention, the model learns spatial correlation by itself

L, This is more robust as compared to deep masked convolution
L, It however needs more data to start capturing spatial pattern

Take a look at ImageGPT Paper
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https://cdn.openai.com/papers/Generative_Pretraining_from_Pixels_V2.pdf

Wrap Up and Final Notes

AR modeling gives an efficient way to computationally model data distribution

L, It deploys autoregressive sampling leading from slow generation

We can realize them by
® Recurrent networks, e.g., LSTM

L, It explicitly conditions distribution through model state
L, We do not benefit from parallel processing

e Masked networks, e.g., masked CNN or Transformers

L, It conditions causally through masking
L, We enjoy the luxury of parallel processing

AR modeling are widely considered slow of visual modalities
L, They are though getting revisited due to some recent advancement

‘ Next Stop: Energy-based Models! ‘
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