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Explicit Distribution Learning

Conventional Data Generation
In conventional approaches, we learn the data distribution and sample it!

training

generation

Pw pxqD “ txiu �
M

a
x
-
L
ik

e
lih

o
o
d

Sampling

x‹

Deep Generative Models Chapter 3: Explicit Methods © A. Bereyhi 2025 2 / 18



Explicit Distribution Learning Generation

Data Samples: Arrays of Unit Components
Let’s assume x “ DataType tx1, . . . , xdu for some data-type

‚ This data-type could be any form of array
ë Tensor of pixels or pixel-patches
ë A sequence of scalars, vectors or tensors

‚ xj for j “ 1, . . . , d are unit components
ë They could be scalars or fixed-size tensors
ë We assume that the space of xj is small and manageable

We refer to d as data dimension
ë This is in practice very large
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Explicit Distribution Learning Generation

Generation by Sampling
Assume we trained the model Pw pxq: we intend to generate a new sample
+ Well, we simply sample the trained Pw pxq! Right?!
– Sure! But, let’s see how simple is sampling on our computer!

Say every xi is a discrete variable with C possible outcomes, i.e.,

xj P A “ ta1, . . . , aCu

The question that we intend to answer is

+ How complicated is it to sample from Pw pxq?
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Explicit Distribution Learning Generation

Recap: Sampling a Multinomial Distribution
Example: Say u „ Unif p0, 1q is uniformly distributed between 0 and 1. We
pass u through the following thresholding function to build x as

x “ 0 if 0 ď u ă p and x “ 1 if p ď u ď 1

The new variable x is distributed as P px “ 0q “ 1 ´ P px “ 1q “ p

ë We can sample a binary variable by thresholding a uniform sample u!

This is how the computer directly samples a multinomial distribution: to sample
from the multinomial distribution p “ rp1, . . . , pCs with C outcomes

ë Break the interval r0, 1s with levels proportional to p1, . . . , pC
ë Sample a uniform variable u „ Unif p0, 1q

ë Threshold u with the levels
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Explicit Distribution Learning Generation

Recap: Sampling a Multinomial Distribution

DirectSample(p “ rp1, . . . , pCs):
1: for c “ 1 : C do
2: Build the intervals at edges

c
ř

j“1

pj

3: end for4: Sample a standard uniform u u „ Unif p0, 1q5: Threshold u based on the intervals6: return thresholded outcome

Moral of Story
To directly sample a multinomial distribution with C possible outcomes, we
need to computeO pCq levels
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Explicit Distribution Learning Generation

Sampling Complexity
Back to our problem: we have

x “ DataType tx1, . . . , xdu

with each xj having C possible outcomes
+ How complicated is it to sample from Pw pxq?
– Let’s so a simple calculation

# of outcomes for x “ Cd ù complexity “ O
´

Cd
¯

Conclusion
Even if we have trained Pw pxq perfectly, it’s exponentially hard to directly
sample from the trained model!
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Explicit Distribution Learning Generation

Sampling Complexity
+ Is it the same story if xj is continuous?
– Yes!

To directly sample1 a target density function, we
1 sample a Gaussian distribution
2 pass it through a transform computed using C density values

Similar to discrete case

# of density values required for x “ Cd ù complexity “ O
´

Cd
¯

1Note that this is direct sampling. For high dimensional distributions, the computers use more
efficient approaches like Gibbs sampling which are of polynomial order. We talk about them in
later sections briefly.
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Explicit Distribution Learning Maximum Likelihood Learning

Training: Primary Assumptions
To train the model, we use maximum likelihood estimation (MLE)
Likelihood (formal)
Likelihood of model Pw computed onD “

␣

xi for i “ 1, . . . , n
(

is defined as

L pwq “ Pw pDq

Note that we need joint distribution; however, we assume i.i.d. samples

Basic Assumption: i.i.d. Dataset
We assume that xj are independently sampled from data distribution; thus,

L pwq “
ź

j

Pw

`

xj
˘
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Explicit Distribution Learning Maximum Likelihood Learning

Training via MLE
To train the model, we maximize the log-likelihood function

w‹ “ argmax
w

logL pwq “ argmax
w

1

n

ÿ

j

logPw

`

xj
˘

+ But, why is MLE a good approach?
– There are two ways to see it: intuitive and through divergence

Intuitive Justification of MLE
We know that the data-space is huge as compared to the number of samples

‚ the collected samples are the most-likely ones
‚ the probability of them happening together should be very high

To illustrate the second view: we need to recap the notion of divergence
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Explicit Distribution Learning Maximum Likelihood Learning

Recap: Kullback-Leibler Divergence
As seen in Assignment 1: two distributions can be compared via divergence

ë If they are the same ù the divergence is zero
ë The more different they are ù the larger the divergence will be

‚P

‚Q

div
erg
enc

e

Kullback-Leibler Divergence
KL divergence between two distributions P pxq andQ pxq is defined as

DKL pP }Qq “
ÿ

x

P pxq log
P pxq

Q pxq
“ Ex„P

"

log
P pxq

Q pxq

*
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Explicit Distribution Learning Maximum Likelihood Learning

Properties of KL Divergence
1 Each distribution is in divergence zero from itself

DKL pP }P q “ Ex„P

"

log
P pxq

P pxq

*

“ Ex„P tlog 1u “ 0

2 KL divergence is always non-negative ù Gibbs’ Inequality

DKL pP }Qq “ Ex„P

"

log
P pxq

Q pxq

*

ě ´ logEx„P

"

Q pxq

P pxq

*

“ 0

Jensen Inequality

Attention: KL divergence is not symmetric
DKL pP }Qq “ Ex„P

"

log
P pxq

Q pxq

*

‰Ex„Q

"

log
Q pxq

P pxq

*

“ DKL pQ}P q
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Explicit Distribution Learning Maximum Likelihood Learning

Estimating KL Divergence
Note that KL divergence is given as an expectation: we can use the law of
large numbers to estimate it from a large number of samples

Law of Large Numbers (LLN) (informal)
Assume

␣

xj for j “ 1, . . . n
(

are i.i.d. samples from P pxq; then,

1

n

ÿ

j

F
`

xj
˘

Ñ Ex„P tF pxqu

for a function F p¨q as n Ñ 8

So, we can estimate the KL divergence from datasetD as

D̂KLpP }Qq “
1

n

ÿ

j

log
P
`

xj
˘

Q pxjq
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Explicit Distribution Learning Maximum Likelihood Learning

Another View: MLE as Divergence Minimization
+ But, what kind of estimate is it?! We still need P !
– Well! We only need to evaluate its value at sample points!

x

P pxq

x1

P
`

x1
˘

‚

xn

P pxn
q ‚

. . .

+ Ready for the alternative viewpoint?!
– Yes! An alternative viewpoint on MLE is that

MLE minimizes KL divergence between model and data distribution
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Explicit Distribution Learning Maximum Likelihood Learning

Another View: MLE as Divergence Minimization

Genie-aided Power
A genie can compute data distribution at an arbitrary point for us, i.e., if a point
xj from the data-space is given ù the genie can give us P

`

xj
˘

With the help of the genie, we can use datasetD to estimate the KL divergence
between data distribution P pxq and generative model Pw pxq

∆ pwq “ D̂KL pP }Pwq “
1

n

ÿ

j

log
P
`

xj
˘

Pw pxjq

Looking at this estimate, we can say
‚ This estimate depends on the model parameterw
‚ The right way to train the model Pw p¨q is to minimize this estimate

ë As the divergence goes to zero ù Pw Ñ P
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Explicit Distribution Learning Maximum Likelihood Learning

Another View: MLE as Divergence Minimization
So, the model with minimal KL divergence from data distribution is learned as

w‹ “ argmin
w

∆ pwq “ argmin
w

D̂KL pP }Pwq

“ argmin
w

1

n

ÿ

j

log
P
`

xj
˘

Pw pxjq

“ argmin
w

«

1

n

ÿ

j

logP
`

xj
˘

´
1

n

ÿ

j

logPw

`

xj
˘

ff

“ argmax
w

1

n

ÿ

j

logPw

`

xj
˘

Bingo! This is indeed MLE!
ë and we do not really need the genie⌣
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Explicit Distribution Learning Maximum Likelihood Learning

MLE: Final Notes
MLE ” KL Divergence Minimization
Maximum likelihood learning make sense, since it minimizes the KL divergence
between the model and data distribution

ë We can only estimate KL divergence using the dataset
ë Clearly, there is some estimation error Ñ that’s what it is!

Attention
Note that even in perfect training log-likelihood does not get to zero necessarily!

D̂KL pP }Pw‹q “ 0 ù
1

n

ÿ

j

logPw‹

`

xj
˘

“
1

n

ÿ

j

logP
`

xj
˘

“ ´Ĥ pP q

where Ĥ pP q is the estimate of data entropy
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Explicit Distribution Learning Summary

Summary of Conventional Approaches

training

generation

Pw pxqD

x Ù d

�

M
a
x
-
L
ik

e
lih

o
o
d

minimizes D̂KL pP |Pwq

Sampling

x‹ Ù d

complex in general
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