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Generative Modeling

Old Classification Problem
The most basic generative model is

Naive Bayes

which was originally developed for classification
Say we have single-channel k ˆ k images belonging to two classes

y “

#

1 cat
0 dog

We have access to a datasetD

D “

!

pxi, yiqxi P t0, . . . , 255u
kˆk, yi P t0, 1u : i “ 1, . . . , n

)

and intend to learn a classifier
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Generative Modeling Tabular Discriminative Learning

Conventional Solution: Discriminative Modeling
We all know the conventional solution: we consider a discriminative model

Pw py|xq

and train it on the data

In good old days, we were very limited in computation: it was typical to think of
simplest possible model,i.e., a linear model

w : Rkˆk ÞÑ Rx σ y

– What if we could go even simpler?
+ What do you mean? It’s linear, we cannot think of simpler one!
– Well, we could think tabular!
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Generative Modeling Tabular Discriminative Learning

Tabular Discriminative Modeling
In tabular approach, we estimate distribution directly from dataset, e.g.,

P̂ py “ 1q “
# of y “ 1’s in D

n

This approach obviously does not work for discriminative learning
+ And how is that obvious?

Noting that typically n ! 256k
2

” size of data space: it is impossible to have
enough samples to get a reliable tabular estimate of the posterior

P̂ py “ 1|xq “
# of px, 1q’s inD

# of samples with image x inD

Well, most of the time ù we are to classify new unseen image

both nominator and denominator are zero!
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Generative Modeling Naive Bayes

Tabular Generative Modeling

Unlike discriminative case, tabular generative learning seems possible!

In tabular generative learning: we need P px|yqP pyq

1 An estimate of prior belief on label ù this is easy to estimate

P̂ pyq “
# of y’s inD

n

ë For sure, we have enough samples of both labels
2 We need an estimate of the class generative distribution

P̂ px|yq “
# of px, yq’s inD

# of samples with label y inD
ë For sure, the denominator is non-zero
ë The nominator is however most of the tine zero!
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Generative Modeling Naive Bayes

Tabular Generative Modeling
+ Well! We ended up with the same issue! Right?!
– Yes! But there is a way out of it

We reduce the complexity by postulating a simple assumption ” tabular model

Naive Bayes Model
In naive Bayes, we assume that given y entries of x are mutually independent

x “

»

—

–

x11 . . . x1k
... . . . ...

xk1 . . . xkk

fi

ffi

fl

ú P px|yq “
ź

i,j

P pxij |yq

Naive Bayes Model is Just a Naive Tabular Model
In reality, the pixels are not independent ú this is just a simple model
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Generative Modeling Naive Bayes

Naive Bayes Model
+ How does it help then?!
– Well, each P pxij |yq is feasible to estimate

Say for instant we want to estimate P px11|yq

P̂ px11 “ 9|yq “
# of samples inD with label y and first entry 9

# of samples with label y inD

ë With largeD, we could have enough samples with x11 “ 9

For a new sample x: though we haven’t seen it before, we have seen each of its
pixels before ù We can compute its class generative distributions as

P̂ px|0q “
ź

i,j

P̂ pxij |0q P̂ px|1q “
ź

i,j

P̂ pxij |1q
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Generative Modeling Naive Bayes

Naive Bayes Model
To classify the new sample x, we can then use the Bayes rule and write

P̂ py|xq “
P̂ px|yqP̂ pyq

P̂ px|0qP̂ p0q ` P̂ px|1qP̂ p1q

and classify with the label that has higher posterior

Moral of Story
Sometimes generative modeling can offer more degrees of freedom

ë It is impossible to think about tabular discriminative learning
ë With generative learning we can use a tabular model
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Generative Modeling Example of Naive Bayes

Example: Bayes vs Discriminative
In the old problem, assume we have only two pixels

x1 P tA, Bu x2 P te, $u

x1 x2 y

A e 1
A e 1
B e 1
B $ 0
B $ 0
A e 0
A $ 0
B e 0
B e 1
B $ 1

Discriminative Learning

Say, we want to classify a new sample x “ rA , $s

P̂ p1|xq “
# px, 1q occurred
# x occurred

“
0

1
“ 0

ù P̂ p0|xq “ 1

which is not reliable with only one training sample!
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Generative Modeling Example of Naive Bayes

Example: Bayes vs Discriminative
In the old problem, assume we have only two pixels

x1 P tA, Bu x2 P te, $u

x1 x2 y

A e 1
A e 1
B e 1
B $ 0
B $ 0
A e 0
A $ 0
B e 0
B e 1
B $ 1




Generative Learning

What if we use naive Bayes for x “ rA , $s?

P̂ pA |1q “
# pA , 1q occurred
# 1 occurred

“
2

5
“ 0.4
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Generative Modeling Example of Naive Bayes

Example: Bayes vs Discriminative
In the old problem, assume we have only two pixels

x1 P tA, Bu x2 P te, $u

x1 x2 y

A e 1
A e 1
B e 1
B $ 0
B $ 0
A e 0
A $ 0
B e 0
B e 1
B $ 1





Generative Learning

What if we use naive Bayes for x “ rA , $s?

P̂ pA |0q “
# pA , 0q occurred
# 0 occurred

“
2

5
“ 0.4
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Generative Modeling Example of Naive Bayes

Example: Bayes vs Discriminative
In the old problem, assume we have only two pixels

x1 P tA, Bu x2 P te, $u

x1 x2 y

A e 1
A e 1
B e 1
B $ 0
B $ 0
A e 0
A $ 0
B e 0
B e 1
B $ 1

Generative Learning

What if we use naive Bayes for x “ rA , $s?

P̂ p$|1q “
# p$, 1q occurred
# 1 occurred

“
1

5
“ 0.2

So we can say

P̂ px|1q “ P̂ pA |1qP̂ p$|1q “ 0.08
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Generative Modeling Example of Naive Bayes

Example: Bayes vs Discriminative
In the old problem, assume we have only two pixels

x1 P tA, Bu x2 P te, $u

x1 x2 y

A e 1
A e 1
B e 1
B $ 0
B $ 0
A e 0
A $ 0
B e 0
B e 1
B $ 1







Generative Learning

What if we use naive Bayes for x “ rA , $s?

P̂ p$|0q “
# p$, 0q occurred
# 0 occurred

“
3

5
“ 0.6

So we can say

P̂ px|0q “ P̂ pA |0qP̂ p$|0q “ 0.24
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Generative Modeling Example of Naive Bayes

Example: Bayes vs Discriminative
In the old problem, assume we have only two pixels

x1 P tA, Bu x2 P te, $u

x1 x2 y

A e 1
A e 1
B e 1
B $ 0
B $ 0
A e 0
A $ 0
B e 0
B e 1
B $ 1

Generative Learning

Prior probability is also readily estimated

P̂ p1q “
# 1 occurred

10
“

5

10
“ 0.5

So, we have

P̂ p0q “ 1 ´ P̂ p1q “ 0.5
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Generative Modeling Example of Naive Bayes

Example: Bayes vs Discriminative
In the old problem, assume we have only two pixels

x1 P tA, Bu x2 P te, $u

x1 x2 y

A e 1
A e 1
B e 1
B $ 0
B $ 0
A e 0
A $ 0
B e 0
B e 1
B $ 1

Generative Learning

What if we use naive Bayes for x “ rA , $s?

P̂ p1|xq “
P̂ px|1qP̂ p1q

P̂ px|1qP̂ p1q ` P̂ px|0qP̂ p0q

“
0.04

0.16
“ 0.25 ù P̂ p0|xq “ 0.75

Sounds like more reliable!
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Generative Modeling Example of Naive Bayes

Interesting Old Study

data size

error

naive Bayes

logistic regression

generative models can behave more data efficient
discriminative models can outperform asymptotically
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Generative Modeling Road Map

Deep Generative Models
Using naive Bayes model, we can sample new data points

we sample y „ P̂ pyq ù fixing y we sample x „ P̂ px|yq

Nevertheless, we obviously cannot expect meaningful samples
ë the tabular model is too simple
ë data distribution is too complex

The solution is hence to go for a deep generative model

we sample y „ P̂ pyq ù fixing y we sample x „ P̂w px|yq

where P̂w px|yq is a deep model, e.g., a deep NN
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Generative Modeling Road Map

Road Map: Deep Generative Models
Conventional Deep Generation

training

generation

Pw px, yqtpxi, yiqu

M
a
x
-
L
ik

e
lih

o
o
d

Sampling

x‹

○ LMs, Energy-based ù Chapter 3

Modern Deep Generation
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z „ P pzq
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pxi, yiq x‹

○ GANs, VAEs, Diffusion
ù Chapters 4-6
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