Deep Generative Models Chapter 2: Data Generation Problem

Ali Bereyhi

ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering University of Toronto

Summer 2025

1/18

Old Classification Problem

The most basic generative model is

Naive Bayes

which was originally developed for classification

Say we have single-channel $k \times k$ images belonging to two classes

 $y = \begin{cases} 1 & \mathsf{cat} \\ 0 & \mathsf{dog} \end{cases}$

We have access to a dataset $\mathbb D$

$$\mathbb{D} = \left\{ (x_i, y_i) \ x_i \in \{0, \dots, 255\}^{k \times k}, y_i \in \{0, 1\} : i = 1, \dots, n \right\}$$

and intend to learn a classifier

Deep Generative Models

Conventional Solution: Discriminative Modeling

We all know the conventional solution: we consider a discriminative model

 $P_{\mathbf{w}}\left(y|x\right)$

and train it on the data

In good old days, we were very limited in computation: it was typical to think of simplest possible model, i.e., a linear model

$$x \longrightarrow \mathbf{w} : \mathbb{R}^{k \times k} \mapsto \mathbb{R} \longrightarrow \sigma \longrightarrow y$$

- What if we could go even simpler?
- + What do you mean? It's linear, we cannot think of simpler one!
- Well, we could think tabular!

Tabular Discriminative Modeling

In tabular approach, we estimate distribution directly from dataset, e.g.,

$$\hat{P}(y=1) = rac{\text{\# of } y = 1\text{'s in }\mathbb{D}}{n}$$

This approach obviously does not work for discriminative learning

+ And how is that obvious?

Noting that typically $n \ll 256^{k^2} \equiv$ size of data space: it is impossible to have enough samples to get a reliable tabular estimate of the posterior

$$\hat{P}\left(y=1|x
ight)=rac{\# ext{ of }(x,1) ext{'s in }\mathbb{D}}{\# ext{ of samples with image }x ext{ in }\mathbb{D}}$$

Well, most of the time \leadsto we are to classify new unseen image

both nominator and denominator are zero!

Naive Baves

Tabular Generative Modeling

Unlike discriminative case, tabular generative learning seems possible!

In tabular generative learning: we need P(x|y)P(y)

1 An estimate of prior belief on label \cdots this is easy to estimate

$$\hat{P}(y) = rac{\# ext{ of } y ext{'s in } \mathbb{D}}{n}$$

→ For sure, we have enough samples of both labels

2 We need an estimate of the class generative distribution

$$\hat{P}(x|y) = rac{\# \text{ of } (x,y) \text{'s in } \mathbb{D}}{\# \text{ of samples with label } y \text{ in } \mathbb{D}}$$

- For sure, the denominator is non-zero
- The nominator is however most of the tine zero!

Tabular Generative Modeling

- + Well! We ended up with the same issue! Right?!
- Yes! But there is a way out of it

We reduce the complexity by postulating a simple assumption \equiv tabular model

Naive Bayes Model

In naive Bayes, we assume that given y entries of x are mutually independent

$$x = \begin{bmatrix} x_{11} & \dots & x_{1k} \\ \vdots & \ddots & \vdots \\ x_{k1} & \dots & x_{kk} \end{bmatrix} \longleftrightarrow P(x|y) = \prod_{i,j} P(x_{ij}|y)$$

Naive Bayes Model is Just a Naive Tabular Model

In reality, the pixels are not independent +++++ this is just a simple model

Deep Generative Models

Chapter 2: Data Generation

Naive Bayes Model

- + How does it help then?!
- Well, each $P(x_{ij}|y)$ is feasible to estimate

Say for instant we want to estimate $P(x_{11}|y)$

 $\hat{P}(x_{11} = 9|y) = \frac{\text{\# of samples in } \mathbb{D} \text{ with label } y \text{ and first entry } 9}{\text{\# of samples with label } y \text{ in } \mathbb{D}}$

 \downarrow With large \mathbb{D} , we could have enough samples with $x_{11} = 9$

For a new sample x: though we haven't seen it before, we have seen each of its pixels before \longrightarrow We can compute its class generative distributions as

$$\hat{P}(\boldsymbol{x}|\boldsymbol{0}) = \prod_{i,j} \hat{P}(\boldsymbol{x}_{ij}|\boldsymbol{0}) \qquad \qquad \hat{P}(\boldsymbol{x}|\boldsymbol{1}) = \prod_{i,j} \hat{P}(\boldsymbol{x}_{ij}|\boldsymbol{1})$$

Naive Bayes Model

To classify the new sample x, we can then use the Bayes rule and write

$$\hat{P}(y|x) = \frac{\hat{P}(x|y)\hat{P}(y)}{\hat{P}(x|0)\hat{P}(0) + \hat{P}(x|1)\hat{P}(1)}$$

and classify with the label that has higher posterior

Moral of Story

Sometimes generative modeling can offer more degrees of freedom

- → It is impossible to think about tabular discriminative learning
- → With generative learning we can use a tabular model

In the old problem, assume we have only two pixels

 $x_1 \in \{\mathsf{A},\mathsf{B}\} \qquad \qquad x_2 \in \{\texttt{€},\$\}$

Discriminative Learning

Say, we want to classify a new sample x = [A, \$]

$$\hat{P}(1|x) = \frac{\#(x, 1) \text{ occurred}}{\#x \text{ occurred}} = \frac{0}{1} = 0$$
$$\rightsquigarrow \hat{P}(0|x) = 1$$

which is not reliable with only one training sample!

In the old problem, assume we have only two pixels

 $x_1 \in \{\mathsf{A},\mathsf{B}\} \qquad \qquad x_2 \in \{\texttt{€},\$\}$

Generative Learning

What if we use naive Bayes for x = [A, \$]?

$$\hat{P}\left(\mathbb{A}\left|\mathbf{1}\right.\right)=\frac{\#\left(\mathbb{A}\right,\mathbf{1}\right)\textit{occurred}}{\#\,\mathbf{1}\,\textit{occurred}}=\frac{2}{5}=0.4$$

In the old problem, assume we have only two pixels

 $x_1 \in \{\mathsf{A},\mathsf{B}\} \qquad \qquad x_2 \in \{\texttt{€},\$\}$

Generative Learning

What if we use naive Bayes for x = [A, \$]?

$$\hat{P}\left(\mathbb{A} \left| \mathbf{0} \right) = \frac{\#\left(\mathbb{A}, \mathbf{0}\right) \text{ occurred}}{\# \, \mathbf{0} \text{ occurred}} = \frac{2}{5} = 0.4$$

In the old problem, assume we have only two pixels

 $x_1 \in \{\mathtt{A}, \mathtt{B}\} \qquad \qquad x_2 \in \{\texttt{€}, \$\}$

Generative Learning

What if we use naive Bayes for x = [A, \$]?

$$\hat{P}(\$|1) = \frac{\#(\$,1) \text{ occurred}}{\#1 \text{ occurred}} = \frac{1}{5} = 0.2$$

So we can say

 $\hat{P}\left(x|\mathbf{1}\right) = \hat{P}\left(\mathbf{A} \mid \mathbf{1}\right) \hat{P}\left(\$|\mathbf{1}\right) = 0.08$

In the old problem, assume we have only two pixels

 $x_1 \in \{\mathtt{A}, \mathtt{B}\} \qquad \qquad x_2 \in \{\texttt{€}, \$\}$

Generative Learning

What if we use naive Bayes for x = [A, \$]?

$$\hat{P}(\$|0) = \frac{\#(\$,0) \text{ occurred}}{\#0 \text{ occurred}} = \frac{3}{5} = 0.6$$

So we can say

 $\hat{P}\left(x|\mathbf{0}\right) = \hat{P}\left(\mathbf{A}|\mathbf{0}\right)\hat{P}\left(\$|\mathbf{0}\right) = 0.24$

13/18

In the old problem, assume we have only two pixels

 $x_1 \in \{\mathtt{A}, \mathtt{B}\}$

 $x_2 \in \{ \in, \$ \}$

Generative Learning

Prior probability is also readily estimated

$$\hat{P}(1) = \frac{\#1 \text{ occurred}}{10} = \frac{5}{10} = 0.5$$

So, we have

 $\hat{P}(0) = 1 - \hat{P}(1) = 0.5$

In the old problem, assume we have only two pixels

 $x_1 \in \{\mathtt{A}, \mathtt{B}\} \qquad \qquad x_2 \in \{\textcircled{\in}, \$\}$

x_1	x_2	y
Α	€	1
Α	€	1
В	€	1
В	\$	0
В	\$	0
Α	€	0
Α	\$	0
В	€	0
В	€	1
В	\$	1

Generative Learning

What if we use naive Bayes for x = [A, \$]?

$$\hat{P}(1|x) = \frac{\hat{P}(x|1)\hat{P}(1)}{\hat{P}(x|1)\hat{P}(1) + \hat{P}(x|0)\hat{P}(0)}$$
$$= \frac{0.04}{0.16} = 0.25 \rightsquigarrow \hat{P}(0|x) = 0.75$$

Sounds like more reliable!

Interesting Old Study

Deep Generative Models

Deep Generative Models

Using naive Bayes model, we can sample new data points

we sample $y \sim \hat{P}(y) \rightsquigarrow$ fixing y we sample $x \sim \hat{P}(x|y)$

Nevertheless, we obviously cannot expect meaningful samples

- ↓ the tabular model is too simple
- ↓ data distribution is too complex

The solution is hence to go for a deep generative model we sample $y \sim \hat{P}(y) \rightsquigarrow$ fixing y we sample $x \sim \hat{P}_{w}(x|y)$

where $\hat{P}_{\mathbf{w}}\left(x|y
ight)$ is a deep model, e.g., a deep NN

Road Map

Road Map: Deep Generative Models

