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Large Language Models

LLMs: Scale
Since the introduction of transformer-based LMs, various companies and
research teams have trained these models over very large datasets

Large LMs
They are called LLMs, as they are rather deep and trained on very large data

+ How large are these models?
– As time passes, they get deeper and wider
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Large Language Models

LLMs: Example of GPT
For instance the generative pre-trained model (GPT) has evolved as

1 GPT-1 had L “ 12 layers of multi-head SA ù « 117 million parameters
2 GPT-2 got L “ 48 layers ù « 1.5 billions parameters
3 GPT-3 got L “ 96 layers ù « 175 billions parameters
4 GPT-4 ù ?

The larger they got, the more concerns raised ù publicized details got reduced

Model Data Code
GPT-1 Ë Ë Ë
GPT-2 Ë Ë Ë
GPT-3 Ë � é
GPT-4 é é é
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Large Language Models

Data for LLMs
+ How large is data then? Where do they get it?
– Well! Crazy large data collected from any possible text resources

The most common resources to collect data for training LLMs are
‚ Web-Text which contains high quality texts from internet

ë Sources like Reddit and Quora
‚ Wikipedia articles
‚ Coding-Corpora collected from various online resources

ë Sources like GitHub and StackOverflow
‚ Book-Corpora which is made by including texts from reliable books
‚ Common Crawl that is a service providing web crawling

ë Crawls need to be filtered and cleaned
ë They need to be filtered due to safety and ethical issues
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Large Language Models

Data: Example – GPT
For the example of GPT, we do know the data scale to some extent

1 GPT-1 was trained on BookCorpus ù « 1 billion words
2 GPT-2 was trained on WebText created by OpenAI ù « 40 GB text
3 GPT-3 was trained on a giant dataset ù based on GPT-3 Paper

Data Size in # Tokens Weight Eff. Epochs
Common Crawl 410 billion 60% 0.44
WebText2 19 billion 22% 2.9
Books1 12 billion 8% 1.9
Books2 55 billion 8% 0.43
Wikipedia 3 billion 3% 3.4

4 GPT-4 ù ?
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Large Language Models

Data: Practical Aspects
Getting access to fair data is crucial in training LLMs

‚ Several projects started to develop datasets
ë Some are public, some partially shared, and some have been kept private

The Pile
The Pile is a large public dataset for LLM training
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Large Language Models

Data: Ethical Challenges
� Attention
Data collection for LLM training faces various legal and ethical challenges

U We should take care of individuals’ privacy
U We must filter raw data to ensure training on ethically sound content
? How can we make sure about safety aspects of trained model
U We should make sure there is no copyright violations
? How can we guarantee rights of intellectual properties

And believe it or not . . .

there are examples for each of these aspects1

1Just take a look at further reads on course page
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Large Language Models

Evaluation: Perplexity
Perplexity
Let a LM with weightsw completes token sequence x1, x2, . . . , xt with L
tokens as xt`1, . . . , xt`L. The perplexity is then defined as

PPLw px:q “ rPw pxt`1:t`L|x1:tqs
´1{L

Note that perplexity is reversely proportional to likelihood
PPLw px:q “ L

d

1

Pw pxt`1:t`L|x1:tq

“ L

d

1

Pw pxt`1|x1:tqPw pxt`2|x1:t`1q . . . Pw pxt`L|x1:t`L´1q
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Large Language Models

Evaluation: Perplexity
In practice, we often work with log-perplexity, i.e.,

log PPLw px:q “ ´
1

L
logPw pxt`1:t`L|x1:tq

“ ´
1

L

L
ÿ

ℓ“1

logPw pxt`ℓ|x1:t`ℓ´1q

which is literally negative average log-likelihood

Properties of log-Perplexity
It is easy to see that

1 log-Perplexity is always non-negative
2 smaller log-Perplexity ù larger likelihood ù more-reliable LM
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Large Language Models Pre-Training

Back to Technical Aspects
+ So, you mean that by training these giant models for a long time, they will

start to do what ChatGPT does?
– Well, not immediately! We need a few further steps

The trained LLMs are indeed only text completer
○ How can I get rid of Ali Bereyhi ø x1:t

2 . . . who works at the ECE department in UofT and is kind of
annoying, especially in the Applied Deep Learning course
where he talks about backpropagation for ever! ø xt`1:T

This is why we call these models pre-trained models
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Large Language Models Pre-Training

Pre-training
Pre-training
The process of training a LM on a large language dataset is called pre-training

A pre-trained LM is able to sample from the generic language distribution
p pxt`1:T |x1:tq

But, we often want them to sample from a task-specific distribution
p py1:L|x1:tq

Example: To learn to give answer to a question

○ How can I get rid of Ali Bereyhi ø x1:t

2 Just ask questions! ø y1:L
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Large Language Models Fine-Tuning

Fine-Tuning a Pre-trained Model
In general, task-specific distributions are close to what LM learned
Ë LM can generate meaningful and syntactically-correct completions

ë There all lots of such completions
ë A few address the one required in a given task like Question Answering

é After pre-training it has no priority for certain completions
ë As it does not know which one is the desired one

We can hence adapt the pre-trained LM to task-specific distribution
via fine-tuning them for the task

Fine-Tuning
Further training of pre-trained LMs on a small dataset of a specific task
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Large Language Models Fine-Tuning

Fine-Tuning GPT-1 for Q&A

ˆ12

pt`1:T

x1:t

Post-training Dataset

Question 1 Answer 1 Question 2 Answer 2

¨ ¨ ¨ Question R Answer R

Post-training Samples:

<STR> Question r <delimiter> Answer r <END>

<STR> starting tokens

<delimiter> delimiter tokens indicating end of question

<END> end-of-sample tokens
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Large Language Models Fine-Tuning

Fine-Tuning GPT-1 for Q&A
Staring from the pre-trained GPT-1, we train the model for a few epochs on
thepost-training dataset made out of sample questions and answers

‚ Model is trained as usual on structured samples
ë Since we label samples, we call it supervised fine-thing

‚ Post-training data size and duration are significantly less than pre-training
ë For Question Answering, GPT-1 used RACE dataset with 100K questions
ë GPT-1 was fine-tuned for only 3 epochs

Note that fine-tuning can be in general done for any task
‚ Text classification
‚ Similarity check
‚ Question answering
‚ ¨ ¨ ¨
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Large Language Models Fine-Tuning

Sampling Answers from Fine-Tuned GPT-1

ˆ12

pt`1:T

x1:t

Question ‹ ??

Set x1:t to

<STR> Question ‹ <delimiter>

and let the fine-tuned model completes
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Large Language Models Fine-Tuning

Supervised Fine-Tuning LLMs: Formulation
We can fit fine-tuning in our generic formulation of language modeling: to
this end, let us specify the main two notions we deal with

Pre-trained Distribution
Through pre-training LLM learns to approximate a generic distribution as

Pw pxt`1:T |x1:tq

with some model that is parameterized byw

Task-specific Distribution
A given language task is described by its task-specific distribution

Q py1:N |u1:M q

with u1:M being the task prompt and y1:N is the coherent response
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Large Language Models Fine-Tuning

Supervised Fine-Tuning LLMs: Formulation
A supervised fine-tuning algorithm works as follows: it takes two inputs

1 Pre-trained LLM with distribution Pw pxt`1:T |x1:tq

2 Samples of task-specific distribution tpy:,i, u:,iq for i “ 1 : Ru

and performs the following step
1 It makes a dataset by structuring task-specific samples

Q “ ttx1:T ui for i “ 1 : Ru : tx1:T ui Ð F py:,i, u:,iq

ë F py:,i, u:,iq is a simple structuring function
ë It describes how to get x1:T from py:, u:q and vice versa

2 It starts withw and trains LLM onQ for further epochs
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Large Language Models Fine-Tuning

Supervised Fine-Tuning LLMs: Q&A Example

ˆ12

pt`1:T

x1:t

Pw p¨|x1:tq

task samples

Question 1 Answer 1
u:,1 y:,1

Question 2 Answer 2

¨ ¨ ¨ Question R Answer R
u:,R y:,R

F py:,r, u:,rq :

<STR> Question r <delimiter> Answer r <END>

Q

<STR> Question 1 <delimiter> Answer 1 <END>

...

<STR> Question R <delimiter> Answer R <END>

Deep Generative Models Chapter 1: Language Models © A. Bereyhi 2025 18 / 36



Large Language Models Fine-Tuning

Sampling Fine-Tuned LLMs: Formulation
After fine-tuning, the LLM is updated to Pw̃ pxt`1:T |x1:tq: to sample from it

1 Make an input token as

x1:t9F pH, u:q

2 Sample xt`1:T from the fine-tuned model
3 Use F to get back to y:
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Large Language Models Fine-Tuning

Sampling Fine-Tuned LLMs: Q&A Example

ˆ12

pt`1:T

x1:t

Pw̃ p¨|x1:tq

Set x1:t to

<STR> Question ‹

u:,‹

<delimiter>

and let the fine-tuned model completes

<STR> Question ‹ <delimiter> Answer ‹

y:,‹

<END>
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Large Language Models Fine-Tuning

Fine-Tuning ” Slight Change in Learned Distribution
Intuitively, pre-training trains LM to

‚ represent generic-task distribution
‚ get close to any language task

fine-tuning focuses on a task pushing LM to
‚ represent the task-specific distribution
‚ could get far from other tasks

‚Pw0 : untrained

‚Pw

pr
e-
tra

in
in
g

‚Pw̃ « Q‹

fine
-tu
nin
g

‚Q‹‚Q‹

‚
Qi

‚Qj

‚Qℓ
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Large Language Models Fine-Tuning

Fine-Tuning ” Limiting Sampling Space
Alternative Intuition
Pre-training trains LM to give coherent completions while fine-tuning restricts
the completion to be the one desired for the task

coherent completions

space of all token sequences

Ëhow are you doing?

éyou am potato

‚Pw0 : untrained

‚Pw: pre-trained
task-specific completions

‚Pw̃: fine-tuned
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Large Language Models Fine-Tuning
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Large Language Models Fine-Tuning

Fine-Tuning Approaches: Full Fine-Tuning
+ Do we update all parameters in the LLM when fine-tuning?
– We can! And, in this case we call it full fine-tuning

Full Fine-Tuning
In full fine-tuning, we update all model parameters, i.e., in every iteration of
fine-tuning we perform

W Ð W ´ ηOpt_avg t∇W logPLLMu

for allW P Layers pPLLMq

+ Sounds still expensive!
– Yes! If you think of nowadays LLMs!
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Large Language Models Fine-Tuning

Fine-Tuning Approaches: Selective Fine-Tuning
For simple tasks, it’s often enough to only update a few sets of weights

W Ð W ´ ηOpt_avg t∇W logPLLMu
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Large Language Models Fine-Tuning

Fine-Tuning Approaches: Selective Fine-Tuning
Selective Fine-Tuning
In selective fine-tuning, we update the weights of a subset of layers while
treating the others as fixed, i.e., in every iteration we perform

W Ð W ´ ηOpt_avg t∇W logPLLMu

forW PW ĂLayers pPLLMq
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Large Language Models Fine-Tuning

LoRA: Low Rank Adaptation
In LLMs, each layer is also huge: this means that in practice

‚ eachW is extremely large and contains too many learnable parameters
‚ updating all of them by vanilla GD updates can make us lost

ë It can push weights to even forget their pre-trained values
A better solution is to use low rank adaptation (LoRA)

+ How does LoRA work?
Say we want to fine-tuneW P Rdˆk: we write fine-tuned matrix as

W̃ “ W ` VU

whereV P Rdˆℓ andU P Rℓˆk are learnable andW is treated as fixed
1 We start from initial randomU andV
2 We compute∇U logPLLM and∇V logPLLM in each iteration
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Large Language Models Fine-Tuning

LoRA: Low Rank Adaptation
+ Why should that be low-complexity?
– Let’s take a look at number of parameters being updated

The number of parameters updated in full-update ofW and LoRA are
‚ Complete update ofW P Rdˆk ù we update dk parameters
‚ LoRA ù we update ℓ pd ` kq parameters

In practice ℓ ! min td, ku: it can be as small as ℓ “ 4

ë Standard full fine-tuning of GPT-3 requires 175B weight to be updated
ë Using LoRA, full fine-tuning of GPT-3 is done by updating 4.7M weights

Attention
We can use LoRA for both full and selective fine-tuning
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Large Language Models Foundation Models

Prompt Design
A question that comes to mind is that . . .
+ If LLM is perfectly pre-trained, shouldn’t it give us the right response if we

properly prompt?!

○ How can I get rid of Ali Bereyhi? The answer is that “you
can get rid of Ali Bereyhi by ø x1:t

2 asking questions during the lecture!” ø xt`1:T

– This describes the idea of prompt design
ë It was initially used to evaluate how well LLM works
ë It gradually became a reality!
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Large Language Models Foundation Models

Few-Shot Learning
GPT-2 was tested with prompts designed by few-shot learning
Few-Shot Learning
Few-shot learning algorithms modify a trained model by showing it only a few
examples of unseen labels

This idea was easy to implement via a pre-trained LLM: for instance
○ Translate to German. “I am happy”: “ich bin fröhlich” |

“how are you doing?”: “wie geht es dir?” | “what time is
it?”: “wie spät ist es?” | “the sun is shining”: ø x1:t

2 “die Sonne scheint” ø xt`1:T

GPT-2 could handle it for various tasks
ë It however needed accurate prompt design!
ë This explains title: “Language Models are Unsupervised Multitask Learners”
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Large Language Models Foundation Models

Zero-Shot Learning
GPT-2 was also tested for the idea of zero-shot learning
Zero-Shot Learning
Zero-shot learning refers to approaches that enable a model to understand
patterns in data from unseen labels

This was again easy to implement via a pre-trained LLM: for instance
○ Translate to German. “the sun is shining”: ø x1:t

2 “die Sonne scheint” ø xt`1:T

GPT-2 could handle it for some tasks as well
ë It was however again sensitive to accurate prompt design!
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Large Language Models Foundation Models

Prompt Design: Formulation
Both few-shot and zero-shot learning can be formulated in a more genericframework which we call prompt design
Prompt Design (intuitive)
Let y: be response to u: with distributionQ py:|u:q. Also, let LLMw px1:tq be an
LLM with pre-trained weightsw which takes x1:t as input and completes it to
x1:T with distribution is Pw pxt`1:T |x1:tq. A prompt design consists of

‚ an encoding x1:t “ F pu:q

‚ a decoding y: “ G pxt`1:T q

such that the distribution of decoded sample y: when computed from xt`1:T

that is sampled from the LLM with input x1:t “ F pu:q, denoted by Q̂w, reads

Q̂w py:|u:q « Q py:|u:q
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Large Language Models Foundation Models

Prompt Design: Formulation

LLMw p¨qx1:t xt`1:T

Pw pxt`1:T |x1:tq

F p¨qencoding

u:

G p¨q decoding

y:
Q̂w py:|u:q « Q py:|u:q
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Large Language Models Foundation Models

Prompt Engineering vs Tuning
Initial designs, e.g., few- and zero-shot learning focused on prompt engineering
Prompt Engineering
In prompt engineering, encoding and decoding are designed by engineering the
function F andG

But, for optimal design we could learn how to prompt!

Prompt Tuning
In prompt tuning, encoding and decoding are learned by training some learning
models Fθ andGβ

Mathematically, we can think of prompt tuning as an approach for fine-tuning
‚ In this approach, the LLM remains unchanged
‚ End-to-end distribution is changed by the encoding and decoding blocks
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Large Language Models Foundation Models

From Few-Shot to Zero-Shot Learner
Initial LLMs showcased few-shot and zero-shot learning capabilities

ë It was though achieved by accurate prompt design
ë Fine-tuning was considered as the key requirement

Later models showed that few-shot and zero-shot learning are achievable
ë Natural prompting was able to sample task-specific distribution
ë GPT-3: Language Models are Few-Shot Learners

Current models are zero-shot learners
ë No specific prompt design is required
ë This is what for instance GPT-4 is capable of!
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Large Language Models Foundation Models

Foundation Models
Zero-shot learning capability of LLMs brought up the idea of foundationmodels: a model that ia capable of sampling from any task distribution!

Foundation Model (intuitive)
Foundation model refers to a model that is adaptable, e.g., through fine-tuning
or prompt designing, to a wide range of tasks. In other words, it can be adapted
to sample from a large set of task-specific distributionsQ py:|u:q by resource
and data-efficient approaches

The term was coined by Center for Research on Foundation Models (CRFM)
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Large Language Models Beyond Text

Going Beyond Text
We discussed only text generation up to this point!

+ So the LLMs we learned should not be Foundation Models?!
– Right! They cannot deal with other modalities, e.g., image, audio, etc
+ How can we go beyond text?!
– By extending the idea to a general mathematical object x

Next Stop: Generative Models
We can extend out formulation to a more generic setting in the next chapter
? We want to generate some sample x, e.g., text, image or audio
U We should learn its distribution P pxq
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