Deep Generative Models Chapter 1: Text Generation via Language Models

Ali Bereyhi

ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering University of Toronto

Summer 2025

Transformer: Revolutionary Sequence Models

Transformer was proposed in 2017 in the paper

- Attention is All You Need!

providing a computationally-efficient was for sequence processing

Key Component of Transformers

Transformers use the Attention mechanism which enables parallel processing of sequences¹

We use the Attention mechanism in the sequel to build context!

¹Read more in Chapter 7 of Applied Deep Learning lecture notes

Chapter 1: Language Models

Key-Query-Value Tuple

Say we have the sequence of tokens

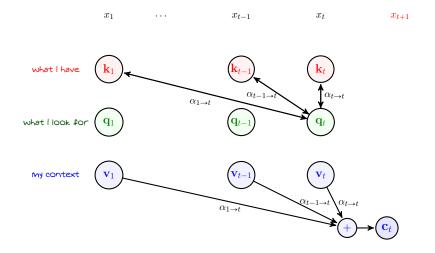
 x_1, x_2, \ldots, x_t

and intend to build context \mathbf{c}_t to find the distribution of next token x_{t+1}

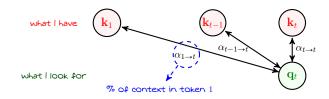
For each token in the sequence, we give three separate embeddings

- Query $\mathbf{q}_t \in \mathbb{R}^S$ which flags what kind of context token x_t is looking for
- Key $\mathbf{k}_t \in \mathbb{R}^S$ which flags what kind of context token x_t has to present
- Value $\mathbf{v}_t \in \mathbb{R}^S$ which embeds the context of token x_t
- + How do we compute these embeddings?
- No worries! We'll see shortly!

Building Context by Attention



Computing Attention Weights



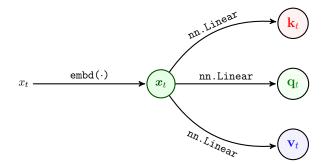
We can compare the query with each key using inner product

$$\xi_{j \to t} = \left\langle \mathbf{q}_t; \mathbf{k}_j \right\rangle$$

The larger $\xi_{j \to t}$ is, the more related tokens j and t are!

But, we need weights $\in [0, 1]$; so, we use Softmax $[\alpha_{j \to t} \text{ for } j = 1:t] = \text{Soft}_{\max} \left(\langle \mathbf{q}_t; \mathbf{k}_j \rangle \text{ for } j = 1:t \right)$

Embedding Tokens: Key, Query and Value



We typically compute the tuples by linear projections of token embedding

$$\mathbf{k}_t = \mathbf{W}_k \boldsymbol{x}_t$$
 $\mathbf{q}_t = \mathbf{W}_q \boldsymbol{x}_t$ $\mathbf{v}_t = \mathbf{W}_v \boldsymbol{x}_t$

fore some $\mathbf{H}_k, \mathbf{W}_q, \mathbf{W}_v \in \mathbb{R}^{S \times E}$

6/22

Sequential Order

Say we have the following two sequences

$$x_{1:t} = x_1, x_2, x_3 \dots, x_t$$

 $\hat{x}_{1:t} = x_2, x_1, x_3 \dots, x_t$

We have $\mathbf{k}_i = \mathbf{W}_k \boldsymbol{x}_j$; thus, the keys see the same permutation

$$\hat{\mathbf{k}}_{1:t} = \mathbf{k}_2, \mathbf{k}_1, \mathbf{k}_3 \dots, \mathbf{k}_t$$

If we compare with the query \mathbf{q}_t , we get same permutation in weights

$$\hat{\alpha}_{1 \to t}, \hat{\alpha}_{2 \to t}, \hat{\alpha}_{3 \to t}, \dots, \hat{\alpha}_{t \to t} = \alpha_{2 \to t}, \alpha_{1 \to t}, \alpha_{3 \to t}, \dots, \alpha_{t \to t}$$

7/22

Sequential Order

Weights observe the same permutation as input

$$\hat{\alpha}_{1 \to t}, \hat{\alpha}_{2 \to t}, \hat{\alpha}_{3 \to t} \dots, \hat{\alpha}_{t \to t} = \alpha_{2 \to t}, \alpha_{1 \to t}, \alpha_{3 \to t} \dots, \alpha_{t \to t}$$

We have further $\mathbf{v}_i = \mathbf{W}_v x_j$; thus, the values also see the same permutation

 $\hat{\mathbf{v}}_{1:t} = \mathbf{v}_2, \mathbf{v}_1, \mathbf{v}_3 \dots, \mathbf{v}_t$

So, the context of permuted sequence is

$$\hat{\mathbf{c}}_{t} = \hat{\alpha}_{1 \to t} \mathbf{v}_{2} + \hat{\alpha}_{2 \to t} \mathbf{v}_{1} + \hat{\alpha}_{3 \to t} \mathbf{v}_{3} + \dots + \hat{\alpha}_{t \to t} \mathbf{v}_{t}$$
$$= \alpha_{2 \to t} \mathbf{v}_{2} + \alpha_{1 \to t} \mathbf{v}_{1} + \alpha_{3 \to t} \mathbf{v}_{3} + \dots + \alpha_{t \to t} \mathbf{v}_{t} = \mathbf{c}_{t}$$

Moral of Story

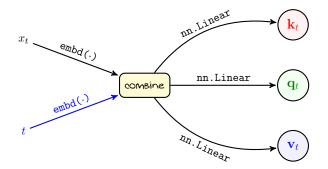
Using only token embedding we do not capture sequential order via attention!

Deep Generative Models

Chapter 1: Language Models

Encoding Tokens with Sequential Order

We can capture sequential order by positional encoding

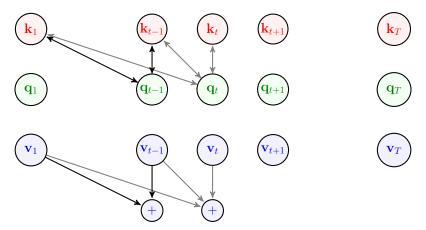


Classical combining approach is to add

$$\boldsymbol{x}_t = \texttt{embd}(\boldsymbol{x}_t) + \texttt{embd}(t)$$

Parallel Context Computation

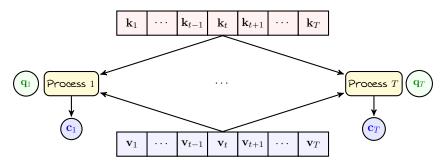
- + Do we still need to process one token at a time?
- No! The cool part is that we can compute all contexts in parallel



10/22

Parallel Context Computation

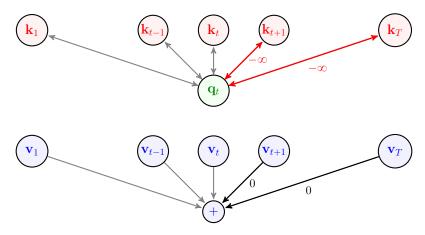
Indeed, we can break computation of c_1, \ldots, c_T into T parallel processes



- + But the number of weights in each process differ, right? Process 1 computes one coefficient, Process 2 computes two, ···
- Yes! And, this can be easily unified 🙂

Self-Attention with Masked Decoding

We can get query from all keys in the sequence and rewrite them to keep the weights zero for future tokens \cdots replace future inner-products with $-\infty$



Masked Decoding

- + Why do we replace the inner products with $-\infty$?
- To make the corresponding Softmax output zero

By setting
$$\exp \{\xi_{j \to t}\} = -\infty$$
 for $j > t$, we have

$$\alpha_{j \to t} = \frac{\exp \{\xi_{j \to t}\}}{\sum\limits_{i=1}^{T} \exp \{\xi_{i \to t}\}} = \frac{\exp \{-\infty\}}{\sum\limits_{i=1}^{T} \exp \{\xi_{i \to t}\}} = 0$$

- + Why do we call it masked decoding?
- Well! If we wanted future tokens impact the current one
 - \downarrow we did not need to mask out $\exp{\{\xi_{j \to t}\}}$ for j > t

Self-Attention: Single Head

$$\begin{array}{l} \underbrace{ \begin{array}{l} \operatorname{SA_Head}(x_{1:T}:\operatorname{input_seq}): \\ \hline 1: \ \text{for }t=1:T \ \text{do} \\ 2: \quad \operatorname{Set} x_t \leftarrow \operatorname{embd}(x_t) + \operatorname{embd}(t) & & & & & \\ 1: \ \text{for }t=1:T \ \text{do} \\ 3: \quad \mathbf{k}_t, \mathbf{q}_t, \mathbf{v}_t \leftarrow \operatorname{Linear}(x_t), \operatorname{Linear}(x_t), \operatorname{Linear}(x_t) \\ 4: \quad \xi_{1:T \rightarrow t} = \langle \mathbf{k}_1; \mathbf{q}_t \rangle, \ldots, \langle \mathbf{k}_T; \mathbf{q}_t \rangle & & & \\ 4: \quad \xi_{t+1:T \rightarrow t} = \langle \mathbf{k}_1; \mathbf{q}_t \rangle, \ldots, \langle \mathbf{k}_T; \mathbf{q}_t \rangle & & & \\ 5: \quad \text{if masked_decode} = \operatorname{True} \ \text{then} \\ 6: \quad \xi_{t+1:T \rightarrow t} = -\infty \\ 7: \quad \text{end if} \\ 8: \quad \alpha_{1:T \rightarrow t} = \operatorname{Soft}_{\max}(\xi_{1:T \rightarrow t}) & & \\ 9: \quad \mathbf{c}_t \leftarrow \sum_i \alpha_{i \rightarrow t} \mathbf{v}_i & & \\ 9: \quad \mathbf{c}_t \leftarrow \sum_i \alpha_{i \rightarrow t} \mathbf{v}_i & & \\ 10: \ \text{end for} \\ 11: \ \text{return } \mathbf{c}_t \ \text{for } t=1:T \end{array}$$

+ Why calling it a Head?

- Well! In practice we can apply multiple of these heads in parallel to make a richer context

14/22

Self-Attention: Multi-Head

 $\begin{array}{l} \displaystyle \underbrace{ \texttt{SelfAttention}(x_{1:T}:\texttt{input_seq}, \ H:\texttt{\# of heads}):} \\ \hline 1: \ \texttt{for } h = 1: H \ \texttt{do} \\ 2: \quad \texttt{Compute } \mathbf{c}_{1:T}^h \leftarrow \texttt{SA_Head}(x_{1:T}) \\ 3: \ \texttt{end for} \\ 4: \ \texttt{Set } \mathbf{c}_t \leftarrow \begin{bmatrix} \mathbf{c}_{1:T}^1, \dots, \mathbf{c}_{1:T}^H \end{bmatrix} \\ 5: \ \texttt{return } \mathbf{c}_t \ \texttt{for } t = 1: T \end{array} \right.$

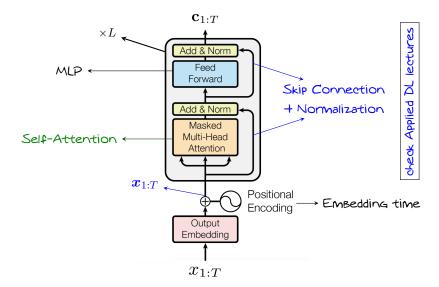
- + Is this then a Transformer?
- A shallow one! We can make it deep with *L* layers!

Transformer-Based LM: Context Extractor

 $\begin{array}{l} \hline \text{TransformerDec}(x_{1:T}, \ H: \# \ \text{of heads, } L: \text{depth}): \\ \hline 1: \ \text{for } \ell = 1: L \ \text{do} \\ 2: \quad \mathbf{c}_{1:T} \leftarrow \text{SelfAttention}(x_{1:T}, H) \\ 3: \quad \mathbf{c}_{1:T} \leftarrow \text{MLP}(\mathbf{c}_t) \ \text{for } t = 1: T \\ 4: \ \text{end for} \\ 5: \ \text{return } \mathbf{c}_t \ \text{for } t = 1: T \end{array}$

- + What does the MLP do?
- It makes more complexity to the model
 - → This increases the model capacity
 - → It can hence enhance the learning capability of the model
- + Good that we talk again "computational"! 🙂
- We need to switch to "statistical" talks pretty soon 🙂

Transformer-Based LM: Overview



Transformer-based LM: Context Extractor

- + Wait a moment! We have not computed the distribution!
- We can readily do it by a final MLP

 $\begin{array}{l} \frac{\text{TransformerLM}(x_{1:T}, H:\texttt{\# of heads, } L:\texttt{depth}):}{1: \mathbf{c}_{1:T} \leftarrow \text{TransformerDec}(x_{1:T}, H, L)}\\ 2: \text{ for } t = 1: T \text{ do}\\ 3: \mathbf{p}_{t+1} \leftarrow \text{MLP}(\mathbf{c}_t) & \texttt{\#p}_{t+1} \in [0, 1]^{I}\\ 4: \text{ end for}\\ 5: \text{ return } \mathbf{p}_{t+1} \text{ for } t = 1: T \end{array}$

Training Transformer-based LM

It's good to imagine how we can train this model

TransformerLM_Train(D:train_set):	
1: for multiple epochs do	
2: Sample a batch $\mathbb{B} = \{(x_{1:T+1})_b\}$	#samples of T tokens
3: for $b = 1 : B$ do	
4: $\mathbf{p}_{2:T+1,b}, _ \leftarrow \texttt{TransformerLM}(x_{1:T,b}, H, L)$	
5: Compute $\nabla_b \leftarrow -\sum \nabla \log \mathbf{p}_{t+1,b}[x_{t+1,b}]$	#seq LL grad
6: end for	
7: Update $\mathbf{w} \leftarrow \mathbf{w} - \eta \texttt{Opt}_\texttt{avg} \{ \nabla_b \}$	#average batch
8: end for	

Important

Training loop in this case can be extensively parallelized!

Generation via Transformer-based LMs

It's good to think how a this LM generates the whole new text

$TransformerLM_Generation(x_{1:t}:input_text):$	
1: for $i = t : T - 1$ do	
2: $x_{1:T+1} = x_{1:i}, 0, \dots, 0$	#add $arnothing$: 0
3: $\mathbf{p}_{2:T+1} \leftarrow \texttt{TransformerLM}(x_{1:T-1}, H, L)$	#masked decode
4: $x_{i+1} \leftarrow \texttt{multinomial}(\mathbf{p}_{i+1}, \texttt{#smpl=1})$	#sample next token
5: end for	
6: return $\{token[x_t] \text{ for } t = 1:T\}$	#completed text

In practice though, we can improve computational efficiency by

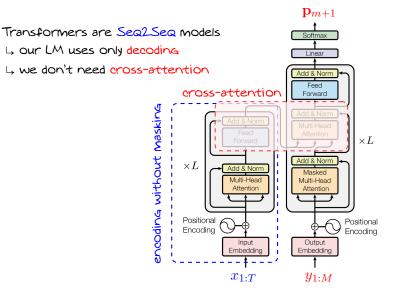
- We can drop number of key and query computations by caching
- We compute only the target token distribution in each iteration

• ...

Ready for LLMs!

- + Is this then an LLM?
- Well! If scale it crazy up, Yes!
- + How crazy should we scale?
- Pretty crazy! 🕲
- + But, isn't this simply a text completer? How does it do what ChatGPT does?
- Well! This is what we call *"Pre-trained LLM"*; we need to do some few extra steps to get there
- + What are those steps?
- No worries! We have the next section dedicated to LLMs

Final Note on Transformers



DL lectures of Applied check Chapter