
Deep Generative Models
Chapter 1: Text Generation via Language Models

Ali Bereyhi
ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Summer 2025

Deep Generative Models Chapter 1: Language Models © A. Bereyhi 2025 1 / 22

mailto:ali.bereyhi@utoronto.ca


Transformer-based LMs

Transformer: Revolutionary Sequence Models
Transformer was proposed in 2017 in the paper
– Attention is All You Need!

providing a computationally-efficient was for sequence processing
Key Component of Transformers
Transformers use the Attention mechanism which enables parallel processing of
sequences1

We use the Attention mechanism in the sequel to build context!

1Read more in Chapter 7 of Applied Deep Learning lecture notes
Deep Generative Models Chapter 1: Language Models © A. Bereyhi 2025 2 / 22

https://arxiv.org/abs/1706.03762
https://bereyhi-courses.github.io/genai-utoronto/assets/AplDL/AplDL_Transformer.pdf


Transformer-based LMs Making Context by Attention

Key-Query-Value Tuple
Say we have the sequence of tokens

x1, x2, . . . , xt

and intend to build context ct to find the distribution of next token xt`1

For each token in the sequence, we give three separate embeddings
‚ Query qt P RS which flags what kind of context token xt is looking for
‚ Key kt P RS which flags what kind of context token xt has to present
‚ Value vt P RS which embeds the context of token xt
+ How do we compute these embeddings?
– No worries! We’ll see shortly!

Deep Generative Models Chapter 1: Language Models © A. Bereyhi 2025 3 / 22



Transformer-based LMs Making Context by Attention

Building Context by Attention
x1 ¨ ¨ ¨ xt´1 xt xt`1

k1

q1

v1

what I have

my context

what I look for

kt´1

qt´1

vt´1

kt

qt

vt

αtÑtαt´1Ñt
α1Ñt

` ct

α1Ñt
αt´1Ñt αtÑt

Deep Generative Models Chapter 1: Language Models © A. Bereyhi 2025 4 / 22



Transformer-based LMs Making Context by Attention

Computing Attention Weights
k1what I have

what I look for

kt´1 kt

qt

αtÑtαt´1Ñt
α1Ñt

% of context in token 1

We can compare the query with each key using inner product
ξjÑt “ xqt;kjy

The larger ξjÑt is, the more related tokens j and t are!

But, we need weights P r0, 1s; so, we use Softmax

rαjÑt for j “ 1 : ts “ Softmax pxqt;kjy for j “ 1 : tq

Deep Generative Models Chapter 1: Language Models © A. Bereyhi 2025 5 / 22



Transformer-based LMs Making Context by Attention

Embedding Tokens: Key, Query and Value

xt xt
embd(¨)

kt

qt

vt

nn.
Lin

ear

nn.Linear

nn.Linear

We typically compute the tuples by linear projections of token embedding
kt “ Wkxt qt “ Wqxt vt “ Wvxt

fore someHk,Wq,Wv P RSˆE

Deep Generative Models Chapter 1: Language Models © A. Bereyhi 2025 6 / 22



Transformer-based LMs Making Context by Attention

Sequential Order
Say we have the following two sequences

x1:t “ x1, x2, x3 . . . , xt

x̂1:t “ x2, x1, x3 . . . , xt

We have ki “ Wkxj ; thus, the keys see the same permutation

k̂1:t “ k2,k1,k3 . . . ,kt

If we compare with the query qt, we get same permutation in weights

α̂1Ñt, α̂2Ñt, α̂3Ñt . . . , α̂tÑt “ α2Ñt, α1Ñt, α3Ñt . . . , αtÑt

Deep Generative Models Chapter 1: Language Models © A. Bereyhi 2025 7 / 22



Transformer-based LMs Making Context by Attention

Sequential Order
Weights observe the same permutation as input

α̂1Ñt, α̂2Ñt, α̂3Ñt . . . , α̂tÑt “ α2Ñt, α1Ñt, α3Ñt . . . , αtÑt

We have further vi “ Wvxj ; thus, the values also see the same permutation

v̂1:t “ v2,v1,v3 . . . ,vt

So, the context of permuted sequence is

ĉt “ α̂1Ñtv2 ` α̂2Ñtv1 ` α̂3Ñtv3 ` . . . ` α̂tÑtvt

“ α2Ñtv2 ` α1Ñtv1 ` α3Ñtv3 ` . . . ` αtÑtvt “ ct

Moral of Story
Using only token embedding we do not capture sequential order via attention!

Deep Generative Models Chapter 1: Language Models © A. Bereyhi 2025 8 / 22



Transformer-based LMs Making Context by Attention

Encoding Tokens with Sequential Order
We can capture sequential order by positional encoding

xt

t

combine

embd(¨)

embd
(¨)

xt

kt

qt

vt

nn.
Lin

ear

nn.Linear

nn.Linear

Classical combining approach is to add

xt “ embd(xt) ` embd(t)

Deep Generative Models Chapter 1: Language Models © A. Bereyhi 2025 9 / 22



Transformer-based LMs Self-Attention

Parallel Context Computation
+ Do we still need to process one token at a time?
– No! The cool part is that we can compute all contexts in parallel

k1

q1

v1

kt´1

qt´1

vt´1

kt

qt

vt

kt`1

qt`1

vt`1

kT

qT

vT

``

Deep Generative Models Chapter 1: Language Models © A. Bereyhi 2025 10 / 22



Transformer-based LMs Self-Attention

Parallel Context Computation
Indeed, we can break computation of c1, . . . , cT into T parallel processes

k1 ¨ ¨ ¨ kt´1 kt kt`1 ¨ ¨ ¨ kT

v1 ¨ ¨ ¨ vt´1 vt vt`1 ¨ ¨ ¨ vT

Process 1q1 ¨ ¨ ¨ Process T qT

c1 cT

+ But the number of weights in each process differ, right? Process 1
computes one coefficient, Process 2 computes two, ¨ ¨ ¨

– Yes! And, this can be easily unified⌣

Deep Generative Models Chapter 1: Language Models © A. Bereyhi 2025 11 / 22



Transformer-based LMs Self-Attention

Self-Attention withMasked Decoding
We can get query from all keys in the sequence and rewrite them to keep the
weights zero for future tokens ù replace future inner-products with ´8

k1

v1

kt´1

vt´1

kt

qt

vt

kt`1

vt`1

kT

vT

´8
´8

`

0
0

Deep Generative Models Chapter 1: Language Models © A. Bereyhi 2025 12 / 22



Transformer-based LMs Self-Attention

Masked Decoding
+ Why do we replace the inner products with ´8?
– To make the corresponding Softmax output zero
By setting exp tξjÑtu “ ´8 for j ą t, we have

αjÑt “
exp tξjÑtu

T
ř

i“1
exp tξiÑtu

“
exp t´8u

T
ř

i“1
exp tξiÑtu

“ 0

+ Why do we call it masked decoding?
– Well! If we wanted future tokens impact the current one

ë we did not need to mask out exp tξjÑtu for j ą t
ë this is used encoding, e.g., for translation machine

Deep Generative Models Chapter 1: Language Models © A. Bereyhi 2025 13 / 22



Transformer-based LMs Self-Attention

Self-Attention: Single Head
SA_Head(x1:T :input_seq):
1: for t “ 1 : T do2: Set xt Ð embd pxtq ` embd ptq #positional enc3: kt,qt,vt Ð Linear pxtq , Linear pxtq , Linear pxtq4: ξ1:TÑt “ xk1;qty, . . . , xkT ;qty #query ˆ keys5: if masked_decode “ True then6: ξt`1:TÑt “ ´87: end if8: α1:TÑt “ Softmax pξ1:TÑtq #attention weights9: ct Ð

ř

i αiÑtvi #build context10: end for11: return ct for t “ 1 : T

+ Why calling it a Head?
– Well! In practice we can apply multiple of these heads in parallel to make

a richer context

Deep Generative Models Chapter 1: Language Models © A. Bereyhi 2025 14 / 22



Transformer-based LMs Self-Attention

Self-Attention: Multi-Head

SelfAttention(x1:T :input_seq, H:# of heads):
1: for h “ 1 : H do2: Compute ch1:T Ð SA_Head(x1:T ) #independent heads3: end for4: Set ct Ð

“

c11:T , . . . , c
H
1:T

‰

5: return ct for t “ 1 : T

+ Is this then a Transformer?
– A shallow one! We can make it deep with L layers!

Deep Generative Models Chapter 1: Language Models © A. Bereyhi 2025 15 / 22



Transformer-based LMs Self-Attention

Transformer-Based LM: Context Extractor
TransformerDec(x1:T , H:# of heads, L:depth):
1: for ℓ “ 1 : L do2: c1:T Ð SelfAttention(x1:T , H)3: c1:T Ð MLP(ct) for t “ 1 : T #extra computation4: end for5: return ct for t “ 1 : T

+ What does the MLP do?
– It makes more complexity to the model

ë This increases the model capacity
ë It can hence enhance the learning capability of the model

+ Good that we talk again “computational”! ⌣
– We need to switch to “statistical” talks pretty soon⌣

Deep Generative Models Chapter 1: Language Models © A. Bereyhi 2025 16 / 22



Transformer-based LMs Self-Attention

Transformer-Based LM: Overview

Embedding time

x1:T

Self-Attention

MLP

Skip Connection

+ Normalization

c
h
e
c
k

A
p
p
li
e
d

D
L

le
c
t
u
r
e
sˆL

Deep Generative Models Chapter 1: Language Models © A. Bereyhi 2025 17 / 22



Transformer-based LMs Self-Attention

Transformer-based LM: Context Extractor
+ Wait a moment! We have not computed the distribution!
– We can readily do it by a final MLP
TransformerLM(x1:T , H:# of heads, L:depth):
1: c1:T Ð TransformerDec(x1:T , H, L)2: for t “ 1 : T do3: pt`1 Ð MLP(ct) #pt`1 P r0, 1s

I

4: end for5: return pt`1 for t “ 1 : T

Deep Generative Models Chapter 1: Language Models © A. Bereyhi 2025 18 / 22



Transformer-based LMs Self-Attention

Training Transformer-based LM
It’s good to imagine how we can train this model

TransformerLM_Train(D:train_set):
1: for multiple epochs do2: Sample a batch B “

␣

px1:T`1qb

(

#samples of T tokens3: for b “ 1 : B do4: p2:T`1,b, _ Ð TransformerLM(x1:T,b, H, L)5: Compute∇b Ð ´
ř

∇ logpt`1,brxt`1,bs #seq LL grad6: end for7: Updatew Ð w ´ ηOpt_avg t∇bu #average batch8: end for

Important
Training loop in this case can be extensively parallelized!

Deep Generative Models Chapter 1: Language Models © A. Bereyhi 2025 19 / 22



Transformer-based LMs Self-Attention

Generation via Transformer-based LMs
It’s good to think how a this LM generates the whole new text

TransformerLM_Generation(x1:t:input_text):
1: for i “ t : T ´ 1 do2: x1:T`1 “ x1:i, 0, . . . , 0 #add H : 03: p2:T`1 Ð TransformerLM(x1:T´1, H, L) #masked decode4: xi`1 Ð multinomial(pi`1, #smpl=1) #sample next token5: end for6: return ttoken rxts for t “ 1 : T u #completed text

In practice though, we can improve computational efficiency by
‚ We can drop number of key and query computations by caching
‚ We compute only the target token distribution in each iteration
‚ ¨ ¨ ¨

Deep Generative Models Chapter 1: Language Models © A. Bereyhi 2025 20 / 22



Transformer-based LMs Self-Attention

Ready for LLMs!
+ Is this then an LLM?
– Well! If scale it crazy up, Yes!
+ How crazy should we scale?
– Pretty crazy! ⌣
+ But, isn’t this simply a text completer? How does it do what ChatGPT does?
– Well! This is what we call “Pre-trained LLM”; we need to do some fewextra steps to get there
+ What are those steps?
– No worries! We have the next section dedicated to LLMs

Deep Generative Models Chapter 1: Language Models © A. Bereyhi 2025 21 / 22



Transformer-based LMs Self-Attention

Final Note on Transformers
Transformers are Seq2Seq models

ë our LM uses only decoding

ë we don’t need cross-attention

x1:T y1:M

pm`1

e
n
c
o
d
in

g
w

it
h
o
u
t

m
a
s
k
in

g

cross-attention

c
h
e
c
k

C
h
a
p
t
e
r

7
o
f

A
p
p
li
e
d

D
L

le
c
t
u
r
e
s

Deep Generative Models Chapter 1: Language Models © A. Bereyhi 2025 22 / 22


	Transformer-based LMs
	Making Context by Attention
	Self-Attention


