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Fundamentals of Language Modeling

Generating Text
Let’s start by a basic task:

we intend to build a model that generates text

+ Why you think it is basic?
- Well! Text has some nice properties

A text coming from a natural language has two key properties
1 It has semantics

ë “The honey reads a duck” does not make sense!
2 It has syntax

ë “You am perfect” is grammatically wrong!

This is thus easier to learn how to write a meaningful and correct text
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Fundamentals of Language Modeling

Generating Text
We intend to build a model that generates text

+ Recall me! What do you mean by a model?
- Most of the time, we mean a NN!

Recap: Learning Model
A learning model is a parameterized mapping fw : X ÞÑ V whose parameters
w can be freely tuned ” learned

Recap: Training a Model
Training refers to the procedure of finding the right choice ofw from the dataset
D such that fw can capture the pattern in the data
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Fundamentals of Language Modeling

Recap: Simple Learning Model

x

y

Here, fw is the function realized by the NN
‚ It relates x to y
‚ We can learn its weightsw
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Fundamentals of Language Modeling Language Model

Text Generating Model
Putting it in simple words: we aim to train a NN which

‚ starts with an incomplete English text, and
‚ generates the next words till it’s complete

Ali Bereyhi is fw doubtless the coolest Prof at UofT!
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Fundamentals of Language Modeling Language Model

Text Generating Machine: Requirements
+ What kind of property this model should have?
– It should generate coherent text

ë It should have right sentiment
Ë The kid plays with ball
é Water eats the duck

ë It should be consistent with the language syntax
Ë She is writing down a text
é She am write poem

This text-generating model is what we call a language model
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Fundamentals of Language Modeling Language Model

Language Model
Language Model (Informal)
A language model is a learning model which can start from an incomplete text
and complete it to a coherent text

In this definition there are a few points undefined!
‚ What is a text? How can we turn a text to a mathematical object?
‚ How can we precisely define the coherence?!
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Fundamentals of Language Modeling Language Model

Language Model: Formulation
We can concretely define a text by noting that

‚ A text is a sequence of characters
‚ There are a finite number of characters in any language

ë A basic English text takes characters among 95 possible choices
‚ We can give each character an index i “ 0 : I ´ 1

ë I is typically called vocabulary size

character index
a 0
A 1... ...
( 93
) 94
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Fundamentals of Language Modeling Language Model

Language Model: Formulation
A text can then be represented as a sequence of character indices

x1, x2, . . . , xT : xt P t0, . . . , I ´ 1u

We are usually more convenient with one-hot representation

Character t is A ” xt “ 1 ù xt “

»

—

—

—

—

—

–

0
1
0
...
0

fi

ffi

ffi

ffi

ffi

ffi

fl

A text can then be represented as a sequence of one-hot vectors

x1,x2, . . . ,xT : 1xt P t0, 1u
I
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Fundamentals of Language Modeling Language Model

Language Model: Tokenization
This is the most simple form of tokenization

each xt ú 1xt is a token index

In general tokens can be words, sub-words, or characters

Tokenization
The procedure of breaking a text corpus into smaller units called tokens

1 Break whole text into small tokens
2 Give each token an index and save it in a vocabulary

GPT-4 and GPT-4o have roughly 100K and 200K tokens!
token index
the 0
ing 1... ...
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Fundamentals of Language Modeling Language Model

Language Model: Tokenization
+ Tokenization seems to be a time-consuming task!
- Sure! We need to go through the whole corpus

Corpus
Corpus is the body of text we use to train our model « text dataset

There are various algorithms for tokenization
‚ Character-Level

ë What we did in our example
‚ Word-Level

ë Set each token to be a word in the sentence
‚ Byte Pair Encoding (BPE)

ë Iteratively builds a vocabulary of most frequent tokens
‚ ¨ ¨ ¨
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Fundamentals of Language Modeling Language Model

Language Model: Embedding
After tokenization, we have our text as a sequence

1x1 ,1x2 , . . . ,1xT : 1xt P t0, 1u
I

where I is the vocabulary size

+ Does it mean that in GPT-4o each 1xt is of size 200K?!- Yes! And, I agree! It sounds too much!
+ But, do we really need to add a dimension for every single token?
- No! This is why we do embedding
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Fundamentals of Language Modeling Language Model

Language Model: Embedding
To understand embedding, let’s first denote vocabulary as a <dictionary>

V “ ttoken : x for x “ 0 : I ´ 1u

Embedding
Embedding represents each index x P V by a fixed-size vector x P RE

Mathematically, embedding is a linear transform: letE P REˆI

embedding of x ” embd pxq “ E1x “

. . . x . . .
Ó

”

. . . x . . .
ı

»

—

—

—

—

–

0...
1...

fi

ffi

ffi

ffi

ffi

fl

Ð

...
x...
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Fundamentals of Language Modeling Language Model

Embedding: Example
Say my corpus is “the good, the bad and the ugly”

Let’s build the vocabulary

token index
the 0
good 1
, 2

bad 3
and 4
ugly 5

This means that

and ” 4 ú

»

—

—

—

—

—

–

0
0
0
0
1
0

fi

ffi

ffi

ffi

ffi

ffi

fl

and the corpus can be represented by indices as

0, 1, 2, 0, 3, 4, 0, 5
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Fundamentals of Language Modeling Language Model

Embedding: Example
Say my corpus is “the good, the bad and the ugly”

Let’s build the vocabulary

token index
the 0
good 1
, 2

bad 3
and 4
ugly 5

We embed them with 2D embedding vectors

E “

„

0.1 1 0.5 ´1 0.2 ´1.2
0.1 1 0.3 1 0.2 1.1

ȷ

which we can visualize as

‚ the

‚ good

‚ ,

‚ bad

‚ and

‚ ugly
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Fundamentals of Language Modeling Language Model

Embedding: Few Notes
The embedding matrix E is learned in practice

‚ We initiateE with some initial EI weights
‚ In each training iteration we updateE

E Ð E ´ η∇ER̂

Empirical Risk ” Losslearning rate

By the end of training, embeddings are semantically grouped

‚ the

‚ good

‚ ,

‚ bad

‚ and

‚ ugly

Deep Generative Models Chapter 1: Language Models © A. Bereyhi 2025 16 / 42



Fundamentals of Language Modeling Language Model

Back to Language Model
Language Model (Informal)
A language model is a learning model which can start from an incomplete text
and complete it to a coherent text

We can now make it a bit more formal
Language Model (pseudo-formal)
A language model starts from a sequence of tokens

x1, . . . , xT : xt P r0 : I ´ 1s

and completes it to a coherent sequence

x1, . . . , xT , xT`1, . . . , xT`L
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Fundamentals of Language Modeling Language Model

Language Distribution
+ How can we define the coherence?!
- Well! A coherent sentence is the one said most likely by a native

We can assume that a each text completion happens with a probability
‚ coherent completions happen with high probabilities
‚ semantically or syntactically wrong completions occur with low probability

Example: Say we are to complete the sentence “It is great to hear that”

Pr tyou have succeeded|It is great to hear thatu “ 0.015

Pr tpotato is round|It is great to hear thatu “ 0.0001

Pr tpotato ate the chicken|It is great to hear thatu “ 10´6

Pr tpotato am good|It is great to hear thatu “ 10´9

Pr tKartoffel bin gut|It is great to hear thatu “ 10´15
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Fundamentals of Language Modeling Language Model

Language Distribution
(Conditional) Language Distribution
Given a sequence of tokens x1, . . . ,xT , the language distribution describes the
probability of the following tokens, i.e.,

p pxT`1, . . . , xT`L|x1, . . . , xT q

A coherent text is the one drawn from the language distribution
‚ With high probability it is a semantically and syntactically correct sentence

ë In practice we always see such samples!
‚ With very low probability it contains semantic or grammatical mistakes

ë In practice we never see such samples!
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Fundamentals of Language Modeling Language Model

Language Model: Definition
Language Model: Definition
A language model starts from a sequence of tokens

x1, . . . , xT : xt P r0 : I ´ 1s

and completes it to

x1, . . . , xT , xT`1, . . . , xT`L

by sampling from the language distribution p pxT`1, . . . , xT`L|x1, . . . , xT q

Sampling from Distribution
It is important to recall that when we sample independently, we get a typical
sequence which means we see most of the time what is likely
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Fundamentals of Language Modeling Building LM

Building LM:Model
To start: say we want to generate only a single token1

x1, . . . , xTÑ xT`1

We try to do this using deep learning
‚ We set a model and make a dataset
‚ We train the model on the dataset by minimizing a risk function

The model in this case is NN which
‚ takes token indices x1, . . . , xT as input
‚ computes the probability of the next token at the output

ë It computes Pr txT`1 “ x|x1, . . . , xT u for all x’s in vocabulary
ë How can we do it? Just use a Softmax activation at the output layer

1We later extend it to a general text completer
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Fundamentals of Language Modeling Building LM

Building LM:Model

x1, . . . , xT fw pt`1

Once x1, . . . , xT is fed, the model gives us
pT`1 “ fw px1, . . . , xT q P r0, 1sI

and we sample from it!

Example: In PyTorch
xT`1 Ð torch.multinomial(pT`1, #smpl=1)
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Fundamentals of Language Modeling Building LM

Building LM: Data
We typically collect a corpus of data from internet

‚ A long set of coherent texts collected from reliable sources like Wikipedia
‚ Sometimes, we have multiple corpora: one text, one programming, etc
‚ Models like GPT-4 are trained on the body of internet!

Say, we have a single corpus: we can tokenize it and convert it into
a1, a2, . . . , aN

andN is huge, e.g.,N « 3.3 billion in BERT!
+ How can we make data samples from this corpus?
- Let’s do it together!

Deep Generative Models Chapter 1: Language Models © A. Bereyhi 2025 23 / 42



Fundamentals of Language Modeling Building LM

Building LM:Making Data Samples
We make a labeled sample by randomly choosing a sequence of length T

‚ randomly choose j P t1, . . . , N ´ T u

‚ set the sample sequence to

tx1:T u “ aj , aj`1, . . . , aj`T´1

‚ label this sequence by token v “ aj`T

We repeat this procedure B times to make a batch of labeled samples
B “ tptx1:T ub , vbq : b “ 1 : Bu

we use this batch to compute sample gradients for SGD updates
ë in each iteration of SGD, we make an independentB
ë Think about what an epoch means in this case⌣
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Fundamentals of Language Modeling Building LM

Maximum Likelihood Learning
Let’s focus on a batch B: for each sample tx1:T ub label vb is a likely output

ë vb is the next token in a coherent text
This means that the LM should sample token vb with high probability

Likelihood (informal)
The likelihood over batchB is

L pwq “

B
ź

b“1

Pr pxT`1 “ vb| tx1:T ub goes into fwq

“

B
ź

b“1

fw ptx1:T ubq rvbs
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Fundamentals of Language Modeling Building LM

Maximum Likelihood Learning
We try to maximize the likelihood computed by our model

ë this makes the model generate likely next tokens

This means that we use SGD to solve
max
w

L pwq ” max
w

logL pwq “ max
w

B
ÿ

b“1

log fw ptx1:T ubq rvbs

” min
w

B
ÿ

b“1

´ log fw ptx1:T ubq rvbs

“ min
w

average tCE pBqu

Moral of Story
We solve a classification problem by minimizing the average cross-entropy
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Fundamentals of Language Modeling Bi-Gram LM

Simple Assumption: Order-One Markov Process
+ Can you stop talking so much statistical?! ⌢
– Sure! Let’s try a simple model⌣

The most simple way of language modeling is the so-called bi-gram model
Bi-Gram Model
In bi-gram model, we assume that the language approximately describes a
Markov process of order one, i.e., at time t

p pxt`1|x1, . . . , xtq « p pxt`1|xtq

Thus, to generate the next token, we only need to know the current one

+ But, this sounds like a bad approximation!
– Well! It can still give related consecutive words in a text
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Fundamentals of Language Modeling Bi-Gram LM

Basic Bi-Gram Model
Let’s build a very simple bi-gram model: we embed each token with a vector
of size I , i.e., the vocabulary size, and activate it via Softmax

p pxt`1|xtq « fE pxtq “ Softmax pE1xtq

index Embedding
0 e0

1 e1

...
...

I-1 eI´1

E “ re0, . . . , eI´1s Ù I

Say x1:t, xt`1 “ 6,4,3,1, ?

We predict the next word as

p pxt`1|6,4,3,1q « Softmax pe1q “

$

’

’

’

’

&

’

’

’

’

%

pt`1,0

pt`1,1...
pt`1,I´1
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Fundamentals of Language Modeling Bi-Gram LM

Basic Bi-Gram Model

‚ the

‚ good

‚ ,

‚ bad

‚ and

‚ ugly

Softmax

RandGen xt`1

pt`1

Forward_BiGram(xt):
1: Set xt Ð column xt of E2: Set pt`1 Ð softmax(xt)3: xt`1 Ð multinomial(pt`1, #smpl=1)4: return pt`1, xt`1
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Fundamentals of Language Modeling Bi-Gram LM

Training Bi-Gram Model
We can perform maximum likelihood training via a SGD-like optimizer

MaxLikeTrain(D:train_set):
1: for multiple epochs do2: Sample a batch B “

␣

pxt, xt`1qb

(

# xt,b, xt`1,b P r0 : I ´ 1s3: for b “ 1 : B do4: pb, _ Ð Forward_BiGram(xt,b) # pb P r0, 1s
I

5: Compute ´∇E logpbrxt`1,bs # sample LL grad6: end for7: Update E Ð E ´ ηOpt_avg t∇Epbu8: end for
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Fundamentals of Language Modeling Bi-Gram LM

Results with Bi-Gram LM
+ It sounds too basic! How well this model works after training?
– As you expect!

The Bi-Gram model is extremely limited
Ë It can complete sentences with a single token missing
é We cannot use it to generate a long text

ë It only guarantees two consecutive words match
ë I loops over some likely repetitions
ë It returns sentences that are semantically and syntactically wrong

Reason is Obvious!
Bi-Gram has no memory! It only matches two consecutive words
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Fundamentals of Language Modeling Context-Aware LMs

Adding Memory: Average Context
+ How can we add memory to the model?
– Well! We need to somehow inject longer text to the model

Let’s try a very simple approach: we modify the bi-gram LM as
‚ We sample longer sequences
‚ To predict token xt`1, we feed the model by sum of all embeddings till t

x1 x2 . . . xt ct
` ` ` `

Softmax pt`1

Deep Generative Models Chapter 1: Language Models © A. Bereyhi 2025 32 / 42



Fundamentals of Language Modeling Context-Aware LMs

Adding Memory: Average Context
ContextAwareLM(x1:t):
1: Set context vector to ct Ð 02: for j “ 1 : t do3: Set ct Ð ct` column xj of E4: end for5: Set pt`1 Ð softmax(ct)6: xt`1 Ð multinomial(pt`1, #smpl=1)7: return pt`1, xt`1
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Fundamentals of Language Modeling Context-Aware LMs

Language Distribution: More Realistic Markov Process
If we look from the statistical point of view: context aware modeling makes a
more realistic assumption of the language distribution

Context Aware Model of Distribution
The context aware model builds the context variable ct from the tokens up to xt

ct 9 x1, . . . , xt

and assumes that

p pxt`1|x1, . . . , xtq « p pxt`1|ctq

+ Why is this more realistic?
– Well! If ct maintains all information in x1:t the model is precise!
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Fundamentals of Language Modeling Context-Aware LMs

Training Context Aware Model
It’s good to think about the training loop in this case

MaxLikeTrain(D:train_set):
1: for multiple epochs do2: Sample a batch B “

␣

px1:T`1qb

(

#samples of T tokens3: for b “ 1 : B do4: for t “ 1 : T do5: pt`1,b, _ Ð ContextAwareLM(x1:t,b) #pt`1,b P r0, 1s
I

6: Compute ´∇E logpt`1,brxt`1,bs #sample LL grad7: end for8: end for9: Update E Ð E ´ ηOpt_avg t∇Ept`1,bu #average time and batch10: end for
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Fundamentals of Language Modeling Context-Aware LMs

Results with Context Aware LM
+ Does this simple modification makes a difference?
– To some extent Yes, but not too sophisticated

We can readily see that our computation of ct does not capture the whole
information in x1:t as it has no sequential order

Sequential Order
ct captures sequential order if it changes by time permutation in x1:t

In our simple modification “Alice drank water” and “water drank Alice” have the
same context ct

ct “ embd(Alice) ` embd(drank) ` embd(water)

So, we can guess that for an acceptable result, we should build better context
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Fundamentals of Language Modeling Recurrent LMs

Encoding Memory into State: Recurrence
We can build more advanced context using idea of recurrence in RNNs
Recurrent LM
A recurrent LM consists of an model which

1 takes embedding xt and previous context ct´1 as input
2 returns a new context ct and distribution of next token pt`1 as output

The context ct in this LM is an encoding of information till token xt
‚ It is learned by the model; thus, it could be more efficient
‚ It can capture the sequential order
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Fundamentals of Language Modeling Recurrent LMs

Recurrent LM: Visualization
x1 x2 ¨ ¨ ¨ xt´1 xt xt`1

fw

x1

H

p2

c1c1

x2

c1

p3

c2

xt

ct´1

pt`1

ct
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Fundamentals of Language Modeling Recurrent LMs
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Fundamentals of Language Modeling Recurrent LMs

Example: LSTM-based LM

MLP pt`1

context context
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Example: LSTM-based LM

MLP pt`1

context context
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Fundamentals of Language Modeling Recurrent LMs

Example: LSTM-based LM

MLP pt`1

context context
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Fundamentals of Language Modeling Recurrent LMs

Training LSTM-based LM
It’s good to imagine how we can train this model

lstmLM_Train(D:train_set):
1: for multiple epochs do2: Sample a batch B “

␣

px1:T`1qb

(

#samples of T tokens3: for b “ 1 : B do4: Initiate some cell-state c #zero context5: for t “ 1 : T do6: Set xt Ð embd pxtq7: pt`1,b, c Ð LSTM(xt, c) #pt`1,b P r0, 1s
I

8: Compute ´∇ logpt`1,brxt`1,bs #sample LL grad9: end for10: end for11: Updatew Ð w ´ ηOpt_avg t∇pt,bu #average time and batch12: end for

Efficient implementations of this model made first practical LMs2

2See reading list to see some related further read
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Fundamentals of Language Modeling Recurrent LMs

Time Delay in Sequential Processing
Recurrent LMs work sequentially, i.e., when processing a sample of length T

‚ they first compute c1 out of x1 and initial zero context
‚ they feed x2 with the context c1 to get c2
‚ they feed x3 with updated context c2 to get c3
‚ ¨ ¨ ¨

In other words, they can process a single token at a time
‚ This was accepted till 2017 when Transformers were introduced
‚ Transformers provided more efficient way of making context

ë They use self-attention to build context
ë Self-attention enables parallel processing of tokens

Next Stop: Transformer-based LMs
Let’s get to transformer-based LMs which describe the current LLMs!
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Fundamentals of Language Modeling Recurrent LMs

Generation via Recurrent LMs
It’s good to think how a recurrent LM generates the whole new text

lstmLM_Generation(x1:t:input_text):
1: Initiate some cell-state c #zero context2: for j “ 1 : t ´ 1 do3: Set xj Ð embd pxjq4: _, c Ð LSTM(xj , c) #build context5: end for6: for i “ 0 : L ´ 1 do7: pt`i`1, c Ð LSTM(xt`i, c) #next token prob8: xt`i`1 Ð multinomial(pt`i`1, #smpl=1) #sample from pt`i`19: Set xt`i`1 Ð embd pxt`i`1q10: end for11: return ttoken rxis for i “ 1 : t ` Lu #completed text
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