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Generating Text
Let’s start by a basic task:

we intend to build a model that generates text

+ Why you think it is basic?
- Well! Text has some nice properties

A text coming from a natural language has two key properties
@ It has semantics
L, “The honey reads a duck” does not make sense!

@ It has syntax
L, “You am perfect” is grammatically wrong!

This is thus easier to learn how to write a meaningful and correct text
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Fundamentals of Language Modeling

Generating Text

We intend to build a model that generates text

+ Recall me! What do you mean by a model?
- Most of the time, we mean a NN!

Recap: Learning Model

A learning model is a parameterized mapping fw : X — V whose parameters
w can be freely tuned = learned

Recap: Training a Model

Training refers to the procedure of finding the right choice of w from the dataset
D such that fy can capture the pattern in the data
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Recap: Simple Learning Model

Here, fy is the function realized by the NN
e |trelatesx toy
e We can learn its weights w
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Text Generating Model

Putting it in simple words: we aim to train a NN which
e starts with an incomplete English text, and
e generates the next words till it's complete

Ali Bereyhi is Ty dougtless the coolest Prof at UosT
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Fundamentals of Language Modeling Language Model

Text Generating Machine: Requirements

+ What kind of property this model should have?
- It should generate coherent text
L, It should have right sentiment

« The kid plays with ball
% Water eats the duck

L, It should be consistent with the language syntax

« She is writing down a text
% She am write poem

This text-generating model is what we call a language model
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Language Model

Language Model (Informal)

A language model is a learning model which can start from an incomplete text
and complete it to a coherent text

In this definition there are a few points undefined!

e What is a text? How can we turn a text to a mathematical object?
® How can we precisely define the coherence?!
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Language Model: Formulation

We can concretely define a text by noting that

e A textis a sequence of characters
® There are a finite number of characters in any language

L, A basic English text takes characters among 95 possible choices
e We can give each character anindexi =0 :1 — 1

L, [ is typically called vocabulary size

| character | index |

a 0
A 1
( 93
) 94
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Language Model: Formulation
A text can then be represented as a sequence of character indices
X1,X2,...,TT . Tt € {0,...,[—1}

We are usually more convenient with one-hot representation

0
1

CharactertisA=z; = 1w, = |0

_0_

A text can then be represented as a sequence of one-hot vectors

r1,XL,..., LT ]-xt € {O,l}I
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Fundamentals of Language Modeling Language Model

Language Model: Tokenization
This is the most simple form of tokenization

each x; <~ 1,, is a token index
In general tokens can be words, sub-words, or characters
Tokenization

The procedure of breaking a text corpus into smaller units called tokens
@ Break whole text into small tokens

@ Give each token an index and save it in a vocabulary

GPT-4 and GPT-40 have roughly 100K and 200K tokens!

the 0
ing 1
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Fundamentals of Language Modeling Language Model

Language Model: Tokenization

+ Tokenization seems to be a time-consuming task!

- Sure! We need to go through the whole corpus

Corpus

Corpus is the body of text we use to train our model ~ text dataset

There are various algorithms for tokenization
® Character-Level
L, What we did in our example
e Word-Level
L, Set each token to be a word in the sentence
e Byte Pair Encoding (BPE)
L, lteratively builds a vocabulary of most frequent tokens
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Language Model: Embedding

After tokenization, we have our text as a sequence
I
1,,,14,,...,15, : 15, € {0,1}

where [ is the vocabulary size

+ Does it mean that in GPT-40 each 1,, is of size 200K?!

- Yes! And, | agree! It sounds too much!

+ But, do we really need to add a dimension for every single token?
- No! This is why we do embedding
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Language Model: Embedding

To understand embedding, let’s first denote vocabulary as a <dictionary>
V = {token:z for z =0:1—1}
Embedding

Embedding represents each index x € V by a fixed-size vector = € R”

Mathematically, embedding is a linear transform: let E € RE*!

v 0
embedding of z = embd (z) = E1, = [ ] )
1| 2z
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Embedding: Example
Say my corpus is “the good, the bad and the ugly”

Let’s build the vocabulary This means that
0]
the 0 0
good 1 _ 0
: 5 and = 4 <~ 0
bad 3 1
and 4 0
ugly 5 -
and the corpus can be represented by indices as
0,1,2,0,3,4,0,5
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Embedding: Example
Say my corpus is “the good, the bad and the ugly”

Let’s build the vocabulary We embed them with 2D embedding vectors
E_ [0.1 1 05 —1 0.2 —1.2]

the 0 01 1 03 1 02 11

good 1
' 2 which we can visualize as
bad 3
and 4
ugly 5 ° ug.lybad @ good

® and
® the
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Embedding: Few Notes

The embedding matrix E is learned in practice
* We initiate E with some initial EI weights
® |n each training iteration we update E

E—E—nVgR
/

learning rate Empirical Risk = Loss

By the end of training, embeddings are semantically grouped

- ~

~
/, N -
, \ . ~
\ ® ugly \ ’ \
® bad I @ good!
\ ! \ 1
\ 4 /7
~ 4 A ~a
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Back to Language Model

Language Model (Informal)

A language model is a learning model which can start from an incomplete text
and complete it to a coherent text

We can now make it a bit more formal
Language Model (pseudo-formal)

A language model starts from a sequence of tokens
Tiy...,xr:xp€[0: ] —1]

and completes it to a coherent sequence

Llyeoey Ty TTH1y s LTHL
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Language Distribution

+ How can we define the coherence?!
- Well! A coherent sentence is the one said most likely by a native

We can assume that a each text completion happens with a probability
e coherent completions happen with high probabilities
® semantically or syntactically wrong completions occur with low probability

Example: Say we are to complete the sentence “It is great to hear that”

Pr {you have succeeded|lt is great to hear that} = 0.015
Pr {potato is round|lt is great to hear that} = 0.0001
Pr {potato ate the chicken|lt is great to hear that} = 107°
Pr {potato am good|lt is great to hear that} = 1077
Pr {Kartoffel bin gut|lt is great to hear that} = 107
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Fundamentals of Language Modeling Language Model

Language Distribution

(Conditional) Language Distribution

Given a sequence of tokens x1, . .., xT, the language distribution describes the
probability of the following tokens, i.e.,

p(xT-i-lu 0o 7xT+L|'/1"17 ooc 7:I;T)

A coherent text is the one drawn from the language distribution

e With high probability it is a semantically and syntactically correct sentence
L, In practice we always see such samples!

e With very low probability it contains semantic or grammatical mistakes
L, In practice we never see such samples!
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Language Model: Definition

Language Model: Definition

A language model starts from a sequence of tokens
Tiy...,xr:xp€[0: ] —1]
and completes it to
Tlyeooys Ty T4y« s TTHL

by sampling from the language distribution p (x741,...,xrp|z1. .. 27)

Sampling from Distribution

It is important to recall that when we sample independently, we get a typical
sequence which means we see most of the time what is likely
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Building LM: Model

To start: say we want to generate only a single token?

L1y TT— TT+1

We try to do this using deep learning
® We set a model and make a dataset

e We train the model on the dataset by minimizing a risk function

The model in this case is NN which

e takes token indices x1, . .., x7 as input
e computes the probability of the next token at the output
L. It computes Pr{xr1 = x|z1,...,27} forall x’s in vocabulary

L, How can we do it? Just use a Softmax activation at the output layer

1We later extend it to a general text completer
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Building LM: Model

xl’...7$T % pt+1

Once x4, ...,z is fed, the model gives us

PT+1 = fw (xl?--wa) € [07 1]1

and we sample from it!

Example: In PyTorch
Tr41 < torch.multinomial (pry1, #smpl=1)
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Building LM: Data

We typically collect a corpus of data from internet
® A long set of coherent texts collected from reliable sources like Wikipedia

e Sometimes, we have multiple corpora: one text, one programming, etc
® Models like GPT-4 are trained on the body of internet!

Say, we have a single corpus: we can tokenize it and convert it into

ai,az,...,aN

and N is huge, e.g., N ~ 3.3 billion in BERT!
+ How can we make data samples from this corpus?
- Let’s do it together!
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Building LM: Making Data Samples

We make a labeled sample by randomly choosing a sequence of length T'
® randomly choose j € {1,...,N — T}
® set the sample sequence to

{xl:T} =G5, Qj41,- -5 Qj4+T—1

® label this sequence by token v = a; 7

We repeat this procedure B times to make a batch of labeled samples
B = {({z1r}y,v):0=1:B}

we use this batch to compute sample gradients for SGD updates
L, in each iteration of SGD, we make an independent B
L, Think about what an epoch means in this case ©
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Maximum Likelihood Learning

Let's focus on a batch B: for each sample {x 1.7}, label vy is a likely output
L, vy is the next token in a coherent text

This means that the LM should sample token vy, with high probability
Likelihood (informal)
The likelihood over batch B is

B
L(w) = [ [Pr(zri1 = ve| {x1:}, goesinto fu)
b;l
= [ ] fw ({@11}y) [8]
b=1
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Maximum Likelihood Learning

We try to maximize the likelihood computed by our model
L, this makes the model generate likely next tokens

This means that we use SGD to solve

B

mvgxﬁ (w) = max log £ (w) = max Z log fw ({x1:1}p) [vs]
1);1
= min ) —log fw ({z1.7}) [v0]
b=1
= mvin average {CE (B)}

Moral of Story

We solve a classification problem by minimizing the average cross-entropy
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Simple Assumption: Order-One Markov Process

+ Can you stop talking so much statistical?! @
- Sure! Let’s try a simple model ©

The most simple way of language modeling is the so-called bi-gram model

Bi-Gram Model

In bi-gram model, we assume that the language approximately describes a
Markov process of order one, i.e., at time t

p(Teg1]2r, ..., 2) ~ p(Tp41]2e)
Thus, to generate the next token, we only need to know the current one

+ But, this sounds like a bad approximation!

- Well! It can still give related consecutive words in a text
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Basic Bi-Gram Model

Let's build a very simple bi-gram model: we embed each token with a vector
of size I, i.e., the vocabulary size, and activate it via Softmax

p(2er1]2e) ~ fE (7¢) = Softmax (Elg,)

| index | Embedding |

0 €p
1 e
I-1 er—1

E = [eo,...,e]_l]II

Say‘:clzt,:mﬂ =6,4,3,1, ?\

We predict the next word as

p(r111]6,4,3,1) ~ Softy.x (€1) =

Deep Generative Models Chapter 1: Language Models

Pt+1,0

Pt+1,1

Pt+1,1—
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Basic Bi-Gram Model

)
RandGen [—> Tt+1

—
® ugly

® bad ood Pt+1
EEE—

Softmax

(I -« )
® and
® the

Forward_BiGram(z;) :

1: Set &; « column z; of E

2: Set pt+1 <« softmax(x:)

3! 441 < multinomial (p¢+1, #smpl=1)
4: return piy1, T
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Training Bi-Gram Model

We can perform maximum likelihood training via a SGD-like optimizer

MaxLikeTrain(D:train_set):

1: for multiple epochs do

2:  Sampleabatch B = {(x¢,%¢41),} # Typ, Tiq1p € [0: 1 —1]
3: forb=1:Bdo

4: Pb, - < Forward_BiGram(z, ) # ps € [0, 1]I
5: Compute —VEg log py[@1+1,6] # sample LL grad
6:  end for

7:  Update E «— E — n0pt_avg {VEPps}

8: end for
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Results with Bi-Gram LM

+ It sounds too basic! How well this model works after training?
- As you expect!

The Bi-Gram model is extremely limited
« It can complete sentences with a single token missing

% We cannot use it to generate a long text

L, It only guarantees two consecutive words match
L, Iloops over some likely repetitions
L, It returns sentences that are semantically and syntactically wrong

Reason is Obvious!

Bi-Gram has no memory! It only matches two consecutive words
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Adding Memory: Average Context

+ How can we add memory to the model?
- Well! We need to somehow inject longer text to the model

Let’s try a very simple approach: we modify the bi-gram LM as
e We sample longer sequences
® To predict token x;. 1, we feed the model by sum of all embeddings till ¢

@—+>@—+> —+>@—+>@_> Pi+1
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Adding Memory: Average Context

ContextAwareLM(z1.):

: Set context vectortoc; <— 0
:forj=1:tdo

Set ¢; «— c¢+ column z; of E

: end for

: Set pt+1 < softmax(ct)

Zi4+1 < multinomial (psy1, #smpl=1)
:return piy1, Teg1

NouUuhwNe
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Fundamentals of Language Modeling Context-Aware LMs

Language Distribution: More Realistic Markov Process

If we look from the statistical point of view: context aware modeling makes a
more realistic assumption of the language distribution

Context Aware Model of Distribution

The context aware model builds the context variable c; from the tokens up to xz;
Ct LT1,...,T¢

and assumes that

p(zes1|ze, ..., 28) ~ p(Te41]cy)

+ Why is this more realistic?

- Well! If ¢; maintains all information in z1.; the model is precise!
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Training Context Aware Model

It's good to think about the training loop in this case

MaxLikeTrain(D:train_set):

1: for multiple epochs do

2: Sample a batch B = {(wl;T+1)b} #samples of T tokens
3: forb=1:Bdo

4: fort =1:Tdo

5: Pt+1,b, - < ContextAwareLM (1.4 ) #pit10 € [0, l]I
6: Compute —VEg log pe+1,6[@t+1,0] #sample LL grad
7: end for

8: end for

9: Update E — E — n0pt_avg {VEDP:+1,6} #average time and batch
10: end for
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Results with Context Aware LM

+ Does this simple modification makes a difference?
- To some extent Yes, but not too sophisticated

We can readily see that our computation of c; does not capture the whole
information in x1.; as it has no sequential order

Sequential Order

c; captures sequential order if it changes by time permutation in x1.;

In our simple modification “Alice drank water” and “water drank Alice” have the
same context c;

c; = embd(Alice) + embd(drank) + embd(water)

So, we can guess that for an acceptable result, we should build better context
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Fundamentals of Language Modeling Recurrent LMs

Encoding Memory into State: Recurrence

We can build more advanced context using idea of recurrence in RNNs
Recurrent LM
A recurrent LM consists of an model which

@ takes embedding x; and previous context c;_1 as input

@ returns a new context c; and distribution of next token p;. 1 as output

The context c; in this LM is an encoding of information till token x;
e |tis learned by the model; thus, it could be more efficient
® [t can capture the sequential order
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Fundamentals of Language Modeling

Recurrent LM: Visualization

T 9 e Ty Tt Tt+1

O— —O
O— —O
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Fundamentals of Language Modeling

Recurrent LM: Visualization

T T2 s L1 Tt Tt+1

fw

b
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Fundamentals of Language Modeling

Recurrent LM: Visualization

T 9 e Ty Tt Tt+1

—()
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Fundamentals of Language Modeling

Recurrent LM: Visualization

o) e Ti—1 Ty Ti4+1

fw
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Fundamentals of Language Modeling

Recurrent LM: Visualization

fw
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Fundamentals of Language Modeling Recurrent LMs

Recurrent LM: Visualization

fw

O—

| token | index | pii1 |

the 0 0.1
good 1 0.1
s 2 0.5
bad 3 0.05
and 4 0.2
ugly 5 0.05

Deep Generative Models

Chapter 1: Language Models
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Example: LSTM-based LM

forget gate
S
c[t —1] >0— > clf]
=]
h[t — 1] e > h[t]

x[t] input gate  output gate
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Example: LSTM-based LM

forget gate

CpSpeppep—— 3

9

Q
(0]
&
A

x[t] input gate  output gate
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Example: LSTM-based LM

forget gate

context

CpSpeppep—— 3

MLP

9

x[t] input gate  output gate
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Training LSTM-based LM

It's good to imagine how we can train this model

1stmLM_Train(D:train_set):
1: for multiple epochs do
2: Sample a batch B = {(wl;T+1)b} #samples of T tokens
3: forb=1:Bdo
4. Initiate some cell-state c #zero context
5: fort =1:7 do
6: Set x; < embd (z:)
7: Pt+1,6, C < LSTM(x¢, €) #pit+1. € [0, 1]I
8: Compute —V 1og pt+1,6[Tt+1,6] #sample LL grad
9: end for
10:  end for
11:  Update w — w — nOpt_avg {Vp: s} #average time and batch
12: end for

Efficient implementations of this model made first practical LMs?

2See reading list to see some related further read
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Time Delay in Sequential Processing

Recurrent LMs work sequentially, i.e., when processing a sample of length T’
® they first compute cq out of x1 and initial zero context
® they feed x5 with the context c; to get co
® they feed x5 with updated context cy to get c3
o ...
In other words, they can process a single token at a time
e This was accepted till 2017 when Transformers were introduced

® Transformers provided more efficient way of making context

L, They use self-attention to build context
L, Self-attention enables parallel processing of tokens

Next Stop: Transformer-based LMs

Let’s get to transformer-based LMs which describe the current LLMs!
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Generation via Recurrent LMs

It's good to think how a recurrent LM generates the whole new text

1stmLM_Generation(xi.¢: input_text) :

1: Initiate some cell-state c #zero context
2: forj=1:t—1do

3:  Setax; <« embd (z;)

4: _,C <« LSTM(z, c) #build context
5: end for

6: fori =0:L—1do

7:  DPttit1,C «— LSTM(x¢44,C) #next token prob
8: Ti4i4+1 < multinomial (Pi4it1, #smpl=1) #sample from pPiyit+1
9: Set Ttyit1 < embd (~Tt+i+1)

10: end for

11: return {token[xz;] for i =1:¢t+ L} #completed text
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