Deep Generative Models

Chapter 0: Logistics and Course Overview

Ali Bereyhi

ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Summer 2025

Welcome to GenAI!

Happy to see you in

Deep Generative Models

Instructor: Ali Bereyhi

- Office: BA 7208 at Bahen Centre for Information Technology
- Email: ali.bereyhi@utoronto.ca

Where and When?

- Tuesdays at 6:00 PM till 8:00 PM at BA 1170
- Thursdays at 6:00 PM till 8:00 PM at BA 1190

Tutorials: TBA

□ Tentative Time: Tuesdays or Thursday at 5:00 PM till 6:00 PM

Teaching Team

- Likun Cai Project Supervision and Assignments
 - ECE Department
 - likun.cai@mail.utoronto.ca
- Mohammadreza Safavi Tutorials and Assignments
 - ECE Department
 - mohammadreza.safavi@mail.utoronto.ca
- Amir Hossein Mobasheri Project Supervision and Assignments
 - ECE Department
 - amir.mobasheri@mail.utoronto.ca
- Amir Hosein Rostami Project Supervision and Assignments
 - CS Department
 - amirhosein.rostami@mail.utoronto.ca

Quercus and Piazza

Course Page

Course materials are shared over the Course Page

→ This is not the Quercus page ³

We got also Quercus page

- You have been automatically enrolled
- You get any logistic updates through Quercus
- Also you got registered at the Piazza page

Please! Feel free to ask questions on Piazza!

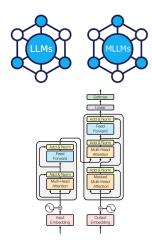
Generative Al

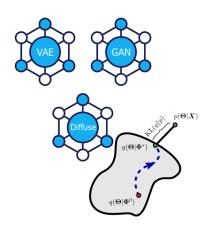
Generative AI is nowadays a thing right!

Generative Al

Generative AI does pretty much anything!

- It writes coherent texts in response to our prompts
- It writes efficient lines of code
- It argues and mimics logical thinking
 - → Does it?!
- It generates images never seen before!
- It generates customized videos!
- It writes scientific text and generates data for experiments


This course deals with these superheros in two respects


- 1 How they really do what they do?!
- 2 Are they really capable of all the things people say about them?!

Course Contents

When it comes to studying generative models, we get a bit confused!

+ Where should we start?! What should we learn?!

Complementary Viewpoints to ML

There two major viewpoints in learning and you have tried both

Computational Learning

- Represent a functional relation
 - ! Computation is main paradigm
- NNs are key tools

You have seen this viewpoint in

Applied Deep Learning Course

Statistical Learning

- ✓ Infer statistical dependencies
 - Inference is main paradigm
- Statistical methods are used

You have seen this in courses

- Intro Machine Learning
- Information Theory

Note that . . .

These viewpoints are closely related and we need the both in this course

Course Contents: LLMs - Text Generation

Back to our challenge: Where should we start?!

- We start thinking computationally about data generation
- We focus on text generation, namely language models
 - **⇒** Basic LMs **⇒** Attention: We don't get into NLP domain!
 - **→** Context-Aware LMs *→* Transformer-based LMs
- We gradually practice thinking statistically
 - **→** What is the language distribution?!
 - What does LMs do statistically?
- We take deep look into LLMs

Prerequisite

Good understanding of NNs and training them is required

Course Contents: Data Generation Framework

In the next step, we extend our statistical viewpoint

- Data generation is essentially distribution learning
 - **→** What is data distribution?
 - Data samples are samples of this distribution
 - → How to learn it via maximum likelihood approach?

Prerequisite

A review on key notions in statistics and probability is helpful

Course Contents: Deep Generative Models

Learning distribution

- </> Conventional approach
- Maximum likelihood learning
- We learn distribution
- **X** Complicated target
- X Hard to sample

We see in this respect

- Auto-regressive models
- Flow & Energy-based models

Learn to sample

- Latent-space approach
- ✓ More robust methods
- Variational inference
- Min-max game
- Diffusion process

We see in this respect

- Generative Adversarial Nets
- Variational AEs
- **■** Diffusion Models

Course Contents: Advances

By the end of the course . . .

we make a solid understanding of trend data generation frameworks

We then take a look on a few advanced topics

- Multimodal LLMs and their challenges
- Conditional generative models
- . .

Course Syllabus

Check detailed content on the course page

How Do We Get Trained?

There are three learning components in the course

- Assignments

 - No need to say that they are the best thing to understand the course!
 - □ Please take a look at Code of Honor
 - ⇒ Each assignment will be discussed in Tutorial after the deadline
 - → Submission by deadline at 11:59 PM: full mark
 - □ Up to 2 days delay: each day deducts 10% Sorry! but no extension!

Attention!

Assignments make almost half of the course mark; so, they need effort! They are a part of the learning process, not supplementary!

- Midterm Exam
- Final Project

How Do We Get Trained?

There are three learning components in the course

- Assignments
- Midterm Exam
 - □ One written exam in the middle of semester
 - Questions that can be solved by hand, so no programming in the exam
- Final Project

How Do We Get Trained?

There are three learning components in the course

- Assignments
- Midterm Exam
- Final Project
 - → The most interesting part of the course
 - - ⇒ Each group chooses a topic from the list
 - Open-ended projects should match the level & milestones
 - □ Each group briefs us about the progress by Week 10

Final Project ≡ Final Evaluation

Final project works as the final exam and you are professionally obligated to follow the **Code of Honor**

Course Calendar

Week	Lecture Topics	Postings	Deliverable
Week 1	Review on Language Models		
Week 2	LLMs and Data Generation Formulation	Assignment 1 Posted	
Week 3	Learning Data Distribution		
Week 4	Auto-regressive and Flow-based Models	Project Documentations Posted	Assignment 1 Deadline
Week 5	Generative Adversarial Networks	Assignment 2 Posted	
Week 6	Variational Inference		Project Topic Selection
Week 6	Variational Auto-encoders		Assignment 2 Deadline
Week 8	No Lecture Midterm Exam	Midterm Exam on June 24, 2025 at 6:00 PM	
Week 9	Diffusion Process		
Week 10	Forward and Reverse Processes	Assignment 3 Posted	Progress Briefing for Project
Week 11	Diffusion Models Wrap-up of Standard Approaches		
Week 12	Advances I: Modality and Multimodal Models		Assignment 3 Deadline
Week 13	Advances II: Conditional Models and Available Trends		
Week 14	No Lecture Course Seminar		Final Project Submission

In Person Lectures!

The course is in-person and \cdots

· · · by Regulations the attendance is mandatory in in-person courses!

Recording is uploaded after each lecture

- They are mainly for recap and/or following some missed lectures
- I strongly advise to attend the lectures
 - You don't want to miss my performance ⁽³⁾
 - Board and I are not captured in videos, it's only the slides and my voice

Programming in Python

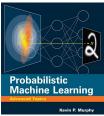
We deal a lot with programming in Python

- Good knowledge in Python is needed
 - → An overview will be given in the first tutorial
- ↓ I extremely suggest experimenting by yourself
 - → Try to implement simple form of whatever we study

Prerequisites: Fundamentals of Deep Learning

To follow the course

- □ a good understanding of fundamentals notions in ML is needed
- **□** basic notions in probability and statistics


You do all fine if you had

- ECE1508: Applied Deep Learning
- ECE1513/ECE421: Introduction to Machine Learning
- Or any equivalent one

Review lectures are posted for those who want to recap

Textbooks

No specific textbook on Generative AI

- Bishop and Bishop, "Deep Learning: Foundations and Concepts"
- Murphy, "Probabilistic Machine Learning: Advanced Topics"
- Goodfellow et al., "Deep Learning"

Materials are provided in the course

• Reading list is completed through the semester

Terms and Conditions!

The instructor keeps the right reserved for himself to modify the slides

- last minute before the lecture 😊
- after the lecture has been given
 - Typically happens due to typos

The instructor keeps the right reserved for himself to deliver the lecture-notes

• in form of mini-batches 🙂

Date and Signature

Introducing Glum

Glum does not buy my words! e.g.,

- + You expect me to implement a LM?
- Sure! Let's try it!

So, please excuse me if I explain things sometimes in too much detail! I need to convince Glum!

Challenge Me: Please!

This is the first time we teach GenAl as a course!

No such thing as a stupid question!

Did you know that we got a Wikipedia page on this?

- □ Trust me! Your question will never sound stupid!
- If you don't ask; then, I need to ask!
 - → Interaction is the best tool to avoid getting bored!

Any Questions? ©