ECE 1508S2: Applied Deep Learning

Chapter 8: Auto Encoders

Ali Bereyhi

ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Winter 2025

Road-map: Auto Encoders

In this chapter, we get to know *Auto Encoders* which are very powerful architectures for feature extraction and data generation: this chapter is just an introduction, and we will see more details in the Generative AI course

- There's going to be an ECE course on Generative AI
 - → We start from this point there!

The best way to understand Auto Encoders is to look at a simple representation problem, but before that let's make an agreement

Auto Encoders \equiv Autoencoders \equiv AEs

from now on!

Consider a simple problem: we have a dataset of two-dimensional data-points

$$\mathbb{D} = \{\mathbf{x}_b : b = 1, \dots, B\}$$

where $\mathbf{x}_b \in \mathbb{R}^2$, and we want to find two weight vectors

• A weight vector $\mathbf{w} \in \mathbb{R}^2$ that compresses \mathbf{x}_b into a single number z_b as

$$z_b = \mathbf{w}^\mathsf{T} \mathbf{x}_b$$

• A weight vector $\hat{\mathbf{w}}$ that decompresses \mathbf{x}_b from \mathbf{z}_b

$$\hat{\mathbf{x}}_b = \hat{\mathbf{w}} z_b$$

- + Can we do this?
- Well! Not always!

Let's try our ML knowledge: say we set the the compression vector to \mathbf{w} ; then, the compressed version of the dataset is

$$\begin{bmatrix} \mathbf{z}_1 & \dots & \mathbf{z}_B \end{bmatrix} = \begin{bmatrix} \mathbf{w}^\mathsf{T} \mathbf{x}_1 & \dots & \mathbf{w}^\mathsf{T} \mathbf{x}_B \end{bmatrix}$$
$$= \mathbf{w}^\mathsf{T} \underbrace{\begin{bmatrix} \mathbf{x}_1 & \dots & \mathbf{x}_B \end{bmatrix}}_{\mathbf{X} \in \mathbb{R}^{2 \times B}} = \mathbf{w}^\mathsf{T} \mathbf{X}$$

Now, let's find the decompressed versions using $\hat{\mathbf{w}}$

$$\underbrace{\begin{bmatrix} \hat{\mathbf{x}}_1 & \dots & \hat{\mathbf{x}}_B \end{bmatrix}}_{\hat{\mathbf{X}} \in \mathbb{R}^{2 \times B}} = \begin{bmatrix} \hat{\mathbf{w}} z_1 & \dots & \hat{\mathbf{w}} z_B \end{bmatrix} \\
= \hat{\mathbf{w}} \begin{bmatrix} z_1 & \dots & z_B \end{bmatrix} = \hat{\mathbf{w}} \mathbf{w}^\mathsf{T} \mathbf{X}$$

After decompression, we get $\hat{\mathbf{X}} = \hat{\mathbf{w}}\mathbf{w}^\mathsf{T}\mathbf{X}$ which we want to be the same as \mathbf{X}

Let's try our ML knowledge: we could define a loss and minimize it via SGD

$$\hat{R} = \mathcal{L}(\hat{\mathbf{X}}, \mathbf{X}) = \|\hat{\mathbf{w}}\mathbf{w}^\mathsf{T}\mathbf{X} - \mathbf{X}\|^2$$

But, we actually do not need to go that far! We decompress $\hat{\mathbf{X}}$ simply if

$$\hat{\mathbf{w}}\mathbf{w}^\mathsf{T}\mathbf{X} \stackrel{!}{=} \mathbf{X}$$

Or alternatively if we have $\hat{\mathbf{w}}\mathbf{w}^\mathsf{T}$ to be an identity transform

$$\hat{\mathbf{w}}\mathbf{w}^{\mathsf{T}} \stackrel{!}{=} \mathbf{I}$$

- + But it's impossible!
- Yes! $\hat{\mathbf{w}}\mathbf{w}^{\mathsf{T}}$ can never be \mathbf{I} since $\hat{\mathbf{w}}\mathbf{w}^{\mathsf{T}}$ is rank one and \mathbf{I} is full-rank!

Now, let's assume that we are given the following piece of information: we know that every single point in the dataset is of the form

$$\mathbf{x}_b = \begin{bmatrix} 2\alpha_b \\ \alpha_b \end{bmatrix}$$

for some real-valued α_b

it turns out we can now do compression and decompression successfully

Solution: we compress by $\hat{\mathbf{w}} = [1, -1]^T$ and decompress by $\hat{\mathbf{w}} = [2, 1]^T$. We can then write

$$\mathbf{z_b} = \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} 2\alpha_b \\ \alpha_b \end{bmatrix} = \mathbf{\alpha_b} \leadsto \hat{\mathbf{x}}_b = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \mathbf{z_b} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \alpha_b = \mathbf{x}_b$$

Simple Problem: Principle Component

- + Wait a moment! Why did it happen? We don't have $\hat{\mathbf{w}}\mathbf{w}^{\mathsf{T}} = \mathbf{I}!$
- Yes! It happened because we don't need $\hat{\mathbf{w}}\mathbf{w}^{\mathsf{T}} = \mathbf{I}$ in this case

A general dataset of 2-dimensional vectors look like

and this dataset cannot be projected on a single axis!

Simple Problem: Principle Component

We were successful when we knew that every data-point is of the form

$$\mathbf{x}_b = \begin{bmatrix} 2\alpha_b \\ \alpha_b \end{bmatrix}$$

In this case, the dataset is already on a single rotated axis

We just need to find the value of each point on that axis, i.e., α_b

Principle Component Analysis: Dimensionality Reduction

This is in fact a very basic example of

Principle Component Analysis \equiv PCA

PCA: Minimum Error Formulation

In PCA, we have a dataset of N-dimensional data-points and learn a weight matrix $\mathbf{W} \in \mathbb{R}^{L \times N}$ that for each \mathbf{x}_b in the dataset generates a latent variable $\mathbf{z}_b = \mathbf{W} \mathbf{x}_b$ such that by linear reconstruction of \mathbf{x}_b from \mathbf{z}_b has minimum error

- + Do we always have such property in our dataset?!
- Perfectly no, but approximately yes!

Principle Component Analysis: Dimensionality Reduction

We could in practice have compressible dataset with its main variation being on a reduced dimension, e.g., 2-dimensional points that lie around a single line

We could have a low-dimensional latent variable for each data-point

Since we like NNs, let's represent our simple example as an NN architecture and look at its training

The above NN describe PCA

- We have two learnable parameters w_1 and w_2
- We want to train this NN such that z is the best representation
 - \rightarrow z is a compression for \mathbf{x}

In more general setting, we have N inputs and L latent variables

The above NN describes more generic PCA setting

- We have (N+1) L learnable parameters: NL weights and L biases
- We want to train this NN such that z is the best representation
 - \downarrow **z** is low dimensional representation of **x**

- + But how can we train this NN? We do not have any label!
- This is because it's an unsupervised learning problem

To train this model, we should make some labels

- We intend to recover x from z at the end of the day
- We now have some labels
 - \rightarrow We train using the loss $\hat{R} = \mathcal{L}(\mathbf{x}; \hat{\mathbf{x}})$

- + This looks like something we had before!
- Yes! It's an encoder-decoder architecture whose label is the input

- Encoder represents input in a lower dimension
 - It somehow compresses the input
- Bottleneck contains the latent variables
- Decoder can return back the data from its low-dimensional representation

Nonlinear Compression

Encoder and decoder are both *shallow* and *linear* in PCA: we may however need deep nonlinear encoder and decoder

Let's consider an example: consider our initial simple example and now assume that data-points are of the form

$$\mathbf{x} = \begin{bmatrix} \sin \theta \\ \cos \theta \end{bmatrix}$$

Obviously PCA fails to compress x error-less into one dimension

- PCA searches for a line that represents the dataset
- A line with zero error does not exist in this problem

Nonlinear Compression

We can however do this by a nonlinear representation

We just need to know the angle θ

Nonlinear PCA

We can use this NN to extract principle components of other datasets

Latent variable θ represents data in lower dimension for minimal recovery error

