ECE 1508S2: Applied Deep Learning

Chapter 7: Sequence-to-Sequence Models

Ali Bereyhi

ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Winter 2025

Applied Deep Learning Chapter 7: Seq2Seq

mailto:ali.bereyhi@utoronto.ca

Attention is All You Need!

This was the title of the paper introduced transformers!

The attention layer already computes a sort of memory

all]

a[f] = > oy[¢]h]t]
:_____ffl >
r,C)lr “““ X D’D’DA* ' "" X Mé»T iy

+ Can'’t we then drop time connections?

- This is the idea of self-attention

1Check the paper at this link

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025 2/28

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Self-Attention: Basic Architecture

In self-attention, we
@ start with the complete sequence
@ capture all temporal correlation via attention mechanism

@ return a sequence which better represents time (positional) dependencies

afl] a[2] at] a[T]
| | | |
[Self-Attention
f f f f
x[1] x[2] x[t] x[T]

Typically, we have same time length for input and output

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025

3/28

Self-Attention and Transformers Self-Attention

Self-Attention: Basic Architecture

+ How can we do this via attention?
- Input entries apply attention mechanism on the input sequence itself

+ But, how can we do this?

Let's do it step by step

First, let’s generate hidden features, keys and queries

Self-Attention():

1: fortimet=1,...,7 do

2: Generate a hidden feature (value) h[t] = f (Wux[t])
3: Generate a key k[t] = f (Wix[t])

4: Generate a query q[t] = f (Wqx[t])

5: end for

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025 4/28

Self-Attention and Transformers

Self-Attention: Basic Architecture

h(1],k[1], q[1] h([2], [h(t], k[t h[T] k
i

(wh Wi, wj (Wh wk Wj . Wh Wi, W Wh W, W
¥
x[1] x[2]

Applied Deep Learning Chapter 7: Seq2Seq

Self-Attention: Basic Architecture

Next we generate score for every time step

Self-Attention():
1: fortimet =1,...,T do
2: Generate a hidden feature (value) h[¢] = f (Wnx|[t])

3: Generate a key k[t] = [(Wix][t])

4 Generate a query q[t] = f (Wqx[t])

5 fortimej=1,...,7T do

6: Compare query of time ¢ with key j by computing ¢;[t] = q"[t]k[/]
7 end for

8: end for

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025 6/28

Self-Attention and Transformers

Self-Attention: Basic Architecture

e e e e e e CEeE s e ... E .- - ——— - — = —

4 v v
n{U{(1)al1] hi2){k2])ql] h[e)(k[¢]{al] n(T)&[T) alT]

(wh,wk,wqj (Wh,Wk,ij (W Wi Wy o (W, Wi, Wy
3
x[1] x[2] x[t] x[T1]

Applied Deep Learning Chapter 7: Seq2Seq

Self-Attention and Transformers Self-Attention

Self-Attention: Basic Architecture

Finally, we find the weights and use them to compute attention features

Self-Attention():
1: fortimet =1,...,T do
2: Generate a hidden feature (value) h[¢] = f (Wnx|[t])
3: Generate a key k[t] = [(Wix][t])
4: Generate a query q[t] = f (Wqx][t])
5: fortimej=1,...,7do
6: Compare query of time ¢ with key j by computing &;[t] = q' [t1k[4]
7: end for
8: Pass score £[t] through Softmax to find attention weights a[¢]
9: Compute attention features from values and attention weights
a[t] =) a,[t]h[j]
j=1
10: end for

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025

8/28

Self-Attention and Transformers

Self-Attention: Basic Architecture

<

all] al2] h{)k[]{al4] QITYIT) alT]
(W wowa) (Wi, Wiow,) - v (Wi, W W,
4 4

x[1] x[2] x[t] x[T]

Applied Deep Learning Chapter 7: Seq2Seq

Self-Attention: Complete Architecture

a[1] a[2] alt] a[T]
—>| Linear —>| Linear —>| Linear —>| Linear
A A A A

—>| Softmax —>| Softmax —>| Softmax —>| Softmax

h[1], k[1], a[1] h[2], k[2], q[2] h[t], k[t], qlt] h[T], k[T], q[T]]
Grvew) @ww) o @ww)
f 1 f f
x[1] x[2] x[{] x[T]

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025 10/28

Self-Attention as a Layer

We can look at the whole process as a single layer
@ it takes a sequence of time as input
@ it processes it via attention mechanism
® it returns an output time sequence

a[l] a[2] aft] a[T]
[Self-attention Layer W = {W},, Wy, W}
f f f f
x[1] x[2] x[t] x[T]

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025

11/28

Self-Attention and Transformers Self-Attention

Self-Attention as a Layer
Note that all the weights are fixed through time: think of it as in RNNs

a[t]

f

(Salﬁ—a-t'ter\tIOh Layer W = {Wy,, Wy, Wq})

x[t]

However, we should pay attention that

Self-attention returns the complete output sequence only after going through
the complete input sequence: No sequential order!

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025 12/28

Processing Sequences Only with Attention
At this point, people started to think: what if

we process the time sequence via multiple layers of self-attention

Start with input x[t| and compute an attention sequence a; [t]
L. aq[t] has captured temporal features of x|[t]

From attention a; [t], compute a new attention sequence as|t]
L, ax[t] has captured better temporal features of x[t]

e ...x N

From last attention an_1[t], we compute an output sequence y|t]
L. y/[t] has captured almost all temporal features of x|t]

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025 13/28

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Self-Attention and Transformers Self-Attention

Processing Sequences Only with Attention

y[1] y[2] y[t]

f f f

Self-attention Layer Wy

f f f

an—1[1] an—1[2] an—_1[t] an-_1[T]
as[1] as[2] as(t] ax[T]
{ { { {
[Self-attention Layer W,]
f f f f
ai[1] ai1[2] ai[t] ai[T]
{ { { {
[Self-attention Layer W,
f f f f
x[1] x[2] x[t] x[T]

Applied Deep Learning Chapter 7: Seq2Seq

© A. Bereyhi 2024 - 2025

14/28

Self-Attention and Transformers Self-Attention

Processing Sequences Only with Attention

Intuitive Observation

Self-attention does the same thing as convolution

It has a fixed set of weights to compute values, keys, and queries
L, Convolutional layers have fixed filters (kernels)

It goes through the entries sequence with these weights using attention
L, Convolutional layers apply convolution with the same filter

It returns a output sequence that captures temporal correlation
L, Convolutional layers return maps that capture spatial correlation

+ But, we compute multiple maps via multiple filters in convolutional layers!

Well, we could do the same here!

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025 15/28

Self-Attention: Multi-headed Architecture

NG ‘»f’\/'a“”[ﬂ / 0\f\/"d“”[T]
A1) I a[2] I I AT

A A A

(
-
[Sinale Attention Head W)]‘J}{V
? 0 f ¥
x[1] x[2] x[{] x[T]

e We can compute multiple self-attention layers in parallel
L, Alayer in this context is called a head
® Fach head computes a separate attention feature
L, Head h computes the attention feature a'")[t] € RPo
e The concatenation of these features is the final attention feature
L, Attention feature at time tis a[t] = [aV)[t],...,alD)[t]] e RHPo

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025 16/28

Self-Attention: Multi-headed Architecture

q:\\\/fa(n)m ‘Z;Q\/Va(mm /
aV[1] aV[2] a
A A

| /]

(
-
(Sinale Attention Head W)]‘J}{V
? 0 f ¥

(1] x[2] x[t] (7]

A

Typical Practice

In practice, we often choose Dy and H such that dimensionality is preserved:
say every x[t] € RY

* Weset Dy = N/H for an H-head self-attention layer
¢ The concatenated attention feature is then of length H Dy = N

The key reason is that we often use this layer with skip connection

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025 17/28

Self-Attention: Adding Nonlinearity

It turns out that although self-attention captures temporal correlation

it is not complex enough to capture accurately

+ Can'’t we do it by having more complex layers!

- Sure! We often process the attention features with a nonlinear layer

This layer further captures

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025 18/28

Self-Attention: A Unit

afl] a[2] alt] a[T]

a[l] a[2] alt] a[T]
[Mutti-head Attention Layer W) | w]
-------- ok
x[1] x[2] x[t] x[T]

Self-Attention Unit: Generic Form

A self-attention unit consists of a multi-head attention layer followed by an
activated layer. These layers are all fixed through time

A deep self-attention architecture is made by cascading self-attention units

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025 19/28

Transformer: Encoding and Decoding via Self-Attention

Experiments showed that

self-attention can better capture temporal and features

+ Can’t we replace them with RNNs in an encoder-decoder architecture?
- Sure! This is indeed a basic transformer!

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025 20/28

Self-Attention and Transformers Transformers

Transformer: Encoding and Decoding via Self-Attention

+ Does this idea work that easily?!
- Well! Pretty much Yes, after some basic modifications

a[l] a[2] alt] a[T]
Mutti-head Attention J
f f f f
x[1] x[2] x[t] x([T]

There are two challenges in using self-attention for encoding and decoding
® For encoding: changing time order at input does not impact the output
L, Self-attention captures temporal correlation, but not sequential order!
e For decoding: we should generate the entire output at once
L. We often want to generate y|t] depending on previous outputs y[1 : t — 1]

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025 21/28

Encoding via Self-Attention: Positional Encoding

A simple remedy is to include time index in the input!

—_—
—_—

2
=
2
S
[
=
2
=3

[Mutti-head Attention Layer W, W) J
-------- S e S
x[1],1 x[2],2 x[t],t x[T],T

We replace the input with (input, time), i.e.,
x[t] < (x[t],t)
Now, time permutation changes output ~~» output depends on sequential order

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025 22/28

Self-Attention and Transformers Transformers

Positional Encoding

—
—
—

&
=
m

2
&
m

=
R
=

[Mutti-head Attention Layer W . W) J
-------- F ok
x([1], p[1] x[2], p[2] x[t], p[t] x[T], p[T]

Positional Encoding

To use self-attention at encoder we concatenate input with a time-dependent
(positional) feature p[t] that can be potentially learned from data itself

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025 23/28

Decoding via Self-Attention: Masked Decoding

a[l] a[2] alt] a[T]
f f f f
[Multi-head Attention]
i ; ; i
x[1] x[2] x[t] x[T]

Recall that attention at time t is computed as
T
a[t] = > oj[t]h(;]
j=1

which depends on the future data through h[j|forj =t +1,...,T

We could simply ignore them by masking o;[t] for j =t +1,...,T

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025 24/28

Decoding via Self-Attention: Masked Decoding

a[t] a[2] a[t] a[T]

Masked Mukti-head Attention

t t t t
T f f f

x[1] x[2] x[t] x[T]

We replace oj[t] < Oforj =t +1,...,T and compute

T t
alt] = Y a;[t]h[j] = Y] a;[t]h[j]

Jj=1 j=1

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025

25/28

A Classic Transformer

A classic transformer looks like this?

cross-attention

layer normalization

——1
Add & Norm

Feed
Forward

Transformers

Output
Probabilities

nonlinearity

Nx

Multi-Head
Attention

Multi-Head

fut —> mask at decoder
tention

1

skip connection

I

Positional a Positional
Encoding ¥ Encoding
Input Output
Embedding Embedding
Inputs Outputs

2The diagram is from the paper Attention is All You Need!

Applied Deep Learning

© A. Bereyhi 2024 - 2025

26/28

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Self-Attention and Transformers Transformers

Why Transformers?

+ Transformers seem to be more challenging to implement! Why should we
use them?

- That’s right! But they come with some benefits!

In general transformers
® process sequences in parallel -~ room for parallel computing
® preserve much better connections
® can be deepened much more straightforward
But, it’s true that
® they pose more complexity > we can handle it nowadays

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025 27/28

Final Notes

Transformer is a core element of many modern learning models
® GPT stands for Generative Pre-trained Transformer
® They are the better choice for complicated Seq2Seq problems
® Pre-implemented transformer is available in PyTorch

torch.nn.Transformer (d_model, nhead, num_encoder_layers,

num_decoder_layers, ...)

If you are interested to know more about transformers
L, Consider taking NLP course next fall semester
L, We also revisit it in the Generative Models course this summer
L, Take a look at this nice online resource

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025

28/28

https://lilianweng.github.io/posts/2020-04-07-the-transformer-family/

	Self-Attention and Transformers
	Self-Attention
	Transformers

