ECE 1508S2: Applied Deep Learning

Chapter 7: Sequence-to-Sequence Models

Ali Bereyhi

ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Winter 2025

Applied Deep Learning Chapter 7: Seq2Seq

mailto:ali.bereyhi@utoronto.ca

Encoder-Decoder

Encoder-Decoder Architecture

Encoder-Decoder

Encoder-decoder architecture comprises of two separate NNs
@ Encoder takes the input sequence and encodes it into vector of features
@® Decoder takes vector of features and decodes it into output sequence

+ What kind of NNs should we use?
- Pretty much everything is allowed!

Encoder such a cute kitty! <EOS>
yl[1] y[2] y[3] y[T-1] y[T]

<START> Decoder

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025 2/26

Back to Caption Generation
We used a CNN for encoding and an RNN for decoding

lagel such a cute kitty! <EOS>
y[1] y[2] y[3] y[T —1] y[T]
. DO O O O O
e — G WG e e e
y ‘& T
)g s <START>

We can replace CNN with any other architecture the extracts features

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025 3/26

RNN as Conditional Distribution

+ But, why should those features make RNN speak about cat?
- It makes RNN to generate random words conditional to input image

When we are dealing with classification: NN can be seen as a machine that
computes distribution and based on its input, it generates random outputs

In classification y is a vector if probability

y
e |ts length equals to the number of classes
e |ts entry k represents the probability of class k
A
X

L, We can say that

hn
y=|...| e~ ypocPriarel = k|x}
YK

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025 4/26

Encoder-Decoder Caption Generation

RNN as Conditional Distribution

v[t]
yl[t]

bt — 1] —>&]—> h[t]
)

x|[t]

Similarly the output of RNN in each time can be seen as
yi[t]oc Pr {lesel = k|h[t — 1], x[t]} = p (v[t]|h[t — 1], x[t])

Since h[t — 1] already contains memory about x[1 : t — 1], we could say
yk[t]oep (V[E]x[1 - ¢])
© A Bereyhi2024 - 2025 5/26

Encoder-Decoder Caption Generation

Caption Generation: Dataset

lasel such E) cute kitty! <EOS>

SO DD
et ~O—O—O—D—-D

Ed)

To train this architecture, we collect a dataset
¢ |t contains several images
L, They could potentially be of different classes
e For each image, we have a sample caption
L, These sentences are again of different lengths

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025

6/26

Encoder-Decoder Caption Generation
Caption Generation: Training

lagel such

y[l]

- d) “
-~ aéﬁéaéﬁéﬁé

}33

Say we want to train it on one sample: first we pass forward
e We first tokenize the words in captions to take them as one-hot labels
e We pass the image forward through CNN and get the
e \We initiate the RNN with the feature vector and give input <S TART>
® We pass forward through time till we see have the output sequence

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025

7126

Encoder-Decoder Caption Generation

Caption Generation: Training

lagel such a cute kitty! <EOS>

yl[1] y[2] yl[3] ylT'-1] y[T]

DO DD DD
al] S-O-5-5-E

Ee <START>

Say we want to train it on one sample: then we pass backward
* We compute the loss between the output sequence and one-hot labels
L, We can simply use the cross-entropy function

e We backpropagate through time till we arrive at the beginning of decoder

e We have V R
L, So we backpropagate through the CNN

* We update all weights and go for the next round

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025 8/26

Encoder-Decoder Caption Generation

Caption Generation: Inference

lasel such E) cute kitty! <EOS>
y[l] y[2] y[3] y[T 1] y[T]
input
9 &)—»&)—»6—»6—»6
b —>| Z —>
A a <STAP\‘(> such kitty!

Say we finished with training: we want to caption a new image

e We send it over network and read the output sequence
* We could also set output of each time step as input for next time

L, We could also do it while training
L, Intuitively, it could help the RNN writing more coherent sentence

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025 9/26

Seq2Seq Model: Basic Translator

Now, let's take a step further:
we want to build a model that translates German sentences to English

® We need a Seq2Seq model
L, We have a sequence of input German words
L, We need to return a sequence of English words
L, These sequences could be of different lengths
We know encoder-decoder model: we use it to build our translator
® We need an encoder that takes a German sentence
L, RNN is a good choice, since we have input sequence
e We need a decoder that returns the English translation
L, RNN is again the choice, since we have another sequence

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025 10/26

Encoder-Decoder Basic Translation Machine

Basic Translator: Encoder-Decoder Model

So, the model for our translator looks like this

A R S
x[1] x([2] x[T —1] x[T]
v[L] v[2] v[1]
ylZ] y[2] y[1]

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025 11/26

Encoder-Decoder Basic Translation Machine

Basic Translator: Dataset

To train this model, we collect some dataset: in this dataset
* We have German sentences
L, We tokenize each sentence and represent it with a sequence x[1 : T']

(7] (7] (%] %]

h[0] —> l (%ﬂ[) hiT — 1l h[T]

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025 12/26

Encoder-Decoder Basic Translation Machine

Basic Translator: Dataset

To train this model, we collect some dataset: in this dataset

e Corresponding to each German sentence, we have the English translation

L, We tokenize it as well and represent it with a sequence v[1 : L]
L, L and T are not of the same length

v[L] v[2] v([1]
ylL] y[2] y[1]

b ddd

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025 13/26

Basic Translator: Training

Say we want to train it for sample sentence: we start with forward pass
e We pass the tokens through time forward till we arrive at <€OS>
L, At this point we have h[T'] at the output of encoder
e We have already computed all variables inside this encoder
L, We need them in them backward pass

(7] (7] (7] %]

h[0] ——> ld (%ﬂ(ij ----- > b h[T]
¥

x[1] x[2] x[T —1] x[T] = <e0S>

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025 14/26

Basic Translator: Training

Say we want to train it for sample sentence: we start with forward pass
* We initiate the decoder with s[0] = h[T]
L, We could also give token of <STAR.T> as first input
L, We can give y[¢ — 1] as the input at time ¢

e We continue till we get to label <E€OS>

v[L] = <EOS> v[2] v[1]
ylL] v[2] y[1]

bH ddd
61‘] SIL 1] ; < % 0 <—— s[0] = h([T]

))

y[L—-1] y[1] <START>

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025 15/26

Basic Translator: Training

Say we want to train it for sample sentence: now we pass backward
® We compute loss between the labels and outputs
L, We aggregate cross-entropy losses over time
e We backpropagate through time
L, Weget to VS[O]R = Vh[T]R

v[L] = <EOS> v[2] v[1]
y[L] v[2] y[1]

b ddd
Db B

) 4

ylL—1] vl <START>

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025 16/26

Basic Translator: Training

Say we want to train it for sample sentence: now we pass backward

A

* We have Vy R
L, We backpropagate again over time

® We update all the weights and start a new round

(] (] (%] %]

h[0] —> il (%ﬂ(ij ----- > b h[T]
5

x[1] x[2] x[T — 1] x[T] = <EOS>

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025 17/26

Basic Translator: Inference

Say we have trained this model and we want to use it to translate
“Das gefdllt mir” ~~ | like it

Let’s start with encoding

bdbddd

0)) 1)

<SSTART> Das cetdlt mir <e0s>

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025

18/26

Basic Translator: Inference

Say we have trained this model and we want to use it to translate
“Das gefdllt mir” ~~» | like it

Now, for decoding we start with h[5]

<EOS> it like |

DD Do
%ﬁﬁﬁ«s-

rt lu<e <STA&‘I>

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025 19/26

Encoder-Decoder Decoding

Basic Translator: Inference
If we are lucky, the token of word "I" has highest probability in £ = 1

<EOS> it like |

DD Do
%ﬁﬁﬁ«s

Hc llke <5TA&‘D

and probably the RNN keeps generating a correct sentence

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025 20/26

Encoder-Decoder Decoding

Basic Translator: Inference
If we are unlucky, another token might be slightly higher in probability at ¢ = 1

<EOQS> me to feels [l o

DD dbdd
ﬁﬁﬁﬁ@e S[0] = hl5]

me to feels it <START>

In this case, a small mistake can lead to a sequence of mistakes, e.g., say
e word "it" has slightly higher chance at the beginning
L eg.,"it" 0.121 and"l": 0.119, thus, we choose it as the first word
® since we chose "it", RNN needs to generate the next word accordingly
L, with"it" as input: "feels" has higher chances than “like"

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025 21/26

Encoder-Decoder Decoding

Basic Translator: Inference via Decoding
If we are unlucky, another token might be slightly higher in probability at ¢ = 1

<EOS> me to feels it

s lias Mice las Mae
ﬁﬁﬁﬁﬁe S[0] =[5}

me to feels it <START>

Decoding

To avoid error propagation, a better idea is to find the sequence with highest
probability, i.e., sequence v*[1 : L] that has highest conditional probability

v*[1: L] = argmaxp (v[1: L]|x[1: T])
v[1:L]

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025 22/26

Encoder-Decoder Decoding

Basic Translator: Inference via Decoding
If we are unlucky, another token might be slightly higher in probability at ¢ = 1

<EOQS> mMme to feels it

Db dd
ﬁﬁﬁﬁ@e S[0] = hl5]

me to feels it <START>

Intuitively, this means: we do not classify in each time
* We wait till the sentence is over

e We consider all possible combinations
® We find the one which has highest conditional probability
L, We need to compute this conditional probability

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025 23/26

Basic Translator: Inference via Decoding
Let’s try finding this probability first

p(v[1: L][x[1:T]) = p(v[l: L]|h[TT])

Il
-

1

L
p (V[AIs[¢ = 1], y[6 = 1) o | [weal]
/=1

=5

oC

=1

Yu[¢)[£] means the entry of y[/] that corresponds to the class of v[/], e.g.,

0 0.1
1 0.3

v[l] = 0 and yl[/] = 04 > Y] [/] =0.3
0 0.2

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025

p (V[£]|h[T],v[1: £ — 1]) v~ Bayes chain rule

24/26

Basic Translator: Inference via Decoding

Since we are more comfortable with sum, we can use log-likelihood

v*[1: L] = argmaxlogp (v[1 : L]|x[1: T])
v[1:L]
L

argmax) logy,(g[/]
v[1:L] ;1

+ But, is it feasible to find the sequence with highest sum?
- No! Since we deal here with an exponentially large case
For a vocabulary with D words in it, the number of possible sequences is

(D +2)F

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025

25/26

Basic Translator: Inference via Decoding
In practice, however, we know that many of those combinations are invalid, e.g.,

“ are potato” is not an invalid English sentence!

So we can use sub-optimal search methods to find a good sequence
e We do not necessarily hit the best sequence
L, But, for fair length, we can be close
L, We will be definitely better than naive instant decoding
® Most famous approach is beam search via top-k
L, At time step ¢ we find k sequences with highest sum log-likelihoods till £
L, We update top-k sequences by searching among children on sequence tree
L, We finally select the sequence with highest probability among those top-k
¢ Since decoded sequences can be of different length, we usually maximize
normalized log-likelihood

L

v*[1: L] = argmax — 2 log (41 [/]
v[1:L]

Applied Deep Learning Chapter 7: Seq2Seq © A. Bereyhi 2024 - 2025 26/26

	Encoder-Decoder
	Caption Generation
	Basic Translation Machine
	Decoding

