
ECE 1508: Applied Deep Learning
Chapter 6: Recurrent NNs

Ali Bereyhi
ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Winter 2025

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 1 / 49

mailto:ali.bereyhi@utoronto.ca

Segmentation and CTC

Computing Loss: Challenge
We mentioned several times in this chapter that we assume
we can compute the loss between RNN’s output sequence and label sequence

However, it is in general a challenge!

+ Why is it a challenge? We did it easily in FNN and CNN chapters!
– Because the problem there was already properly segmented!
+ What do you mean by segmented?
– Let’s break it down!

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 2 / 49

Segmentation and CTC

Computing Loss: Motivating Example
Let’s consider a simple example: we have an image that includes a sequence
of handwritten digits, e.g.,

‚ The sequence includes five digits
‚ Each digit is either 1, 2, 3, or 4

Our task is to recognize this sequence, i.e., return the five digits in correct order
‚ This is a classification task
‚ How can we do it? We use NNs

ë We train an NN over lots of images: we have lots of sequence of digits
ë We then use it to recognize new images

ù 23241
Let’s say we are going to use a CNN

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 3 / 49

Segmentation and CTC

Computing Loss: Motivating Example
To use a CNN, we need to specify our input size

‚ We segment an input image into a sequence of five images
ë These images are all as large as CNN’s input size

ù , , , ,
‚ We label each image with its label, e.g., is labeled as 2
‚ We give these five images to our CNN and get five outputs

ë Assume we use softmax at the output layer
ë For each image, we get a vector of size 4 as output

ë Each entry represents probability of image being one of digits 1, 2, 3, and 4

‚ To compute loss, we compare each output with its corresponding label

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 4 / 49

Segmentation and CTC

Computing Loss: Motivating Example

vr1s “

»

—

—

–

0
1
0
0

fi

ffi

ffi

fl

yr1s

»

—

—

–

y1r1s

y2r1s

y3r1s

y4r1s

fi

ffi

ffi

fl

“

vr2s “

»

—

—

–

0
0
1
0

fi

ffi

ffi

fl

yr2s

vr3s “

»

—

—

–

0
1
0
0

fi

ffi

ffi

fl

yr3s

vr4s “

»

—

—

–

0
0
0
1

fi

ffi

ffi

fl

yr4s

vr5s “

»

—

—

–

1
0
0
0

fi

ffi

ffi

fl

yr5s

ë yjrts is the probability of digit in time t being j
Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 5 / 49

Segmentation and CTC

Computing Loss: Motivating Example
Here, we already have the data segmented into

a sequence that for each time step has a label

So, computing loss is easy as pie!

R̂ “ L pyr1s, . . . ,yr5s,vr1s, . . . ,vr5sq

“

5
ÿ

t“1

L pyrts,vrtsq “

5
ÿ

t“1

R̂rts

When we compute gradients, we note that only R̂rts depends on yrts: so, for a
given output at time t “ i we can simply write

∇yrisR̂ “

5
ÿ

t“1

∇yrisR̂rts “ ∇yrisR̂ris “ ∇yrisL pyris,vrisq

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 6 / 49

Segmentation and CTC

Computing Loss: One-to-One Correspondence
+ But is it practical to do segmentation by hand?
– No! This is why we built RNNs!

With RNNs, we address this learning task as bellow
‚ We look at the complete image as a sequence of data

ë We divide input into multiple equal-size frames
‚ We go over each frame separately

ë We give the frame as the input along with previous state
ë We compute a new state which can potentially give us the output

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 7 / 49

Segmentation and CTC

Computing Loss: One-to-One Correspondence
If we are extremely lucky; then, our segmentation looks like this

ù xr1s,xr2s,xr3s,xr4s,xr5s

and we have a label for each time step

label 2

xr1s

yr1s

3

xr2s

yr2s

2

xr3s

yr3s

4

xr4s

yr4s

1

xr5s

yr5s

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 8 / 49

Segmentation and CTC

Computing Loss: One-to-One Correspondence
But, that’s too good to happen! Usually we have

ù xr1s,xr2s, . . . ,xrT s

and we have a label in some time steps

label

xr1s

yr1s

2

xr2s

yr2s

xr3s

yr3s

3

xr4s

yr4s

. . . 1

xrT s

yrT s

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 9 / 49

Segmentation and CTC

Computing Loss: One-to-One Correspondence
In this typical case, two questions seem non-trivial

1 Where should we put each label? ” Where should we read each label?
2 What should we do with non-labeled outputs, e.g., yr1s?

label

xr1s

yr1s

2

xr2s

yr2s

xr3s

yr3s

3

xr4s

yr4s

. . . 1

xrT s

yrT s

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 10 / 49

Segmentation and CTC

Computing Loss: One-to-One Correspondence
The key challenge in computing the loss is that we do not have necessarily
one-to-one correspondence with sequence data

Correspondence Problem
With sequence data, we could have a data-sequence of length T that is labeled
by a sequence of sizeK ă T where

no time index is specified for any label in theK-long label sequence

Correspondence problem exists pretty much in all practical sequence data
‚ In speech recognition, multiple time frames correspond to a single word
‚ In text recognition, multiple image frames correspond to a single letter
‚ . . .

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 11 / 49

Segmentation and CTC

Correspondence Problem: Formulation
Let’s formulate the problem clearly: Say we have

A sequence of data

xr1 : T s “ xr1s, . . . ,xrT s

that is labeled with the sequence ofK true labels

vr1 : Ks “ vr1s, . . . ,vrKs

whereK and T can be different

For this setting, we want to train an RNN with this data sequence: starting with
an initial state, this RNN returns an output sequence

yr1 : T s “ yr1s, . . . ,yrT s

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 12 / 49

Segmentation and CTC

Correspondence Problem: Formulation
label

output

input xr1s

yr1s

vr1s

xr2s . . .

yr2s . . .

. . .

xrt ´ 1s

yrt ´ 1s

vrks

xrts . . .

yrts . . .

. . . vrKs

xrT s

yrT s

To be able to train this RNN, we need to
1 define a loss function that computes R̂ “ L pyr1 : T s,vr1 : Ksq

ë We need this loss function to be differentiable with respect to all outputs

∇yr1sR̂, . . . ,∇yrT sR̂

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 13 / 49

Segmentation and CTC

Correspondence Problem: Formulation
label

output

input xr1s

yr1s

vr1s

xr2s . . .

yr2s . . .

. . .

xrt ´ 1s

yrt ´ 1s

vrks

xrts . . .

yrts . . .

. . . vrKs

xrT s

yrT s

To use this RNN after training, i.e., for inferring, we need to
2 know how to map outputs to predicted labels

ë We need to extractK labels from yr1 : T s, i.e.,

yr1s, . . . ,yrT s ÞÑ v̂r1s, . . . , v̂rKs

Let’s look into different settings
Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 14 / 49

Segmentation and CTC Perfectly Segmented Setting

Setting I: Perfectly Segmented
In some problems, we have our data perfectly segmented

‚ There is a separate label for each time step, i.e.,K “ T

ë many-to-many type I

label

output

input

vr1s

xr1s

yr1s

vr2s

xr2s . . .

. . .

yr2s . . .

vrt ´ 1s

xrt ´ 1s

yrt ´ 1s

vrts

xrts. . .

yrts . . .

. . . vrT s

xrT s

yrT s

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 15 / 49

Segmentation and CTC Perfectly Segmented Setting

Setting I: Perfectly Segmented
In some problems, we have our data perfectly segmented

‚ There is a separate label for each time step, i.e.,K “ T

ë many-to-many type I and one-to-many

label

output

input

vr1s

xr1s

yr1s

vr2s . . .

yr2s . . .

vrt ´ 1s

yrt ´ 1s

vrts

yrts . . .

. . . vrT s

yrT s

Attention
We can always treat a non-existing input entry as an empty

ë We are good as long as we have a label at each time t

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 16 / 49

Segmentation and CTC Perfectly Segmented Setting

Setting I: Defining Loss
In such settings, we define the loss to be aggregated loss over time

R̂ “

T
ÿ

t“1

L pyrts,vrtsq

for some loss function L p¨, ¨q

The gradients are then trivially computed
Gradient with respect to particular output yrts is

∇yrtsR̂ “ ∇yrtsR̂rts “ ∇yrtsL pyrts,vrtsq

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 17 / 49

Segmentation and CTC Perfectly Segmented Setting

Setting I: Inference
Inference in such setting is performed by one-to-one mapping: at time
t, we predict based on yrts

yr1s ÞÑ v̂r1s, . . . ,yrT s ÞÑ v̂rT s

For instance, assume yrts is output of a softmax activation; then, we set

v̂rts “ argmaxyrts

where argmax returns the index of the largest entry, e.g.,

argmax

»

—

—

–

0.1
0.7
0.2
0

fi

ffi

ffi

fl

“ 2

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 18 / 49

Segmentation and CTC Setting II: Known Segments

Setting II: Known Segments
In some problems, we have only one label for the whole sequence, i.e.,K “ 1

ë It corresponds to many-to-one type of problems
ë This can be that we have really only one label, e.g., content classification
ë It can be that we know the time index t at which each label is assigned

ë We split data to sub-sequences with each sub-sequence having only one label

label

output

input xr1s

yr1s

xr2s . . .

yr2s . . .

xrt ´ 1s

yrt ´ 1s

xrts. . .

yrts . . .

vr1s

xrT s

yrT s

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 19 / 49

Segmentation and CTC Setting II: Known Segments

Setting II: Defining Loss for Dumb NN
A naive approach to define loss is to set it be the loss between last output and
label, i.e.,

R̂ “ L pyrT s,vr1sq

With this loss, gradient with respect to particular output yrts is

∇yrtsR̂ “

#

∇yrT sL pyrT s,vr1sq t “ T

0 t ‰ T

+ But does it make sense to ignore all other outputs?
- Not at all! We are training a dumb NN that can respond only when it’s
over with the whole sequence!

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 20 / 49

Segmentation and CTC Setting II: Known Segments

Setting II: Loss for Smarter Training
An extremely smart NN is the one who knows the label before the input speaks!

label

output

input

vr1s

xr1s

yr1s

vr1s

xr2s . . .

yr2s . . .

vr1s

xrt ´ 1s

yrt ´ 1s

vr1s

xrts. . .

yrts . . .

vr1s

xrT s

yrT s

For this NN, the loss is

R̂ “

T
ÿ

t“1

L pyrts,vr1sq

But, we should be careful! We should not expect NN to know everything from
potentially irrelevant input!

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 21 / 49

Segmentation and CTC Setting II: Known Segments

Setting II: Defining Proper Loss
A realistic approach is to define the loss via a weighted sum, i.e.,

R̂ “

T
ÿ

t“1

wtL pyrts,vr1sq

where wt is the weight at time t
‚ initially wt is small

ë we do not expect the NN to know everything from very beginning
‚ it gradually increases up to its maximum wT

ë by time T the NN should know the label
With this loss, gradient with respect to particular output yrts is

∇yrtsR̂ “ wt∇yrtsR̂rts “ wt∇yrtsL pyrts,vr1sq

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 22 / 49

Segmentation and CTC Setting II: Known Segments

Setting II: Inference
Inference in such setting is performed by many-to-one mapping: we
only predict based on yr1 : T s

yr1 : T s ÞÑ v̂r1s

For instance, assume yrts is output of a softmax activation; then, we set

ṽrts “ argmaxyrts

and then take a (potentially weighted) majority vote: v̂r1s is the class that most
often estimated with occurrence at each time being weighted by some weight

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 23 / 49

Segmentation and CTC Setting III: Unknown Segments

Setting III: Unknown Segments
Most common case is that we have a label sequence shorter than our data

ë Each label in this sequence is corresponding to a segment of input
ë We do not know where this segment begins and where it ends

ë There might be even no clear answer to that!

label

output

input xr1s

yr1s

vr1s

xr2s . . .

yr2s . . .

. . .

xrt ´ 1s

yrt ´ 1s

vrks

xrts . . .

yrts . . .

. . . vrKs

xrT s

yrT s

Note that we are dealing with a sequence to sequence model: we want to learn

relation between sequence xr1 : T s and sequence vr1 : Ks!

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 24 / 49

Segmentation and CTC Setting III: Unknown Segments

Setting II: Example
Assume we have image that is divided into a sequence of five pixel vectors

‚ Since it is a training data, it is labeled as 121
ë We do not know after which output we should expect RNN to know first,

second or third digit!

label 1

xr1s

yr1s

1

xr2s

yr2s

2

xr3s

yr3s

21

xr4s

yr4s

1

xr5s

yr5s

+ Sounds impossible!
– Only impossible is impossible! Let’s carry on and see what we can do!

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 25 / 49

Segmentation and CTC Setting III: Unknown Segments

Setting II: Genie-Defined Loss
Assume a genie has told us end of each segment

label 1

xr1s

yr1s

1

xr2s

yr2s

2

xr3s

yr3s

2

xr4s

yr4s

1

xr5s

yr5s

We can fill the empty labels with repetition, and then define the loss as

R̂ “

K
ÿ

k“1

ik
ÿ

t“ik´1`1

wtL pyrts,vrksq

where ik is where label vk ends, e.g., in above diagram i1 “ 2

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 26 / 49

Segmentation and CTC Setting III: Unknown Segments

Setting II: Defining Loss
label 1

xr1s

yr1s

1

xr2s

yr2s

2

xr3s

yr3s

2

xr4s

yr4s

1

xr5s

yr5s

We don’t have the genie: we could assume that ik is something to learn!

R̂ piq “

K
ÿ

k“1

ik
ÿ

t“ik´1`1

wtL pyrts,vrksq

where i “ r0, i1 . . . , iKs is something we need to learn

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 27 / 49

Segmentation and CTC Setting III: Unknown Segments

Setting II: Optimal Segmentation
+ How could we learn i? Should we compute also∇iR̂?
– Well! You may try! But, obviously ik is an integer!

Optimal Segmentation
Optimal approach for finding i is to train the NN for all possible choice for i and
then find the final training loss R̂ piq. The optimal segmentation is then given by

i‹ “ argmin
i

R̂ piq

+ Is it computationally feasible?
– No! The number of possible choice for i grows exponentially with T ! We

need to go for sub-optimal approaches

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 28 / 49

Segmentation and CTC Setting III: Unknown Segments

Setting II: Number of Possible Segmentations
+ How is it exponentially large?
– Let’s look at our example

In our example, we should assign label sequence 121 to a sequence of length 5:
each entry of output sequence in this case can be labeled by 1 (the first one), 2
or 1 (the last one). This means that we have 3 choices of label for each time
interval; thus, the total number of possible segmentations is around 35.

In general number of segmentations grows exponentially withT

+ But wait a moment! We have also counted the case of labeling all outputs
with 1! This cannot be the case!

– This is right! It is in general much less than 35 but it’s still exponential
Let’s see the exact possible segmentations!

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 29 / 49

Segmentation and CTC Setting III: Unknown Segments

Setting II: Number of Possible Segmentations
We intend to compare each of yr1s, . . . ,yr5s with a label

‚ We know that the label sequence is 121
ë First output is definitely in the first segment: it’s label is definitely 1
ë Second output could be still in the first segment or in the second segment
ë Third output could be in the first, second, or third segment
ë Our labels should finish by the end of output sequence: fourth output

cannot be in first segment
ë Last output could be only in the third segment

la
b
e
l

yr1s

1
2
1

yr2s

1
2
1

yr3s

1
2
1

yr4s

1
2
1

yr5s

1
2
1

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 30 / 49

Segmentation and CTC Setting III: Unknown Segments

Setting II: Showing Segmentations on Graph
la
b
e
l

yr1s

1
yr2s

1
2

yr3s

1
2
1

yr4s

2
1

yr5s

1
Though it’s exponentially large: we see that each segmentation corresponds
to one path on this graph

Blue path corresponds to i1 “ 3, i2 “ 4, and i3 “ 5, i.e., i “ r0, 3, 4, 5s

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 31 / 49

Segmentation and CTC Setting III: Unknown Segments

Setting II: Loss on Segmentation Graph
la
b
e
l

yr1s

1
yr2s

1
2

yr3s

1
2
1

yr4s

2
1

yr5s

1
We can compute the loss for each segmentation directly on this graph: let’s say
that we have L different paths on the graph. For each path, we can write an
expanded label sequence, e.g.,

Expanded label sequence of blue path is { 1, 1, 1, 2, 1}

This sequence is of length T and we show it for path ℓ with ṽℓrts

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 32 / 49

Segmentation and CTC Setting III: Unknown Segments

Setting II: Loss on Segmentation Graph
la
b
e
l

yr1s

1
yr2s

1
2

yr3s

1
2
1

yr4s

2
1

yr5s

1
For each path ℓ “ 1, . . . , L, the loss is computed by aggregating the losses
between outputs and extended labels

R̂ℓ “

T
ÿ

t“1

wtL pyrts, ṽℓrtsq “

T
ÿ

t“1

R̂ℓrts

It again decomposes into sum of T terms with only one being function of yrts

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 33 / 49

Segmentation and CTC Setting III: Unknown Segments

Setting II: Optimal Segmentation on Graph
We can represent the optimal segmentation on the graph as below

OptimalSegmentTraining():
1: Initiate with R̂ “ `8 and some random ℓ‹

“ H2: for ℓ “ 1, . . . , L do3: Let the loss be R̂ℓ4: Train for sufficient epochs5: if After training R̂ℓ ă R̂ then6: R̂ Ð R̂ℓ and ℓ‹
Ð ℓ7: end if8: end for9: Return learnable parameters and ℓ‹

+ Say we could be over with this infeasible training! How do we use the
trained RNN for inference?

– In this case, we have ℓ‹ which gives us optimal segmentation: we infer
label of each segment based on its corresponding outputs

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 34 / 49

Segmentation and CTC Setting III: Unknown Segments

Setting II:Maximum-Likelihood Segmentation
Since optimal segmentation is infeasible, people uses maximum-likelihood
approach that is well-known in detection and coding theory
Maximum-Likelihood Segmentation
Start with an initial guess for optimal path on segmentation graph and do one
step of training; then, improve the guess based on the outputs of next forward
pass and go for next step of training

Initiate learnable parameters

Compute output sequence via forward pass

Guess good Path by looking at output

Update learnable parameters by backward pass

Let’s look at its pseudo-code
Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 35 / 49

Segmentation and CTC Setting III: Unknown Segments

Setting II:Maximum-Likelihood Segmentation

MaxLikelihoodTraining():
1: for Iteration i “ 1, . . . , I do2: Pass forward through time: Compute output sequence yr1 : T s3: Compute p pṽℓr1 : T s|ℓq for each path ℓ on segmentation graph f4: Update ℓ˚

“ argmaxℓ p pṽℓr1 : T s|ℓq f5: Set loss to R̂ℓ˚ and backpropagate over RNN6: Update learnable parameters7: end for8: Return learnable parameters and ℓ˚

+ Why we call it maximum likelihood?
– Because we guess path by maximizing the likelihood p pṽℓr1 : T s|ℓq

+ But how can find likelihood of a path?
– We can use output sequence yr1 : T s

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 36 / 49

Segmentation and CTC Setting III: Unknown Segments

Setting II: Finding Likelihood on Segmentation Graph
la
b
e
l

»

—

—

–

y1r1s

y2r1s

y3r1s

y4r1s

fi

ffi

ffi

fl

1

»

—

—

–

y1r2s

y2r2s

y3r2s

y4r2s

fi

ffi

ffi

fl

1
2

»

—

—

–

y1r3s

y2r3s

y3r3s

y4r3s

fi

ffi

ffi

fl

1
2
1

»

—

—

–

y1r4s

y2r4s

y3r4s

y4r4s

fi

ffi

ffi

fl

2
1

»

—

—

–

y1r5s

y2r5s

y3r5s

y4r5s

fi

ffi

ffi

fl

1
Assume that each label could be 1, 2, 3, or 4: at each time t the RNN returns
a 4-dimensional vector whose entries are probability of each class

we can multiply the probabilities of classes on the path

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 37 / 49

Segmentation and CTC Setting III: Unknown Segments

Setting II: Finding Likelihood on Segmentation Graph
la
b
e
l

»

—

—

–

y1r1s

y2r1s

y3r1s

y4r1s

fi

ffi

ffi

fl

1

»

—

—

–

y1r2s

y2r2s

y3r2s

y4r2s

fi

ffi

ffi

fl

1
2

»

—

—

–

y1r3s

y2r3s

y3r3s

y4r3s

fi

ffi

ffi

fl

1
2
1

»

—

—

–

y1r4s

y2r4s

y3r4s

y4r4s

fi

ffi

ffi

fl

2
1

»

—

—

–

y1r5s

y2r5s

y3r5s

y4r5s

fi

ffi

ffi

fl

1
For instance, the yellow path has a likelihood

p pṽℓr1 : T s|ℓq “

T
ź

t“1

p pṽℓrts|ℓq “ y1r1sy1r2sy1r3sy2r4sy1r5s

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 38 / 49

Segmentation and CTC Setting III: Unknown Segments

Setting II: Finding Likelihood on Segmentation Graph
la
b
e
l

»

—

—

–

y1r1s

y2r1s

y3r1s

y4r1s

fi

ffi

ffi

fl

y1r1s

»

—

—

–

y1r2s

y2r2s

y3r2s

y4r2s

fi

ffi

ffi

fl

y1r2s

y2r2s

»

—

—

–

y1r3s

y2r3s

y3r3s

y4r3s

fi

ffi

ffi

fl

y1r3s

y2r3s

y1r3s

»

—

—

–

y1r4s

y2r4s

y3r4s

y4r4s

fi

ffi

ffi

fl

y2r4s

y1r4s

»

—

—

–

y1r5s

y2r5s

y3r5s

y4r5s

fi

ffi

ffi

fl

y1r5s

Or better to say: we just put output entries in graph and move on the path

p pṽℓr1 : T s|ℓq “

T
ź

t“1

yṽℓrtsrts “ y1r1sy1r2sy1r3sy2r4sy1r5s

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 39 / 49

Segmentation and CTC Setting III: Unknown Segments

Setting II:Maximum-Likelihood Segmentation
+ OK! We can find the likelihood, but how can we maximize it? It’s again an

exponentially large search!

ℓ˚ “ argmax
ℓ

p pṽℓr1 : T s|ℓq

– Well! If we only need the maximum, it turns not to be exponential
We can readily show that finding maximum likelihood on the graph is a dynamic
programming problem and can be solved by the Viterbi algorithm

Maximum likelihood training can be implemented efficiently

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 40 / 49

Segmentation and CTC Setting III: Unknown Segments

Setting II:Maximum-Likelihood Inference

MaxLikelihoodTraining():
1: for Iteration i “ 1, . . . , I do2: Pass forward through time: Compute output sequence yr1 : T s3: Compute p pṽℓr1 : T s|ℓq for each path ℓ on segmentation graph f4: Update ℓ˚

“ argmaxℓ p pṽℓr1 : T s|ℓq f5: Set loss to R̂ℓ˚ and backpropagate over RNN6: Update learnable parameters7: end for8: Return learnable parameters and ℓ˚

+ How can we use our RNN for inference after training via maximum
likelihood segmentation?

– We have access to ℓ˚: we predict the label of each segment based on its
corresponding outputs

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 41 / 49

Segmentation and CTC Setting III: Unknown Segments

Setting II: Connectionist Temporal Classification
It turns out that maximum-likelihood could stick to a bad local minimum, i.e.,

it quickly converges to a path ℓ˚ that is much different from ℓ‹

+ Is there any solution to this?
– Yes! We can use connectionist temporal classification (CTC) loss

CTC Loss
Instead of searching for a best segmentation and then minimizing its loss, we
learn directly from unsegmented data by minimizing the average loss over all
possible segmentations, i.e., we define loss to be

R̂ “ Eℓ

!

R̂ℓ

)

“

L
ÿ

ℓ“1

p pℓ|ṽℓr1 : T sq R̂ℓ

and train the RNN by finding learnable parameters that minimize this loss

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 42 / 49

Segmentation and CTC Setting III: Unknown Segments

Setting II: CTC Loss
+ But, why should it be a better choice of loss?
– Because we are sure that optimal segmentation is contributing to our loss

R̂ “ Eℓ

!

R̂ℓ

)

“

L
ÿ

ℓ“1

p pℓ|ṽℓr1 : T sq R̂ℓ

“ p pℓ‹|ṽℓ‹r1 : T sq R̂ℓ‹ `
ÿ

ℓ‰ℓ‹

p pℓ|ṽℓr1 : T sq R̂ℓ

+ Agreed! Now, how should we determine p pℓ|ṽℓr1 : T sq ?
– Just use the Bayes rule!
+ What about the expectation? It is at the end sum of exponentially large

number of terms!
– We can again go on the graph and determine it via dynamic programming

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 43 / 49

Segmentation and CTC Setting III: Unknown Segments

Setting II: CTC Loss
The CTC loss can be written as

R̂ “

L
ÿ

ℓ“1

p pℓ|ṽℓr1 : T sq R̂ℓ “

L
ÿ

ℓ“1

p pℓ|ṽℓr1 : T sq

T
ÿ

t“1

wtL pyrts, ṽℓrtsq

“

T
ÿ

t“1

wt

L
ÿ

ℓ“1

p pℓ|ṽℓr1 : T sqL pyrts, ṽℓrtsq

looooooooooooooooooomooooooooooooooooooon

R̆rts

“

T
ÿ

t“1

wtR̆rts

This has been shown that R̆rts can be recursively computed1:
by some approximation we are able to readily compute∇yrtsR̆rts

and we set∇yrt1sR̆rts « 0 for t1 ‰ t

1Check out the original paper
Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 44 / 49

https://dl.acm.org/doi/pdf/10.1145/1143844.1143891

Segmentation and CTC Setting III: Unknown Segments

Setting II: Training with CTC Loss

CTC_Training():
1: for iteration i “ 1, . . . , I do2: Pass forward through time: Compute output sequence yr1 : T s3: Compute CTC loss R̂ and∇yrtsR̂ by recursion4: Backpropagate through time and update learnable parameters5: end for6: Return learnable parameters

This looks like standard training loop now

the loss is only replaced with CTC loss

+ What about inference?
– Well! We should figure it out, since the training loop does not compute

any segmentation path!

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 45 / 49

Segmentation and CTC Setting III: Unknown Segments

Setting II: Inference with CTC-Trained RNN
Let’s get back to our simple example: assume that after training with CTC loss
we give an image of handwritten to the RNN

‚ RNN divides it into 5 frames and is able to track optimal segmentation
ë The first three frames belong to the first segment
ë The remaining frames belong to the second and third segments

‚ RNN infers from output sequence v̂r1 : 5s but does not return optimal path

la
b
e
l

v̂r1s “ 1

1
v̂r2s “ 1

1
2

v̂r3s “ 1

1
2
1

v̂r4s “ 2

2
1

v̂r5s “ 1

1

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 46 / 49

Segmentation and CTC Setting III: Unknown Segments

Setting II: Inference with CTC-Trained RNN
We can conclude from v̂r1 : 5s that the sequence is {1,2,1} if we are sure the
sequence has no repetition

Label Encoding and Decoding
CTC uses this fact and constructs following encoding and decoding method: it
introduces a new label called “blank:-” which does not belong to set of classes

‚ While training, it adds blank between any two repetitions
ë For instance, we encode 112 ÞÑ 1-12, or 111 ÞÑ 1-1-1

‚ For inference, it removes any repetition in inferred sequence v̂r1 : T s and
then drops blanks

ë For instance, we decode 1-11-312 ÞÑ 11312, or 3333-3121 ÞÑ 33121

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 47 / 49

Segmentation and CTC Setting III: Unknown Segments

Setting II: Training and Inference with CTC
CTC_Training():
1: for iteration i “ 1, . . . , I do2: Add blanks to the label sequences with repetition3: Pass forward through time: Compute output sequence yr1 : T s4: Compute CTC loss R̂ and∇yrtsR̂ by recursion5: Backpropagate through time and update learnable parameters6: end for7: Return learnable parameters
CTC_Inference():
1: Pass forward through time the input and compute output yr1 : T s2: Infere encoded sequence v̂r1 : T s from yr1 : T s3: Remove repetitions from v̂r1 : T s ÞÑ v̂r1 : T 1

s4: Remove blanks from v̂r1 : T 1
s ÞÑ v̂r1 : Ks5: Return v̂r1 : Ks

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 48 / 49

Segmentation and CTC Setting III: Unknown Segments

In PyTorch: CTC Loss
We can access CTC loss in torch.nn module as

torcn.nn.CTCLoss()

Few notes about CTC loss implementation
‚ We need to specify the index of blank label

ë It should be out of our set of classes
ë By default, it is set to blank = 0

‚ When we define our model, we should always take blank label into account
ë If we do classification with C classes, model should return C ` 1 classes

with blank being one of them
‚ PyTorch considers cross-entropy loss function, i.e., L py, ṽq “ CE py, ṽq

‚ As input to CTC loss: y should be logarithm of probabilities
ë We can activate the output layer with logarithmic softmax

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 49 / 49

	Segmentation and CTC
	Perfectly Segmented Setting
	Setting II: Known Segments
	Setting III: Unknown Segments

