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Attention

Translating Long Texts

With standard RNN encoder and decoder: model works up to some length
® The decoder could get lost at some point

L, It could miss the case of the word or its order

L, Imagine it wants to translate:
“Ich habe den Apfel genommen, (iber den wir beim letzten Mal gesprochen
haben” «~~» “| took the apple, about what we talked about last time”
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Attention

Information Bottleneck

The source of this problem is that
decoder gets all its information through a single bottleneck

This problem is known as information bottleneck problem
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Attention Core |dea of Attention

Attention: Finding Relevant Input

Let’s look back at our translator: "|" is given in translation because of “mir™"

Hhddd
e

<5'rAm> Das aeﬁalrt - <eos>
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Attention Core |dea of Attention

Attention: Finding Relevant Input
What if we could tell the decoder:

use hidden state of time t = 4 to generate its output word at time t = 1
We could intuitively say that in this case
y[1] = f (s[0], <START>,mir)

“I“

which is more likely to be "|I" as compared to the case in which

y[1] = f (s[0],<START>)

Attention mechanism formulates mathematically this intuitive idea
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Attention Finding Similarity via Key and Query

Attention: Generating Keys

k1] k[2] k[3] k[T]

h[0] ——> td (%ﬂ(ij ----- > ] h[T]
¥

With attention, we generate a key for each time step at encoding

e Keys are learned by an arbitrary layer that is fixed over time, e.g.,
k[t] = o (Wihlt])

e We can even use multiple layer
L, Not really needed in most applications
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Attention Finding Similarity via Key and Query

Attention: Generating Queries

We next generate a query for each time step at decoding

e Queries are again learned by an arbitrary layer, e.g.,

qlt] = o (Wqslt])

e |t’s in general a new learnable layer different from the key generator
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Attention: Score at Time ¢

At decoder, we find score of query at time £ by comparing it to all keys

&[0 = ' [tale] v €[4] = [&[1],. .. &r[4]]
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Attention: Attention Weight at Time ¢

We can pass the scores through softmax to find
chance of v[(] being related to input entry x[t] = o |[/]

Softmax gives us

all] = Softmax (E[C]) = [ca[], ..., ar[l]]

alh.
alf] ——> €[] —>(Softmax }—> al]
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Attention: Attention Feature

We now use these weights to make a vector of attention features

a[f] = ) a[(]h]t] alt

t=1

k[1]

h[0] —
T
x[1]
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Attention Finding Similarity via Key and Query

Attention: Computing Output

We now use attention features to build the output sequence
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Attention: Computing Output

We use attention features to build the output sequence
® This can be any layer, as in standard RNN, e.g.,

y[ﬂ] = SOftmaX (WoutS[E] + Watta[ﬁ])

® We could also use a|t| as a new state

L, We could combine it with the current state
L, We can pass it to higher layer

It turns out that attention can hugely help in practice!
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Attention End to End Architecture

Attention: End to End Architecture
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Attention: End to End Architecture
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Attention Training

Attention: Training

Let's look at training: assume we want to train it over a single pair of sequences

* We have a sequence of inputs x|[t]
L, For instance a German sentence
* We have a sequence of labels v |/]

L, For instance the English translation
L. We can compare each output y[¢] with its label

We start with forward pass
® Pass forward through the encoder
L, Also generate the keys
e Pass the encoder’s state and its keys to the decoder

e Pass forward through the decoder

L, Generate queries and compare them to the keys
L, Compute attention and the outputs

* Compute loss by aggregating L (y[/], v[{])
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Attention: Training

Now we should pass backward

® Pass backward through the output layer

L, Compute Vamﬁ[ﬁ] and VS[K]R[E]
Pass backward through the attention layer

L, Compute V i R[€], Ve RIE), Vi RI€] and V4 R[(]
Pass backward through time at the decoder

V- Rl = Ve R4 © V18] + Vg R[€] © Vepe_1jal(]

Pass backward through time at the encoder

Vie—11R) = ViR o Vi yh[t] + Vi R o Vip_nalt]

+ Vap R[] o Vipe-njal/]

e Aggregate over ¢, update all weights and go for the next round
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Attention Attention Layer

Attention as a Layer

We can look at the whole attention mechanism as a layer

a[(]

bobd
DD e i

This comes in handy once we want to look at self-attention
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