Applied Deep Learning

Chapter 7: Sequence-to-Sequence Models

Ali Bereyhi

ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

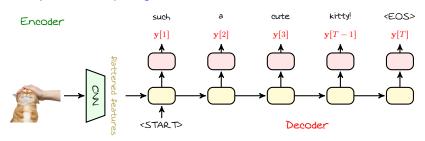
Fall 2025

Encoder-Decoder Architecture

Encoder-Decoder

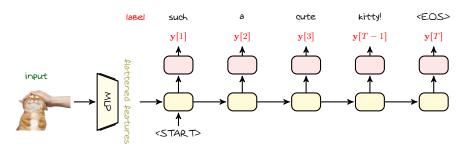
Encoder-decoder architecture comprises of two separate NNs

- 1 Encoder takes the input sequence and encodes it into vector of features
- 2 Decoder takes vector of features and decodes it into output sequence
- + What kind of NNs should we use?
- Pretty much everything is allowed!



Back to Caption Generation

We used a CNN for encoding and an RNN for decoding

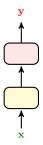


We can replace CNN with any other architecture the extracts features

RNN as Conditional Distribution

- + But, why should those features make RNN speak about cat?
- It makes RNN to generate random words conditional to input image

When we are dealing with classification: NN can be seen as a machine that computes distribution and based on its input, it generates random outputs

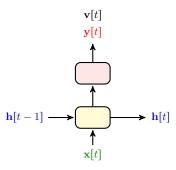


In classification y is a vector if probability

- Its length equals to the number of classes
- Its entry k represents the probability of class k
 We can say that

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \dots \\ y_K \end{bmatrix} \iff y_k \propto \Pr\left\{ |\mathsf{label}| = k | \mathbf{x} \right\}$$

RNN as Conditional Distribution



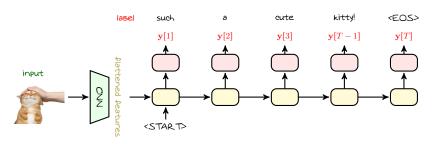
Similarly the output of RNN in each time can be seen as

$$y_k[t] \propto \Pr\left\{ |\mathbf{h}[t-1], \mathbf{x}[t] \right\} = p\left(\mathbf{v}[t]|\mathbf{h}[t-1], \mathbf{x}[t] \right)$$

Since $\mathbf{h}[t-1]$ already contains memory about $\mathbf{x}[1:t-1]$, we could say

$$y_k[t] \propto p(\mathbf{v}[t]|\mathbf{x}[1:t])$$

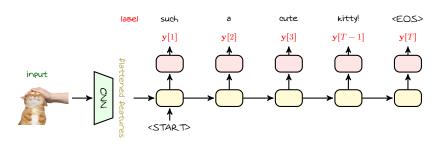
Caption Generation: Dataset



To train this architecture, we collect a dataset

- It contains several images
- For each image, we have a sample caption
 - ☐ These sentences are again of different lengths

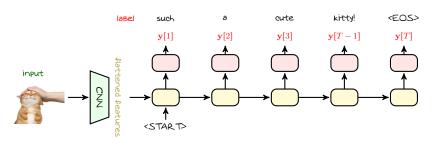
Caption Generation: Training



Say we want to train it on one sample: first we pass forward

- We first tokenize the words in captions to take them as one-hot labels
- We pass the image forward through CNN and get the feature vector
- We initiate the RNN with the feature vector and give input <START>
- We pass forward through time till we see have the output sequence

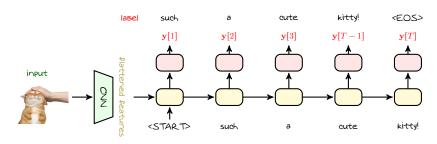
Caption Generation: Training



Say we want to train it on one sample: then we pass backward

- We compute the loss between the output sequence and one-hot labels
 We can simply use the cross-entropy function
- We backpropagate through time till we arrive at the beginning of decoder
- We have $\nabla_{\text{leatures}} \hat{R}$
- We update all weights and go for the next round

Caption Generation: Inference



Say we finished with training: we want to caption a new image

- We send it over network and read the output sequence
- We could also set output of each time step as input for next time

 - → Intuitively, it could help the RNN writing more coherent sentence

Seq2Seq Model: Basic Translator

Now, let's take a step further:

we want to build a model that translates German sentences to English

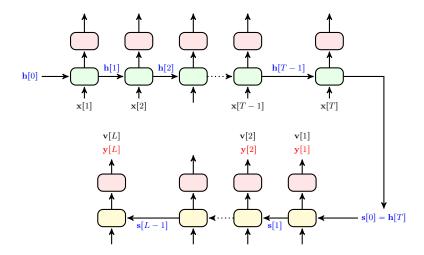
- We need a Seq2Seq model

We know encoder-decoder model: we use it to build our translator

- We need an encoder that takes a German sentence
 - → RNN is a good choice, since we have input sequence
- We need a decoder that returns the English translation
 - □ RNN is again the choice, since we have another sequence

Basic Translator: Encoder-Decoder Model

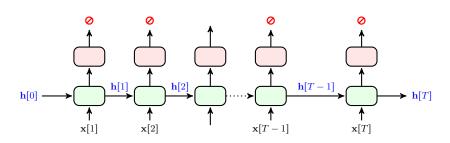
So, the model for our translator looks like this



Basic Translator: Dataset

To train this model, we collect some dataset: in this dataset

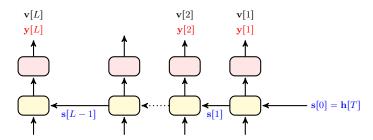
- We have German sentences
 - $\,\,\,\,\,\,\,\,\,\,$ We tokenize each sentence and represent it with a sequence ${f x}[1:T]$



Basic Translator: Dataset

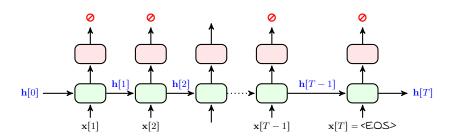
To train this model, we collect some dataset: in this dataset

- Corresponding to each German sentence, we have the English translation
 - \downarrow We tokenize it as well and represent it with a sequence $\mathbf{v}[1:L]$
 - \downarrow L and T are **not** of the same length



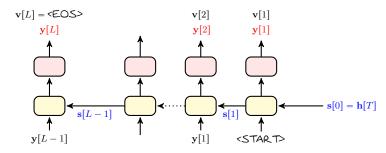
Say we want to train it for sample sentence: we start with forward pass

- We pass the tokens through time forward till we arrive at <EOS>
 - \downarrow At this point we have $\mathbf{h}[T]$ at the output of encoder
- We have already computed all variables inside this encoder



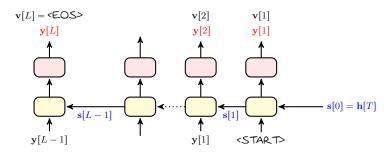
Say we want to train it for sample sentence: we start with forward pass

- We initiate the decoder with s[0] = h[T]
 - \downarrow We could also give token of $\langle START \rangle$ as first input
 - $\,\,\,\,\,\,\,\,\,$ We can give ${f y}[\ell-1]$ as the input at time ℓ
- We continue till we get to label <EOS>



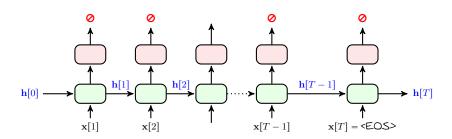
Say we want to train it for sample sentence: now we pass backward

- We compute loss between the labels and outputs
- We backpropagate through time
 - ightharpoonup We get to $abla_{\mathbf{s}[0]}\hat{R} =
 abla_{\mathbf{h}[T]}\hat{R}$



Say we want to train it for sample sentence: now we pass backward

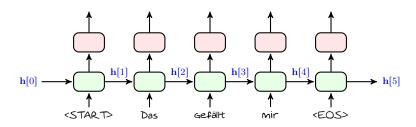
- We have $\nabla_{\mathbf{h}[T]}\hat{R}$
- We update all the weights and start a new round



Say we have trained this model and we want to use it to translate

"Das gefällt mir" ✓✓→ I like it

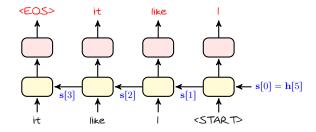
Let's start with encoding



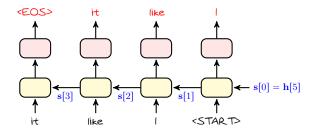
Say we have trained this model and we want to use it to translate

"Das gefällt mir" ✓✓→ I like it

Now, for decoding we start with h[5]

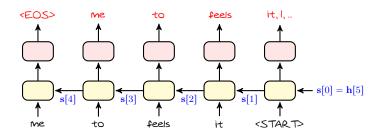


If we are lucky, the token of word "\" has highest probability in $\ell=1$



and probably the RNN keeps generating a correct sentence

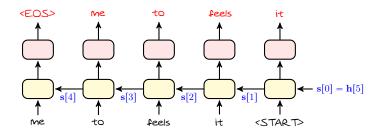
If we are unlucky, another token might be slightly higher in probability at $\ell=1$



In this case, a small mistake can lead to a sequence of mistakes, e.g., say

- word "it" has slightly higher chance at the beginning
 e.g., "it": 0.121 and "l": 0.119, thus, we choose it as the first word
- since we chose "it", RNN needs to generate the next word accordingly with "it" as input: "feels" has higher chances than "like"

If we are unlucky, another token might be slightly higher in probability at $\ell=1$

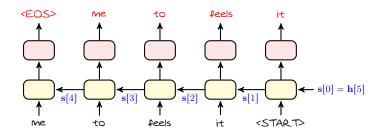


Decoding

To avoid error propagation, a better idea is to find the sequence with highest probability, i.e., sequence $\mathbf{v}^{\star}[1:L]$ that has highest conditional probability

$$\mathbf{v}^{\star}[1:L] = \operatorname*{argmax}_{\mathbf{v}[1:L]} p\left(\mathbf{v}[1:L] | \mathbf{x}[1:T]\right)$$

If we are unlucky, another token might be slightly higher in probability at $\ell=1$



Intuitively, this means: we do not classify in each time

- We wait till the sentence is over
- We consider all possible combinations
- We find the one which has highest conditional probability

Let's try finding this probability first

$$\begin{split} p\left(\mathbf{v}[1:L]|\mathbf{x}[1:T]\right) &= p\left(\mathbf{v}[1:L]|\mathbf{h}[T]\right) \\ &= \prod_{\ell=1}^{L} p\left(\mathbf{v}[\ell]|\mathbf{h}[T],\mathbf{v}[1:\ell-1]\right) & \\ &\propto \prod_{\ell=1}^{L} p\left(\mathbf{v}[\ell]|\mathbf{s}[\ell-1],\mathbf{y}[\ell-1]\right) \propto \prod_{\ell=1}^{L} y_{v[\ell]}[\ell] \end{split}$$

 $y_{v[\ell]}[\ell]$ means the entry of $\mathbf{y}[\ell]$ that corresponds to the class of $\mathbf{v}[\ell]$, e.g.,

$$\mathbf{v}[\ell] = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \quad \text{and} \quad \mathbf{y}[\ell] = \begin{bmatrix} 0.1 \\ 0.3 \\ 0.4 \\ 0.2 \end{bmatrix} \quad \leadsto \quad \mathbf{y}_{v[\ell]}[\ell] = 0.3$$

Since we are more comfortable with sum, we can use log-likelihood

$$\mathbf{v}^{\star}[1:L] = \underset{\mathbf{v}[1:L]}{\operatorname{argmax}} \log p\left(\mathbf{v}[1:L] | \mathbf{x}[1:T]\right)$$
$$= \underset{\mathbf{v}[1:L]}{\operatorname{argmax}} \sum_{\ell=1}^{L} \log y_{v[\ell]}[\ell]$$

- + But, is it feasible to find the sequence with highest sum?
- No! Since we deal here with an exponentially large case

For a vocabulary with D words in it, the number of possible sequences is

$$(D+2)^L$$

In practice, however, we know that many of those combinations are invalid, e.g.,

"I are potato" is not an invalid English sentence!

So we can use sub-optimal search methods to find a good sequence

- We do not necessarily hit the best sequence
 - But, for fair length, we can be close
- Most famous approach is beam search via top-k

 - We update top-k sequences by searching among children on sequence tree
- Since decoded sequences can be of different length, we usually maximize normalized log-likelihood

$$\mathbf{v}^{\star}[1:L] = \underset{\mathbf{v}[1:L]}{\operatorname{argmax}} \frac{1}{L} \sum_{\ell=1}^{L} \log y_{v[\ell]}[\ell]$$