Applied Deep Learning

Chapter 6: Recurrent NNs
Ali Bereyhi
ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Fall 2025

Applied Deep Learning Chapter 6: RNNs

mailto:ali.bereyhi@utoronto.ca

Computing Loss: Challenge

We mentioned several times in this chapter that we assume
we can compute the loss between RNN’s output sequence and label sequence

However, it is in general a challenge!

+ Why is it a challenge? We did it easily in FNN and CNN chapters!
- Because the problem there was already properly segmented!

+ What do you mean by segmented?

- Let’s break it down!

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 2/49

_ seemenionendcTC |
Computing Loss: Motivating Example
Let's consider a simple example: we have an image that includes a sequence
of handwritten digits, e.g.,
e The sequence includes five digits
e Fach digit is either 1, 2, 3, or 4
Our task is to recognize this sequence, i.e., return the five digits in correct order

® This is a classification task
* How can we do it? We use NNs

L, We train an NN over lots of images: we have lots of sequence of digits
L, We then use it to recognize new images

A2 4 s 23241

Let’s say we are going to use a CNN

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 3/49

Computing Loss: Motivating Example

To use a CNN, we need to specify our input size
* We segment an input image into a sequence of five images
L, These images are all as large as CNN'’s input size

L0 A4 snrr L, 5, 2, 4, 1

® We label each image with its label, e.g., A is labeled as 2
* We give these five images to our CNN and get five outputs

L, Assume we use softmax at the output layer
L, For each image, we get a vector of size 4 as output

L, Each entry represents probability of image being one of digits 1, 2, 3, and 4
® To compute loss, we compare each output with its corresponding label

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 4/49

Segmentation and CTC

Computing Loss: Motivating Example

o o o]

yi[1]
| = v vi2] yls) vl vl
]

O OO OO
P G

L3 A4 4 A

L, y;[t] is the probability of digit in time t being j

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 5/49

Segmentation and CTC

Computing Loss: Motivating Example

Here, we already have the data segmented into

a sequence that for each time step has a label

So, computing loss is easy as pie!

t=1 t=1

N

When we compute gradients, we note that only R[t] depends on y|t]: so, for a
given output at time t = i we can simply write

5

VyiR = Y Vyp Rl = Yy Rli] = Yy £ (v[i], v[i])
t=1

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 6/49

Segmentation and CTC

Computing Loss: One-to-One Correspondence

+ But is it practical to do segmentation by hand?
- No! This is why we built RNNs!

With RNNs, we address this learning task as bellow
® We look at the complete image as a sequence of data
L, We divide input into multiple equal-size frames
® We go over each frame separately

L, We give the frame as the input along with
L. We compute a which can potentially give us the output

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025

7149

Computing Loss: One-to-One Correspondence

If we are extremely lucky; then, our segmentation looks like this

2 D4 o <11, %021, %3], x[41, x15)
and we have a label for each time step

ose
y[] y[3

O O O
3222

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 8/49

Computing Loss: One-to-One Correspondence
But, that’s too good to happen! Usually we have

and we have a label in some time steps

yli] 2] yl4] y[T]
%L%LE@ i
O &T]

x[l] x[2] x[3] x[4] x[T]

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025

Computing Loss: One-to-One Correspondence

In this typical case, two questions seem non-trivial
@ Where should we put each label? = Where should we read each label?
@® What should we do with non-labeled outputs, e.g., y[1]?

larel

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 10/49

Segmentation and CTC

Computing Loss: One-to-One Correspondence

The key challenge in computing the loss is that we do not have necessarily
one-to-one correspondence with sequence data

Correspondence Problem

With sequence data, we could have a data-sequence of length T' that is labeled
by a sequence of size K < T' where

no time index is specified for any label in the K -long label sequence

Correspondence problem exists pretty much in all practical sequence data
® |n speech recognition, multiple time frames correspond to a single word

® |n text recognition, multiple image frames correspond to a single letter
. ..

Applied Deep Learning Chapter 6: RNNs

© A. Bereyhi 2024 - 2025 11/49

Segmentation and CTC

Correspondence Problem: Formulation

Let's formulate the problem clearly: Say we have

A sequence of data

x[1:7T] =x[1],...

v[l: K] =v[l],...

where K and T can be different

that is labeled with the sequence of K true labels

VK]

For this setting, we want to train an RNN with this data sequence: starting with
an initial state, this RNN returns an output sequence

Applied Deep Learning Chapter 6: RNNs

y[1:T]=y[l],...

,yI[7T]

© A. Bereyhi 2024 - 2025

12/49

Segmentation and CTC
Correspondence Problem: Formulation

lagel v[1] e v[k] (]

output yl[1] yl2] - ylt-1] yle - ylT]

input x[1] x[2] - x[t—1] x[t] - x[T]

To be able to train this RNN, we need to
@ define a loss function that computes R = L (y[1: T],v[1 : K])
L, We need this loss function to be differentiable with respect to all outputs

Vo Ry Vi R

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 13/49

Segmentation and CTC
Correspondence Problem: Formulation

lagel v[1] e v[k] (]

output y[1] yl2l e ylt=1] ylel - ylT]

input x[1] x[2] - x[t—1] x[t] - x[T]
To use this RNN after training, i.e., for inferring, we need to

@ know how to map outputs to predicted labels
L, We need to extract K labels from y[1 : T, i.e.,

Let's look into different settings

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 14/49

Setting |: Perfectly Segmented

In some problems, we have our data perfectly segmented
e There is a separate label for each time step, i.e., K =T
L, many-to-many type |

output yl1] yl2] -

input x[1] x[2] - x[t—1] - x[t] x[T]

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025

15/49

Setting I: Perfectly Segmented

In some problems, we have our data perfectly segmented
® There is a separate label for each time step, i.e., K =T
L, many-to-many type | and one-to-many

output yl1] yl2] -

Attention
We can always treat a non-existing input entry as an empty
L, We are good as long as we have a label at each time t

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025

16/49

Setting I: Defining Loss

In such settings, we define the loss to be aggregated loss over time

T
R=) L(y[t],v[t])

t=1

for some loss function L (-, -)

The gradients are then trivially computed

Gradient with respect to particular output y|[t] is

Vyi R = VyR[t] = Vi £ (y[t], v[£])

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 17/49

Segmentation and CTC Perfectly Segmented Setting

Setting I: Inference

Inference in such setting is performed by one-to-one mapping: at time
t, we predict based on y|[t]

y[il = v[i],....y[T] = v[T]

For instance, assume y[t] is output of a softmax activation; then, we set
v|[t] = argmax y|¢]
where argmax returns the index of the largest entry, e.g.,

0.1
argmax 0.71 _ 2

0.2

0

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 18/49

Setting Il: Known Segments

In some problems, we have only one label for the whole sequence, i.e., K = 1
L, It corresponds to many-to-one type of problems

L, This can be that we have really only one label, e.g., content classification
L, It can be that we know the time index t at which each label is assigned

L, We split data to sub-sequences with each sub-sequence having only one label

lagel v([1]

output y[1] yl2l o y[t—1] vl - yl[T]

input x[1] x[2] - x[t—1] - x[t] x[T]

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 19/49

Setting Il: Defining Loss for Dumb NN

A naive approach to define loss is to set it be the loss between last output and
label, i.e.,

R=L(y[T],v[1])

With this loss, gradient with respect to particular output y|[t] is

A T =
Wyt {vymuy[vl =T
0 t#T

+ But does it make sense to ignore all other outputs?

- Not at all! We are training a dumb NN that can respond only when it’s
over with the whole sequence!

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 20/49

Segmentation and CTC Setting Il: Known Segments

Setting II: Loss for Smarter Training

An extremely smart NN is the one who knows the label before the input speaks!

ose
t—1

output y[1] yl2l o y[t—1] vl y[T]

But, we should be careful! We should not expect NN to know everything from
potentially irrelevant input!

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 21/49

N LG AEg) setine : Known Segments
Setting Il: Defining Proper Loss

A realistic approach is to define the loss via a weighted sum, i.e.,

T
R= Y wL (vl v[1)

where w; is the weight at time ¢
e Jnitially w; is small
L, we do not expect the NN to know everything from very beginning
e jt gradually increases up to its maximum w
L, by time T the NN should know the label

With this loss, gradient with respect to particular output y|[t] is

Vy[t]R = wtvy[t]f?[t] = wtvy[t]ﬁ (Y[t]7 V[l])

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 22/49

Setting Il: Inference

Inference in such setting is performed by many-to-one mapping: we
only predict based on y[1 : T

y[1:T]— ¥[1]

For instance, assume y[t] is output of a softmax activation; then, we set
v|[t] = argmax y|¢]

and then take a (potentially weighted) majority vote: v|[1] is the class that most
often estimated with occurrence at each time being weighted by some weight

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 23/49

Setting Ill: Unknown Segments

Most common case is that we have a label sequence shorter than our data

L, Each label in this sequence is corresponding to a segment of input
L, We do not know where this segment begins and where it ends
L, There might be even no clear answer to that!

lagel m . VK - (VKD

output y[1] yl2] - ylt-1] yle - y[T]

input x[1] x[2] - x[t—1] x[t] - x[T]

Note that we are dealing with a sequence to sequence model: we want to learn

relation between sequence x|[1 : T'| and sequence v[1 : K|!

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 24/49

Setting Il: Example

Assume we have image 11 that is divided into a sequence of five pixel vectors
e Since it is a training data, it is labeled as 121
L, We do not know after which output we should expect RNN to know first,

second or third digit!
e (1) (1) (2) ()
y[1] yl[2] y[3] y[4] y[5]
f f f f f
x[1] x[2] x[3] x[4] x[5]

+ Sounds impossible!
- Only impossible is impossible! Let's carry on and see what we can do!

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 25/49

Segmentation and CTC Setting Ill: Unknown Segments

Setting II: Genie-Defined Loss

Assume a genie has told us end of each segment

We can fill the empty labels with repetition, and then define the loss as
R K i
R=>" > wL(ylt],v[k])
k=1t=ip_1+1

where iy, is where label v, ends, e.g., in above diagram i; = 2

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 26/49

Setting Il: Defining Loss

x[1] x[2] x[3] x[4] x[5]

We don’t have the genie: we could assume that i;, is something to learn!

K ik
RE) =D > wL(y[t],v[k])

k=1t=ip_1+1

wherei = [0,i; ...,ix]| is something we need to learn

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 27749

Segmentation and CTC Setting Ill: Unknown Segments

Setting Il: Optimal Segmentation

+ How could we learn i? Should we compute also V; R?
- Well! You may try! But, obviously i, is an integer!

Optimal Segmentation

Optimal approach for finding i is to train the NN for all possible choice for i and
then find the final training loss R (i). The optimal segmentation is then given by

i* = argmin R (i)

1

+ Is it computationally feasible?
- No! The number of possible choice for i grows exponentially with T'! We
need to go for sub-optimal approaches

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 28/49

Segmentation and CTC Setting Ill: Unknown Segments

Setting Il: Number of Possible Segmentations

+ How is it exponentially large?

- Let's look at our example
In our example, we should assign label sequence 121 to a sequence of length 5:
each entry of output sequence in this case can be labeled by 1 (the first one), 2
or 1 (the last one). This means that we have 3 choices of label for each time
interval; thus, the total number of possible segmentations is around 3°.

‘ In general number of segmentations grows exponentially with T' ‘

+ But wait a moment! We have also counted the case of labeling all outputs
with 1! This cannot be the case!

- This is right! It is in general much less than 3° but it’s still exponential

Let’s see the exact possible segmentations!

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 29/49

Segmentation and CTC Setting Ill: Unknown Segments

Setting Il: Number of Possible Segmentations

We intend to compare each of y[1], ..., y|[5] with a label

e We know that the label sequence is 121
First output is definitely in the first segment: it’s label is definitely 1
Second output could be still in the first segment or in the second segment
Third output could be in the first, second, or third segment
Our labels should finish by the end of output sequence: fourth output
cannot be in first segment
Last output could be only in the third segment

Sl

c

lagel
<
,.N
)
N

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 30/49

Segmentation and CTC Setting Ill: Unknown Segments

Setting II: Showing Segmentations on Graph

-—>
\

larel

()— J—*.

Though it's exponentially large: we see that each segmentation corresponds
to one path on this graph

Blue path corresponds to i; = 3, io = 4,and i3 = 5,i.e.,i = [0, 3,4, 5]

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 31/49

Segmentation and CTC Setting Ill: Unknown Segments

Setting II: Loss on Segmentation Graph

-—>
\

larel

()— J—*.

We can compute the loss for each segmentation directly on this graph: let’s say

that we have on the graph. For , We can write an
expanded label sequence, e.g.,

‘ Expanded label sequence of blue pathis{ 1, 1, 1, 2, 1} ‘

This sequence is of length T" and we show it for with v [¢]

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 32/49

Segmentation and CTC Setting Ill: Unknown Segments

Setting II: Loss on Segmentation Graph

larel

For each

, the loss is computed by aggregating the losses
between outputs and extended labels

T T
Ro= Y wk (v[t],%[0) = Y &[4
t=1 t=1
It again decomposes into sum of T' terms with only one being function of y|¢|

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 33/49

Setting II: Optimal Segmentation on Graph

We can represent the optimal segmentation on the graph as below

OptimalSegmentTraining():
1: Initiate with R = 400 and some random (* = (%]
2: for/=1,...,Ldo

3: Let the loss be R

4. Train for sufficient epochs

5: if After training R, < R then
6: R<— R and ¢ —

7: endif

8: end for

9: Return learnable parameters and /*

+ Say we could be over with this infeasible training! How do we use the
trained RNN for inference?

- In this case, we have (* which gives us optimal segmentation: we infer
label of each segment based on its corresponding outputs

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025

34/49

Segmentation and CTC Setting Ill: Unknown Segments

Setting II: Maximum-Likelihood Segmentation

Since optimal segmentation is infeasible, people uses maximum-likelihood
approach that is well-known in detection and coding theory

Maximume-Likelihood Segmentation

Start with an initial guess for optimal path on segmentation graph and do one

step of training; then, improve the guess based on the outputs of next forward
pass and go for next step of training

Ur\i-tiate learnagle parannetersj

[Compu—te_ output sequence via forward Pass)
\Z
[C—aue.ss &00d Path By Iooking at owtpwt)
v

Update learnagle parameters By Backward pass)

Let’s look at its pseudo-code

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 35/49

Segmentation and CTC Setting Ill: Unknown Segments

Setting Il: Maximume-Likelihood Segmentation

MaxLikelihoodTraining() :

1: for Iterationi =1,...,1 do

2: Pass forward through time: Compute output sequence y[1 : 7T
3 Compute p (v/[1 : T|/) for each on segmentation graph
4: Update ¢* = argmax, p (v/[1: T]|/)

5 Set loss to Rg* and backpropagate over RNN

6: Update learnable parameters
7:

8:

® ®

end for
Return learnable parameters and ¢*

+ Why we call it maximum likelihood?

Because we guess path by maximizing the likelihood p (v/[1 : T||/)
+ But how can find likelihood of a ?

- We can use output sequence y[1 : 7]

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 36/49

Segmentation and CTC Setting Ill: Unknown Segments

Setting lI: Finding Likelihood on Segmentation Graph

y1[1] y1[2] y1[3] y1[4] y1[5]
ya[1] yo[2] yo[3] y2[4] y2[5]
ys[1] ys[2] ys[3] ys[4] ys[5]
ya[1] ya[2] ya[3] ya[4] ya[5]

larel
N
/ﬁ/
N
)
N
—/

G ——)

Assume that each label could be 1, 2, 3, or 4: at each time t the RNN returns
a 4-dimensional vector whose entries are probability of each class

we can multiply the probabilities of classes on

Applied Deep Learning Chapter 6: RNNs

© A. Bereyhi 2024 - 2025 37/49

Segmentation and CTC Setting Ill: Unknown Segments

Setting lI: Finding Likelihood on Segmentation Graph

y1[4]
y2[1] y2(2] y2(3] y2[5]
ys[1] ys[2] ys[3] ys[4] ys[5]
ya[1] y4[2] ya[3] ya[4]

ya[5]

/E/E

)
D

For instance, the

has a likelihood
p LTI = [p F el = sal1]y1 [21va[3]ya[4] [5]
t=1

Applied Deep Learning Chapter 6: RNNs

© A. Bereyhi 2024 - 2025 38/49

Segmentation and CTC Setting Ill: Unknown Segments

Setting lI: Finding Likelihood on Segmentation Graph

y1[4]
y2[1] y2(2] y2(3] y2[5]
ys[1] ys[2] ys[3] ys[4] ys[5]
ya[1] y4[2] ya[3] ya[4]

ya[5]

larel
IiFII
[\)
|
[\)
| S—
'SR
<@
[\)
~—
(OV)
e

Or better to say: we just put output entries in graph and move on the

Hyw 1y 21y (3l 4]31 5]

Applied Deep Learning

Chapter 6: RNNs © A. Bereyhi 2024 - 2025

39/49

Segmentation and CTC Setting Ill: Unknown Segments

Setting Il: Maximume-Likelihood Segmentation

+ OK! We can find the likelihood, but how can we maximize it? It's again an
exponentially large search!

0¥ = argmaxp (v/[1: T]|/)

- Well! If we only need the maximum, it turns not to be exponential

We can readily show that finding maximum likelihood on the graph is a dynamic
programming problem and can be solved by the Viterbi algorithm

Maximum likelihood training can be implemented efficiently

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 40/49

Segmentation and CTC Setting Ill: Unknown Segments

Setting II: Maximum-Likelihood Inference

MaxLikelihoodTraining() :

1: for Iterationi =1,...,1 do

2: Pass forward through time: Compute output sequence y[1 : 7T
3 Compute p (v/[1 : T|/) for each on segmentation graph
4: Update ¢* = argmax, p (v/[1: T]|/)

5: Setlossto Rg* and backpropagate over RNN

6: Update learnable parameters
7:

8:

® ®

end for
Return learnable parameters and ¢*

+ How can we use our RNN for inference after training via maximum
likelihood segmentation?

- We have access to (*: we predict the label of each segment based on its
corresponding outputs

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 41/49

Setting Il: Connectionist Temporal Classification

It turns out that maximum-likelihood could stick to a bad local minimum, i.e.,

it quickly converges to a that is much different from (*

+ Is there any solution to this?
- Yes! We can use connectionist temporal classification (CTC) loss

CTC Loss

Instead of searching for a best segmentation and then minimizing its loss, we
learn directly from unsegmented data by minimizing the average loss over all
possible segmentations, i.e., we define loss to be

R=E {R}:Zp(]\?[l:T])f%

and train the RNN by finding learnable parameters that minimize this loss

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 42/49

Setting Il: CTC Loss

+ But, why should it be a better choice of loss?
- Because we are sure that optimal segmentation is contributing to our loss

RE{}ZleT)

p (O]9 [1:T)) Ry + Z (v [1:T) R

+ Agreed! Now, how should we determine p (/|v/[1:T1])?

Just use the Bayes rule!

+ What about the expectation? It is at the end sum of exponentially large
number of terms!

We can again go on the graph and determine it via dynamic programming

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 43/49

Setting Il: CTC Loss

The CTC loss can be written as

N

R=>p([F[1: TR =Y p(|v/[1:T] Z wiL (y[t], %:[t])

T v
= N Y p(FL: TN L (y[t], . [8]) = 3 we R[]
t=1

"

RJ[t]

This has been shown that R[t] can be recursively computed®:

by some approximation we are able to readily compute Vy[t]R[t]

and we set Vy[t/]é[t] ~Ofort #t

1Check out the original paper

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 44/49

https://dl.acm.org/doi/pdf/10.1145/1143844.1143891

Setting Il: Training with CTC Loss

CTC_Training():

1: for iterationi =1,...,7 do

2 Pass forward through time: Compute output sequence y[1 : T']
3 Compute CTC loss R and Vi R by recursion

4 Backpropagate through time and update learnable parameters
5: end for

6: Return learnable parameters

This looks like standard training loop now

the loss is only replaced with CTC loss

+ What about inference?

- Well! We should figure it out, since the training loop does not compute
any segmentation path!

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 45/49

Segmentation and CTC Setting Ill: Unknown Segments

Setting Il: Inference with CTC-Trained RNN
Let's get back to our simple example: assume that after training with CTC loss
we give an image of handwritten /-7 to the RNN

e RNN divides it into 5 frames and is able to track optimal segmentation
L, The first three frames belong to the first segment

L, The remaining frames belong to the second and third segments

* RNN infers from output sequence v[1 : 5] but does not return optimal path

1/

Applied Deep Learning Chapter 6: RNNs

© A. Bereyhi 2024 - 2025 46 /49

Segmentation and CTC Setting Ill: Unknown Segments

Setting II: Inference with CTC-Trained RNN

We can conclude from o[1 : 5] that the sequence is {1,2,1} if we are sure the
sequence has no repetition

Label Encoding and Decoding

CTC uses this fact and constructs following encoding and decoding method: it
introduces a new label called “blank:-” which does not belong to set of classes
® While training, it adds blank between any two repetitions
L, For instance, we encode 112 — 1-12,0r 111 +— 1-1-1

® For inference, it removes any repetition in inferred sequence v[1 : T and
then drops blanks

L, For instance, we decode 1-11-312 +— 11312, 0or 3333-3121 +— 33121

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 47 /49

Setting Il: Training and Inference with CTC

CTC_Training():

1: for iterationi =1,...,7 do

2: Add blanks to the label sequences with repetition

3 Pass forward through time: Compute output sequence y[1 : T’
4: Compute CTC loss R and V(R by recursion

5: Backpropagate through time and update learnable parameters
6: end for

7: Return learnable parameters

CTC_Inference():

Pass forward through time the input and compute output y |1 : 7]
Infere encoded sequence 9[1 : 7] from y[1 : T']

Remove repetitions from ¢[1 : T'| — 9[1 : T"]

Remove blanks from §[1 : 7]+ 9[1 : K|

Return o[1 : K|

=

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 48/49

In PyTorch: CTC Loss

We can access CTC loss in torch.nn module as

’ torcn.nn.CTCLoss ()

Few notes about CTC loss implementation
* We need to specify the index of blank label

L, It should be out of our set of classes
L, By default, itis setto blank = 0

* When we define our model, we should always take blank label into account
L, If we do classification with C' classes, model should return C' + 1 classes
with blank being one of them
* PyTorch considers cross-entropy loss function, i.e., £ (y,v) = CE (y, V)
¢ As input to CTC loss: y should be logarithm of probabilities
L, We can activate the output layer with logarithmic softmax

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 49 /49

	Segmentation and CTC
	Perfectly Segmented Setting
	Setting II: Known Segments
	Setting III: Unknown Segments

