Applied Deep Learning

Chapter 6: Recurrent NNs

Ali Bereyhi

ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Fall 2025

Computing Loss: Challenge

We mentioned several times in this chapter that we assume

we can compute the loss between RNN's output sequence and label sequence

However, it is in general a challenge!

- + Why is it a challenge? We did it easily in FNN and CNN chapters!
- Because the problem there was already properly segmented!
- + What do you mean by segmented?
- Let's break it down!

Let's consider a simple example: we have an image that includes a sequence of handwritten digits, e.g.,

- The sequence includes five digits
- Each digit is either 1, 2, 3, or 4

Our task is to recognize this sequence, i.e., return the five digits in correct order

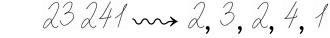
- This is a classification task
- How can we do it? We use NNs

23 241 >>> 23241

Let's say we are going to use a CNN

To use a CNN, we need to specify our input size

- We segment an input image into a sequence of five images
 - → These images are all as large as CNN's input size



- We label each image with its label, e.g., 2 is labeled as 2
- We give these five images to our CNN and get five outputs
 - → Assume we use softmax at the output layer
 - - ⇒ Each entry represents probability of image being one of digits 1, 2, 3, and 4
- To compute loss, we compare each output with its corresponding label

$$\mathbf{v}[1] = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \quad \mathbf{v}[2] = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \quad \mathbf{v}[3] = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \quad \mathbf{v}[4] = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \quad \mathbf{v}[5] = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} y_1[1] \\ y_2[1] \\ y_3[1] \\ y_4[1] \end{bmatrix} = \mathbf{y}[1] \quad \mathbf{y}[2] \quad \mathbf{y}[3] \quad \mathbf{y}[4] \quad \mathbf{y}[5]$$

$$\uparrow \quad \uparrow \quad \uparrow \quad \uparrow$$

$$\downarrow \quad \uparrow \quad \uparrow$$

$$\downarrow \quad \downarrow$$

 $\downarrow y_j[t]$ is the probability of digit in time t being j

Here, we already have the data segmented into

a sequence that for each time step has a label

So, computing loss is easy as pie!

$$\hat{R} = \mathcal{L}(\mathbf{y}[1], \dots, \mathbf{y}[5], \mathbf{v}[1], \dots, \mathbf{v}[5])$$

$$= \sum_{t=1}^{5} \mathcal{L}(\mathbf{y}[t], \mathbf{v}[t]) = \sum_{t=1}^{5} \hat{R}[t]$$

When we compute gradients, we note that only $\hat{R}[t]$ depends on $\mathbf{y}[t]$: so, for a given output at time t=i we can simply write

$$\nabla_{\mathbf{y}[i]} \hat{R} = \sum_{t=1}^{5} \nabla_{\mathbf{y}[i]} \hat{R}[t] = \nabla_{\mathbf{y}[i]} \hat{R}[i] = \nabla_{\mathbf{y}[i]} \mathcal{L}\left(\mathbf{y}[i], \mathbf{v}[i]\right)$$

- + But is it practical to do segmentation by hand?
- No! This is why we built RNNs!

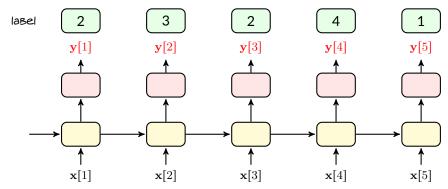
With RNNs, we address this learning task as bellow

- We look at the complete image as a sequence of data
- We go over each frame separately

If we are extremely lucky; then, our segmentation looks like this

$$23241 \rightsquigarrow \mathbf{x}[1], \mathbf{x}[2], \mathbf{x}[3], \mathbf{x}[4], \mathbf{x}[5]$$

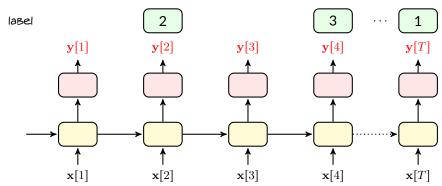
and we have a label for each time step



But, that's too good to happen! Usually we have

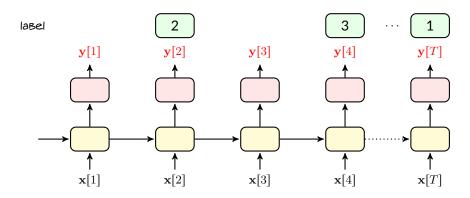
23 24/
$$\rightsquigarrow \mathbf{x}[1], \mathbf{x}[2], \dots, \mathbf{x}[T]$$

and we have a label in some time steps



In this typical case, two questions seem non-trivial

- 1 Where should we put each label? \equiv Where should we read each label?
- 2 What should we do with non-labeled outputs, e.g., y[1]?



The key challenge in computing the loss is that we do not have necessarily one-to-one correspondence with sequence data

Correspondence Problem

With sequence data, we could have a data-sequence of length T that is labeled by a sequence of size K < T where

no time index is specified for any label in the K-long label sequence

Correspondence problem exists pretty much in all practical sequence data

- In speech recognition, multiple time frames correspond to a single word
- In text recognition, multiple image frames correspond to a single letter
- . . .

Correspondence Problem: Formulation

Let's formulate the problem clearly: Say we have

A sequence of data

$$\mathbf{x}[1:T] = \mathbf{x}[1], \dots, \mathbf{x}[T]$$

that is labeled with the sequence of K true labels

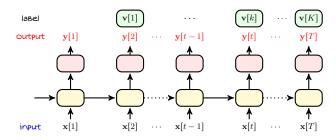
$$\mathbf{v}[1:K] = \mathbf{v}[1], \dots, \mathbf{v}[K]$$

where K and T can be different

For this setting, we want to train an RNN with this data sequence: starting with an initial state, this RNN returns an output sequence

$$\mathbf{y}[1:T] = \mathbf{y}[1], \dots, \mathbf{y}[T]$$

Correspondence Problem: Formulation

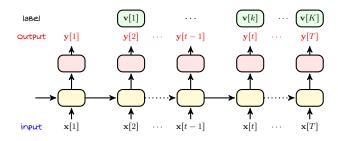


To be able to train this RNN, we need to

- **1** define a loss function that computes $\hat{R} = \mathcal{L}(\mathbf{y}[1:T], \mathbf{v}[1:K])$
 - $\,\,\,\,\,\,\,\,\,\,\,\,$ We need this loss function to be differentiable with respect to all outputs

$$\nabla_{\mathbf{y}[1]}\hat{R}, \dots, \nabla_{\mathbf{y}[T]}\hat{R}$$

Correspondence Problem: Formulation



To use this RNN after training, i.e., for inferring, we need to

- 2 know how to map outputs to predicted labels

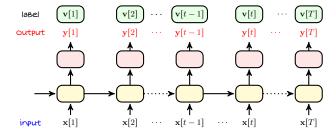
$$\mathbf{y}[1], \dots, \mathbf{y}[T] \mapsto \hat{\mathbf{v}}[1], \dots, \hat{\mathbf{v}}[K]$$

Let's look into different settings

Setting I: Perfectly Segmented

In some problems, we have our data perfectly segmented

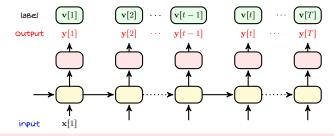
• There is a separate label for each time step, i.e., K=T \hookrightarrow many-to-many type I



Setting I: Perfectly Segmented

In some problems, we have our data perfectly segmented

- There is a separate label for each time step, i.e., K=T
 - → many-to-many type I and one-to-many



Attention

We can always treat a non-existing input entry as an empty

ightharpoonup We are good as long as we have a label at each time t

Setting I: Defining Loss

In such settings, we define the loss to be aggregated loss over time

$$\hat{R} = \sum_{t=1}^{T} \mathcal{L}\left(\mathbf{y}[t], \mathbf{v}[t]\right)$$

for some loss function $\mathcal{L}\left(\cdot,\cdot\right)$

The gradients are then trivially computed

Gradient with respect to particular output $\mathbf{y}[t]$ is

$$\nabla_{\mathbf{y}[t]} \hat{R} = \nabla_{\mathbf{y}[t]} \hat{R}[t] = \nabla_{\mathbf{y}[t]} \mathcal{L}\left(\mathbf{y}[t], \mathbf{v}[t]\right)$$

Setting I: Inference

Inference in such setting is performed by one-to-one mapping: at time t, we predict based on $\mathbf{y}[t]$

$$\mathbf{y}[1] \mapsto \hat{\mathbf{v}}[1], \dots, \mathbf{y}[T] \mapsto \hat{\mathbf{v}}[T]$$

For instance, assume $\mathbf{y}[t]$ is output of a softmax activation; then, we set

$$\hat{\mathbf{v}}[t] = \operatorname{argmax} \mathbf{y}[t]$$

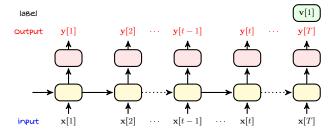
where argmax returns the index of the largest entry, e.g.,

$$\operatorname{argmax} \begin{bmatrix} 0.1\\0.7\\0.2\\0 \end{bmatrix} = 2$$

Setting II: Known Segments

In some problems, we have only one label for the whole sequence, i.e., K=1

- ↓ It corresponds to many-to-one type of problems
 - ☐ This can be that we have really only one label, e.g., content classification



Setting II: Defining Loss for Dumb NN

A naive approach to define loss is to set it be the loss between last output and label, i.e.,

$$\hat{R} = \mathcal{L}(\mathbf{y}[T], \mathbf{v}[1])$$

With this loss, gradient with respect to particular output $\mathbf{y}[t]$ is

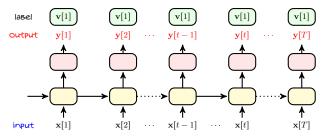
$$\nabla_{\mathbf{y}[t]} \hat{R} = \begin{cases} \nabla_{\mathbf{y}[T]} \mathcal{L} \left(\mathbf{y}[T], \mathbf{v}[1] \right) & t = T \\ 0 & t \neq T \end{cases}$$

- + But does it make sense to ignore all other outputs?
- Not at all! We are training a dumb NN that can respond only when it's over with the whole sequence!

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025

Setting II: Loss for Smarter Training

An extremely smart NN is the one who knows the label before the input speaks!



For this NN, the loss is

$$\hat{R} = \sum_{t=1}^{T} \mathcal{L}\left(\mathbf{y}[t], \mathbf{v}[1]\right)$$

But, we should be careful! We should not expect NN to know everything from potentially irrelevant input!

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2

Setting II: Defining Proper Loss

A realistic approach is to define the loss via a weighted sum, i.e.,

$$\hat{R} = \sum_{t=1}^{T} w_t \mathcal{L}(\mathbf{y}[t], \mathbf{v}[1])$$

where w_t is the weight at time t

- initially w_t is small
 - \downarrow we do not expect the NN to know everything from very beginning
- it gradually increases up to its maximum w_T
 - \downarrow by time T the NN should know the label

With this loss, gradient with respect to particular output $\mathbf{y}[t]$ is

$$\nabla_{\mathbf{y}[t]} \hat{R} = w_t \nabla_{\mathbf{y}[t]} \hat{R}[t] = w_t \nabla_{\mathbf{y}[t]} \mathcal{L}\left(\mathbf{y}[t], \mathbf{v}[1]\right)$$

Setting II: Inference

Inference in such setting is performed by many-to-one mapping: we only predict based on $\mathbf{y}[1:T]$

$$\mathbf{y}[1:T] \mapsto \hat{\mathbf{v}}[1]$$

For instance, assume $\mathbf{y}[t]$ is output of a softmax activation; then, we set

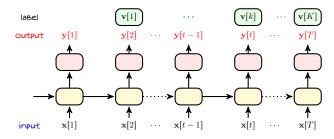
$$\tilde{\mathbf{v}}[t] = \operatorname{argmax} \mathbf{y}[t]$$

and then take a (potentially weighted) majority vote: $\hat{\mathbf{v}}[1]$ is the class that most often estimated with occurrence at each time being weighted by some weight

Setting III: Unknown Segments

Most common case is that we have a label sequence shorter than our data

- Each label in this sequence is corresponding to a segment of input
 - - There might be even no clear answer to that!



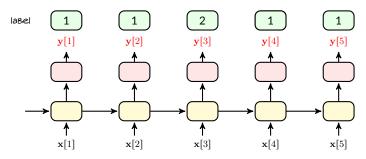
Note that we are dealing with a sequence to sequence model: we want to learn

relation between sequence $\mathbf{x}[1:T]$ and sequence $\mathbf{v}[1:K]!$

Setting II: Example

Assume we have image 121 that is divided into a sequence of five pixel vectors

- Since it is a training data, it is labeled as 121
 - We do not know after which output we should expect RNN to know first, second or third digit!

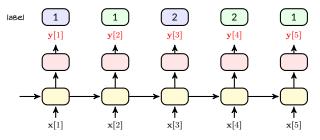


- + Sounds impossible!
- Only impossible is impossible! Let's carry on and see what we can do!

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025

Setting II: Genie-Defined Loss

Assume a genie has told us end of each segment



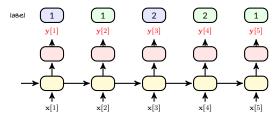
We can fill the empty labels with repetition, and then define the loss as

$$\hat{R} = \sum_{k=1}^{K} \sum_{t=i_{k-1}+1}^{i_k} w_t \mathcal{L}(\mathbf{y[t]}, \mathbf{v[k]})$$

where i_k is where label \mathbf{v}_k ends, e.g., in above diagram $i_1=2$

Applied Deep Learning

Setting II: Defining Loss



We don't have the genie: we could assume that i_k is something to learn!

$$\hat{R}(\mathbf{i}) = \sum_{k=1}^{K} \sum_{t=i_{k-1}+1}^{i_k} w_t \mathcal{L}(\mathbf{y}[t], \mathbf{v}[k])$$

where $\mathbf{i} = [0, i_1 \dots, i_K]$ is something we need to learn

Applied Deep Learning

Setting II: Optimal Segmentation

- + How could we learn i? Should we compute also $\nabla_i \hat{R}$?
- Well! You may try! But, obviously i_k is an integer!

Optimal Segmentation

Optimal approach for finding $\bf i$ is to train the NN for all possible choice for $\bf i$ and then find the final training loss $\hat{R}(\bf i)$. The optimal segmentation is then given by

$$\mathbf{i}^{\star} = \operatorname*{argmin}_{\mathbf{i}} \hat{R}\left(\mathbf{i}\right)$$

- + Is it computationally feasible?
- No! The number of possible choice for i grows exponentially with T! We need to go for sub-optimal approaches

Setting II: Number of Possible Segmentations

- + How is it exponentially large?
- Let's look at our example

In our example, we should assign label sequence 121 to a sequence of length 5: each entry of output sequence in this case can be labeled by 1 (the first one), 2 or 1 (the last one). This means that we have 3 choices of label for each time interval; thus, the total number of possible segmentations is around 3^5 .

In general number of segmentations grows exponentially with T

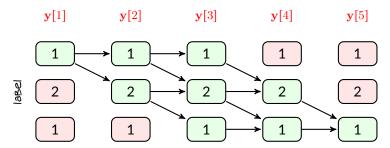
- + But wait a moment! We have also counted the case of labeling all outputs with 1! This cannot be the case!
- This is right! It is in general much less than 3^5 but it's still exponential Let's see the exact possible segmentations!

Setting II: Number of Possible Segmentations

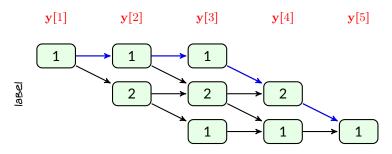
We intend to compare each of $y[1], \dots, y[5]$ with a label

- We know that the label sequence is 121

 - Second output could be still in the first segment or in the second segment
 - ☐ Third output could be in the first, second, or third segment
 - Our labels should finish by the end of output sequence: fourth output cannot be in first segment
 - → Last output could be only in the third segment



Setting II: Showing Segmentations on Graph

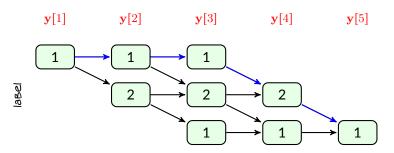


Though it's exponentially large: we see that each segmentation corresponds to one path on this graph

Blue path corresponds to $i_1=3$, $i_2=4$, and $i_3=5$, i.e., $\mathbf{i}=[0,3,4,5]$

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 31/49

Setting II: Loss on Segmentation Graph



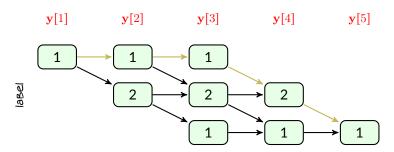
We can compute the loss for each segmentation directly on this graph: let's say that we have L different paths on the graph. For each path, we can write an expanded label sequence, e.g.,

Expanded label sequence of blue path is { 1, 1, 1, 2, 1}

This sequence is of length T and we show it for path ℓ with $\tilde{\mathbf{v}}_{\ell}[t]$

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025

Setting II: Loss on Segmentation Graph



For each path $\ell=1,\ldots,L$, the loss is computed by aggregating the losses between outputs and extended labels

$$\hat{R}_{\ell} = \sum_{t=1}^{T} w_t \mathcal{L}\left(\mathbf{y}[t], \tilde{\mathbf{v}}_{\ell}[t]\right) = \sum_{t=1}^{T} \hat{R}_{\ell}[t]$$

It again decomposes into sum of T terms with only one being function of $\mathbf{y}[t]$

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025

Setting II: Optimal Segmentation on Graph

We can represent the optimal segmentation on the graph as below

```
OptimalSegmentTraining():

1: Initiate with \hat{R} = +\infty and some random \ell^* = \emptyset

2: for \ell = 1, \dots, L do

3: Let the loss be \hat{R}_{\ell}

4: Train for sufficient epochs

5: if After training \hat{R}_{\ell} < \hat{R} then

6: \hat{R} \leftarrow \hat{R}_{\ell} and \ell^* \leftarrow \ell

7: end if

8: end for

9: Return learnable parameters and \ell^*
```

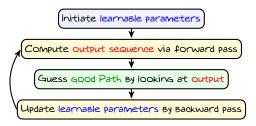
- + Say we could be over with this infeasible training! How do we use the trained RNN for inference?
- In this case, we have ℓ^* which gives us optimal segmentation: we infer label of each segment based on its corresponding outputs

Setting II: Maximum-Likelihood Segmentation

Since optimal segmentation is infeasible, people uses maximum-likelihood approach that is well-known in detection and coding theory

Maximum-Likelihood Segmentation

Start with an <u>initial guess</u> for optimal path on segmentation graph and do one step of training; then, improve the guess based on the outputs of next forward pass and go for next step of training



Let's look at its pseudo-code

Setting II: Maximum-Likelihood Segmentation

```
MaxLikelihoodTraining():

1: for Iteration i=1,\ldots,I do

2: Pass forward through time: Compute output sequence \mathbf{y}[1:T]

3: Compute p\left(\tilde{\mathbf{v}}_{\ell}[1:T]|\ell\right) for each path \ell on segmentation graph

4: Update \ell^* = \operatorname{argmax}_{\ell} p\left(\tilde{\mathbf{v}}_{\ell}[1:T]|\ell\right)

5: Set loss to \hat{R}_{\ell^*} and backpropagate over RNN

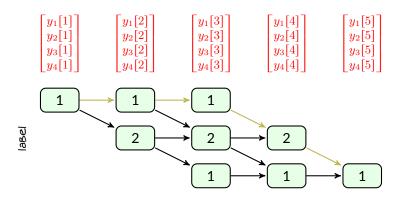
6: Update learnable parameters

7: end for

8: Return learnable parameters and \ell^*
```

- + Why we call it maximum likelihood?
- Because we guess path by maximizing the likelihood $p\left(ilde{\mathbf{v}}_{\ell}[1:T] | \ell
 ight)$
- + But how can find likelihood of a path?
- We can use output sequence y[1:T]

Setting II: Finding Likelihood on Segmentation Graph

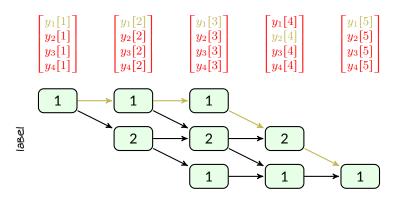


Assume that each label could be 1, 2, 3, or 4: at each time t the RNN returns a 4-dimensional vector whose entries are probability of each class

we can multiply the probabilities of classes on the path

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025

Setting II: Finding Likelihood on Segmentation Graph

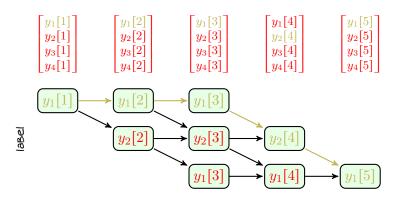


For instance, the yellow path has a likelihood

$$p\left(\tilde{\mathbf{v}}_{\ell}[1:T]|\ell\right) = \prod_{t=1}^{T} p\left(\tilde{\mathbf{v}}_{\ell}[t]|\ell\right) = y_{1}[1]y_{1}[2]y_{1}[3]y_{2}[4]y_{1}[5]$$

Applied Deep Learning Chapter 6: RNNs © A. Bere

Setting II: Finding Likelihood on Segmentation Graph



Or better to say: we just put output entries in graph and move on the path

$$p\left(\tilde{\mathbf{v}}_{\ell}[1:T]|\ell\right) = \prod_{t=1}^{T} y_{\tilde{v}_{\ell}[t]}[t] = y_{1}[1]y_{1}[2]y_{1}[3]y_{2}[4]y_{1}[5]$$

Applied Deep Learning

Setting II: Maximum-Likelihood Segmentation

+ OK! We can find the likelihood, but how can we maximize it? It's again an exponentially large search!

$$\ell^* = \operatorname*{argmax}_{\ell} p\left(\tilde{\mathbf{v}}_{\ell}[1:T]|\ell\right)$$

Well! If we only need the maximum, it turns not to be exponential

We can readily show that finding maximum likelihood on the graph is a dynamic programming problem and can be solved by the Viterbi algorithm

Maximum likelihood training can be implemented efficiently

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 40 / 49

Setting II: Maximum-Likelihood Inference

```
\begin{array}{lll} \operatorname{MaxLikelihoodTraining}(): \\ 1: & \text{ for } \operatorname{Iteration } i=1,\ldots,I \text{ do} \\ 2: & \operatorname{Pass } \operatorname{forward } \operatorname{through } \operatorname{time: Compute } \operatorname{output } \operatorname{sequence } \mathbf{y}[1:T] \\ 3: & \operatorname{Compute } p\left(\tilde{\mathbf{v}}_{\ell}[1:T]|\ell\right) \operatorname{for } \operatorname{each } \operatorname{path } \ell \operatorname{ on } \operatorname{segmentation } \operatorname{graph} \\ 4: & \operatorname{Update } \ell^* = \operatorname{argmax}_{\ell} p\left(\tilde{\mathbf{v}}_{\ell}[1:T]|\ell\right) \\ 5: & \operatorname{Set } \operatorname{loss } \operatorname{to } \hat{R}_{\ell^*} \operatorname{ and } \operatorname{backpropagate } \operatorname{over } \operatorname{RNN} \\ 6: & \operatorname{Update } \operatorname{learnable } \operatorname{parameters} \\ 7: & \operatorname{end } \operatorname{for} \\ 8: & \operatorname{Return } \operatorname{learnable } \operatorname{parameters } \operatorname{and } \ell^* \end{array}
```

- + How can we use our RNN for inference after training via maximum likelihood segmentation?
- We have access to ℓ^* : we predict the label of each segment based on its corresponding outputs

Setting II: Connectionist Temporal Classification

It turns out that maximum-likelihood could stick to a bad local minimum, i.e.,

it quickly converges to a path ℓ^* that is much different from ℓ^*

- + Is there any solution to this?
- Yes! We can use connectionist temporal classification (CTC) loss

CTC Loss

Instead of searching for a best segmentation and then minimizing its loss, we learn directly from unsegmented data by minimizing the average loss over all possible segmentations, i.e., we define loss to be

$$\hat{R} = \mathbb{E}_{\ell} \left\{ \hat{R}_{\ell} \right\} = \sum_{\ell=1}^{L} p\left(\ell | \tilde{\mathbf{v}}_{\ell}[1:T] \right) \hat{R}_{\ell}$$

and train the RNN by finding learnable parameters that minimize this loss

Setting II: CTC Loss

- + But, why should it be a better choice of loss?
- Because we are sure that optimal segmentation is contributing to our loss

$$\begin{split} \hat{R} &= \mathbb{E}_{\ell} \left\{ \hat{R}_{\ell} \right\} = \sum_{\ell=1}^{L} p\left(\ell \middle| \tilde{\mathbf{v}}_{\ell} [1:T] \right) \hat{R}_{\ell} \\ &= p\left(\ell^{\star} \middle| \tilde{\mathbf{v}}_{\ell^{\star}} [1:T] \right) \hat{R}_{\ell^{\star}} + \sum_{\ell \neq \ell^{\star}} p\left(\ell \middle| \tilde{\mathbf{v}}_{\ell} [1:T] \right) \hat{R}_{\ell} \end{split}$$

- + Agreed! Now, how should we determine $p(\ell|\tilde{\mathbf{v}}_{\ell}[1:T])$?
- Just use the Bayes rule!
- + What about the expectation? It is at the end sum of exponentially large number of terms!
- We can again go on the graph and determine it via dynamic programming

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025

Setting II: CTC Loss

The CTC loss can be written as

$$\hat{R} = \sum_{\ell=1}^{L} p\left(\ell \middle| \tilde{\mathbf{v}}_{\ell}[1:T]\right) \hat{R}_{\ell} = \sum_{\ell=1}^{L} p\left(\ell \middle| \tilde{\mathbf{v}}_{\ell}[1:T]\right) \sum_{t=1}^{T} w_{t} \mathcal{L}\left(\mathbf{y}[t], \tilde{\mathbf{v}}_{\ell}[t]\right)$$

$$= \sum_{t=1}^{T} w_{t} \sum_{\ell=1}^{L} p\left(\ell \middle| \tilde{\mathbf{v}}_{\ell}[1:T]\right) \mathcal{L}\left(\mathbf{y}[t], \tilde{\mathbf{v}}_{\ell}[t]\right) = \sum_{t=1}^{T} w_{t} \breve{R}[t]$$

$$= \sum_{t=1}^{T} w_{t} \sum_{\ell=1}^{L} p\left(\ell \middle| \tilde{\mathbf{v}}_{\ell}[1:T]\right) \mathcal{L}\left(\mathbf{y}[t], \tilde{\mathbf{v}}_{\ell}[t]\right)$$

This has been shown that $\check{R}[t]$ can be recursively computed¹:

by some approximation we are able to readily compute $\nabla_{\mathbf{y}[t]} \breve{R}[t]$

and we set
$$\nabla_{\mathbf{y}[t']} \breve{R}[t] \approx \mathbf{0}$$
 for $t' \neq t$

¹Check out the original paper

Setting II: Training with CTC Loss

```
CTC_Training():

1: for iteration i = 1, ..., I do

2: Pass forward through time: Compute output sequence y[1:T]

3: Compute CTC loss \hat{R} and \nabla_{y[t]}\hat{R} by recursion

4: Backpropagate through time and update learnable parameters

5: end for

6: Return learnable parameters
```

This looks like standard training loop now

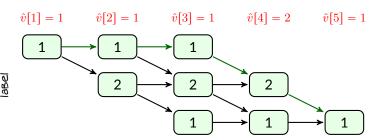
the loss is only replaced with CTC loss

- + What about inference?
- Well! We should figure it out, since the training loop does not compute any segmentation path!

Setting II: Inference with CTC-Trained RNN

Let's get back to our simple example: assume that after training with CTC loss we give an image of handwritten 121 to the RNN

- RNN divides it into 5 frames and is able to track optimal segmentation
- RNN infers from output sequence $\hat{v}[1:5]$ but does not return optimal path



Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 46/49

Setting II: Inference with CTC-Trained RNN

We can conclude from $\hat{v}[1:5]$ that the sequence is $\{1,2,1\}$ if we are sure the sequence has no repetition

Label Encoding and Decoding

CTC uses this fact and constructs following encoding and decoding method: it introduces a new label called "blank:-" which does not belong to set of classes

- While training, it adds blank between any two repetitions
 - \rightarrow For instance, we encode 112 \mapsto 1-12, or 111 \mapsto 1-1-1
- For inference, it removes any repetition in inferred sequence $\hat{v}[1:T]$ and then drops blanks
 - \rightarrow For instance, we decode 1-11-312 \mapsto 11312, or 3333-3121 \mapsto 33121

Setting II: Training and Inference with CTC

```
CTC_Training():

1: for iteration i=1,\ldots,I do

2: Add blanks to the label sequences with repetition

3: Pass forward through time: Compute output sequence \mathbf{y}[1:T]

4: Compute CTC loss \hat{R} and \nabla_{\mathbf{y}[t]}\hat{R} by recursion

5: Backpropagate through time and update learnable parameters

6: end for

7: Return learnable parameters
```

```
CTC_Inference():

1: Pass forward through time the input and compute output \mathbf{y}[1:T]

2: Infere encoded sequence \hat{v}[1:T] from \mathbf{y}[1:T]

3: Remove repetitions from \hat{v}[1:T] \mapsto \hat{v}[1:T']

4: Remove blanks from \hat{v}[1:T'] \mapsto \hat{v}[1:K]

5: Return \hat{v}[1:K]
```

In PyTorch: CTC Loss

We can access CTC loss in torch.nn module as

```
torcn.nn.CTCLoss()
```

Few notes about CTC loss implementation

- We need to specify the index of blank label
 - It should be out of our set of classes
 - By default, it is set to blank = 0
- When we define our model, we should always take blank label into account
- PyTorch considers cross-entropy loss function, i.e., $\mathcal{L}\left(\mathbf{y}, \tilde{\mathbf{v}}\right) = \mathrm{CE}\left(\mathbf{y}, \tilde{\mathbf{v}}\right)$
- As input to CTC loss: y should be logarithm of probabilities