Applied Deep Learning

Chapter 6: Recurrent NNs
Ali Bereyhi
ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Fall 2025

Applied Deep Learning Chapter 6: RNNs


mailto:ali.bereyhi@utoronto.ca

Bidirectional RNNs

We have up to now considered unidirectional RNNs
we start from beginning of the sequence and move in one direction

ylt]

bt — 1] —>D—> hIt]

T

x([t]

But, can’t we learn from future input as well?

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 2/9



Bidirectional RNNs

Future entries can have information about past: say our RNN wants to fill the
empty field

... the color E that many people assume is the color of

Obviously, future input in the sequence is helping in this example!
+ But, how can we get information from future?

- Well, we have the whole sequence: we could move once from left to
right and once from right to left

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 3/9



Bidirectional RNNs

Bidirectional RNNs
A bidirectional RNN (BRNN) consists of two RNNs

* one that starts with an initial hidden state at t = 0 and computes h|t]
from h[t — 1] and x|¢]

e another that starts with an initial hidden state at t = T + 1 and computes
h'[t] from /[t + 1] and x[¢]

Output at time t is determined from merged version of the two hidden states

t
C]—> h[t — 1] —>D—> h[f]

x[t]

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 4/9




Bidirectional RNNs

.
3
@

]

+ What exactly is this merge block?

- It gets the two states and returns a vector that matches output layer

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 5/9



Bidirectional GRU

+ Should we use any RNN here?

- Sure! We may use GRU

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 6/9



Bidirectional LSTM

h'[1] LSTM |«— h'[t +1]
T merge

h[t — 1] —>| LSTM h[¢]

x[t]

+ Should we use any RNN here?
- Sure! We may use LSTM

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 7/9



RNNs in PyTorch

.
3
@

]

+ Any suggestion for merging the hidden states?

- Sure! Let's see some code

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 8/9



RNNs in PyTorch

In PyTorch, we can access a basic RNN in torch.nn module

‘ torch.nn.RNN() ‘

We can make it deep by simply choosing num_layers more than one and
bidirectional by setting bidirectional to True. Same with GRU and LSTM

torch.nn.LSTM()

torch.nn.GRU()

In bidirectional case, we get access to both states. To merge them, we could
® add the two states
® average them
* concatenate them, i.e., h.[t] = (h[t],h'[t])

or do any other operation that we find useful

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 9/9



	Bidirectional RNNs
	Bidirectional RNNs
	Bidirectional GRU
	Bidirectional LSTM
	Comments on Implementation


