Applied Deep Learning

Chapter 6: Recurrent NNs
Ali Bereyhi
ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Fall 2025

Applied Deep Learning Chapter 6: RNNs

mailto:ali.bereyhi@utoronto.ca

Principle of Gating

To understand the idea of Gating, let's get back to our basic RNN
@ We start with hidden state h[0]
® We have h|t] = f(wz[t] + v, k[t —1])
© We have y[t] = f(w:h]t])

(w1) (v] ylt - 1] (v) (w1]
I T

h[0] [h[1]] [h[2]] K[t — 1] [h[t]] [h[T]]

A A A A A

[;41]] [m[z]].-- [t — 1] [m[t]]n-[m[T]]

Looking at h[t] as memory, we can say we are always updating the memory

~+

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 2/27

Principle of Gating
Recall our motivating example: we wanted to predict the next word
x[t—6] x[t—5] x[t—4] x[t—3] x[t—2] x[t—1] x[t]

Julia has been nominated to receive Alexander von Humboldt Prize for her

Should we update the memory all the way from Julia?
® Obviously No!
L, We should stop updating at Julia, since it is something we should remember

e How can we do it? Let’s try a thought experiment

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 3/27

Principle of Gating

Say we access to a sequence u[t] € [0, 1]|: assume the following happens
L, We arrive at Julia” at time ¢, i.e., z[to]oc Julia”
L, At time to, we have u[fo] = 1
L, We want to predictat¢ + 1
L, Fromtg + 1tot, we have u[ty + 1] = -+ = u[t] =0
Now, we update our memory like this
@ We start with hidden state h[0]
@ We compute h[t] = f(wiz[t] + wmh[t — 1])
® We update h[t] = u[t]h[t] + (1 — u[t]) At — 1]
O At each time, we have y[t] = f(w2h[t])
Let’s see what happens to the memory

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 4/27

Principle of Gating

‘ At time tg, we can say ‘

e We have x[tg]oc “Julia” and compute hto] = f(w1z[to] + wmh(to — 1])
L h[to] has fresh memory about “Julia” . 3
L, Since u[to] = 1, we update as h[to] = 1 x h[tg] + 0 x h[tg — 1] = h[to]
L, RNN has a fresh memory about “Julia”

At the next time, i.e., to + 1, we have ‘

e No matter what h[ty + 1] is we have u[ty + 1] = 0

L, Weupdate as h[to + 1] = 0 x h[to + 1] + 1 x h[to] = h[to] = hlto]
L, We still have a fresh memory about “Julia”

This repeats from ty + 1 till t, so at time t ‘

e No matter what h[t], we have u[t] = 0
L, Weupdateas h[t] = 0 x h[t] + 1 x h[t —1] = h[t — 1] = ... = h[to]
L, We still have a fresh memory about “Julia”

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 5/27

Principle of Gating: Updating via Gates

u[t] gates the memory: it decides how much memory we should pass and forget
e We update h[t] = u[t]h[t] + (1 — u[t]) k[t — 1]
+ How does it help with vanishing gradient?

- Well! It is implicitly making skip connections through time

Recall that with standard BPTT, we have fori = t,t — 1,...,1g

onli] ., .. . ohli —1]
S = et (w1740, =)

But, now we skip multiple time slots, as we have fori = t,t — 1,...,ty

Oh[i] _ ohfi— 1]

0 0

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 6/27

Principle of Gating: A Generic Gate

+ Sounds inspiring! But, how could you get u|t]?
- Well! Like what we did the whole time: we learn it!
Gate
Let x[¢t] be input and h[t — 1] be last hidden state: a gate I'[t] is computed as
F[t] =0 (WF,inX[t] + h[t — 1] + br)
where o (-) is sigmoid function, and Wr ., and br are learnablel
+ Why do we use sigmoid function?
- Simply because it is between 0 and 1

+ What should we set the dimension of T'[t]?
- Same as the variable (memory component) that we want to gate

1We are going to drop bias and you all know why!

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 7/27

Practical Gated Architectures

There are various gated architectures: we look into two of them
@ Gated Recurrent Unit (GRU)
@® Long Short-Term Memory (LSTM)

Before we start, let’s recall their basic RNN counterpart

Basic RNN Counterpart

Say we set activation to f (-) v~ we usually set it to tanh (-)
@ Start with an initial hidden state
L. we can learn h[0]
® Compute memory as h[t] = f(Wx[t] + h[t —1])
L, we can learn W and

© Compute output y[t] = fout(Wah[t]) v four and f coud e different
L, we can learn W,

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 8/27

Classical Diagram: Hidden Layer as Unit

When we study a gated architecture: it is common to look at the hidden layer
as a unit which takes some inputs and returns

y[t] ~We are mainly interested on : we want
T to know that given last state and new input

® How does update hidden state?
h[t — 1] —>C]—> h[t] @ What components are passed to the next
T time interval?

L, Here, we have only ht]
x[t] L, But, we may have other components

L, We will see it in LSTM

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 9/27

Classical Diagram: Basic RNN

Bl — 1]— h[¢]

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 10/27

Practical Gated Architectures: Gated Recurrent Unit

Gated Recurrent Unit (GRU)

Say we set activation to f () v~ we usually set it to tanh (-)
@ Start with an initial hidden state
@ Compute update gate T, [t] = 0 (W inx[t] + Wy mh[t —1])
© Compute reset gate I',[t] = 0 (WpinXx[t] + Wy nh[t — 1])
O Compute = f(Wix[t] + Wy, [t] ©h[t — 1])
© Update hidden state as h[t] = (1 — T'y[t]) @ h[t — 1] + T[] ©
O Compute output y[t] = fout(Wah[t]) v four and f coud se disterent

Or we could give h[t] to a new layer: for instance a new GRU whose input is
h[t] and has its own state

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025

11/27

Practical Gated Architectures: GRU

This is what’s going on in a GRU cell
reset gate

h[t — 1] » h]

- o o o o o
b LB B B W R
= = = - =

x[t] update gate

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 12/27

Practical Gated Architectures: GRU
Compute update gate T',[t] = o0 (Wy inx[t] + Wynh[t —1])

h[t — | o

Ly lt]

x|t]

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 13/27

Practical Gated Architectures: GRU
Compute reset gate I',[t] = o (WyinX[t] + Wy mh[t — 1])

h[t — 1]

L. [t]

x[t]
Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 14/27

Practical Gated Architectures: GRU
Compute = f(Wix[t] + W I, [t] ©h[t — 1])

h[t — | jm—

I, [1]

B

|
x|[t]

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 15/27

Practical Gated Architectures: GRU
Update hidden state as h[t] = (1 — T',[t]) O hl[t — 1] + T'y[t] ®

h[t — 1] [H » 1]

I [t]

I_
x|[t]

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 16/27

Gating GRU

GRU: Forward Pass
Starting from an initial state: GRU applies the first 5 steps each time

by iy D

S R RS R A

x[1] x[2] x[t —1] x[t]

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 17/27

GRU: Backward Pass

Say we finished forward pass at time t. We now want to find VWR for some
W that is inside GRU, e.g., W m: we start backpropagating from Vy[t]R

VwR = Vylto Vwylt]
© Weknow y[t] = fou(W2hlt])
Vwyl[t] = Vigy[t] o Vwh[t]
@® We know that h[t] = (1 —T',[t]) O h[t — 1] + T,[{] ©

th[t] =Vru[t]h[t] o Vwru[t] + Vh[t_l]h[t] o th[t — 1]
+V h[t] o Vw

e ...

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 18/27

Practical Gated Architectures: Long Short-Term Memory

Long Short-Term Memory (LSTM)

Say we set activation to f () v~ we usually set it to tanh ()
@ Start with initial hidden state and
@ Compute forget gate I'¢[t] = 0 (Wginx[t] + Wi pnh([t — 1])
© Compute input gate T';[t] = 0 (Wi inX[t] + Wimh[t — 1])
@ Compute output gate T's[t] = 0 (W inX[t] + Womh[t — 1])
© Compute = f(Wix[t] + Wyh[t —1])
O Update as I¢[t] + Ti[t] ©
@ Update hidden state as h[1 =To[t] © f (c[t])

Wsht

© Compute output y[t] = fout(W2ah[t]) v four and f coud e disterent

Or we could give h[t] to a new layer: for instance a new LSTM whose input is
h([t] and has its own hidden and cell states

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 19/27

Practical Gated Architectures: LSTM

This is how inside an LSTM unit looks like
forget gate

1
|
’

-----'

h[t — 1] ?

x[t] input gate output gate

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 20/27

Practical Gated Architectures: LSTM
= f(Wix[t] + Wyh[t —1])

Applied Deep Learning Chapter 6: RNNs

© A. Bereyhi 2024 - 2025

21/27

Practical Gated Architectures: LSTM

We use forget gate and update gate to update
forget gate

-----'

=3

—

—

|

ot

e

| R
o I

-_--m o

x[t] input gate

Applied Deep Learning Chapter 6: RNNs

© A. Bereyhi 2024 - 2025

22/27

Practical Gated Architectures: LSTM

We use output gate to control fellow of memory to the hidden state

h[t — 1]

x[t] output gate
Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 23/27

Practical Gated Architectures: LSTM

Intuitively, the gates in LSTM impact the flow of information as follows
® Forget gate controls how much we forget from
L. Assume I'¢[t] = O: then, we remember nothing of
¢ |nput gate controls how much we remember from new
L, Assume I';[t] = O: then, we remember nothing of

forget gate

v

R 4

x[t] input gate

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025

24/27

Practical Gated Architectures: LSTM

Intuitively, the gates in LSTM impact the flow of information as follows
e Qutput gate controls how much we let from to go out
L, Assume T'y[t] = O: then, we send nothing of c|/| out

c[t]

h[t —1]

x[t] output gate

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025

25/27

Gating LSTM

LSTM: Forward Pass

Starting from initial hidden and state: LSTM passes forward as
y[t —1]

& by oy &y

N e) N T e e
P T T

x[1] x[2] x[t —1] x[t]
Pay Attention
Note that unlike other architectures, LSTM does not keep all memory inside
hidden state but it carries it also in . is only for memory and

is not directly used by higher layers, e.g., output layer of the NN

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 26/27

LSTM: Backward Pass

Say we finished forward pass at time t. We now want to find VWR for some

W that is inside LSTM, e.g., Wi m: we start backpropagating from Vy[t]R
VwR = VyRto Vwylt]
@ We know y[t] = four(W2h[t])
Vwyl[t] = Viylt] o Vwhlt]

! ...
Suggestion

Try writing it once to see the impact of gates!

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 27/27

	Gating
	Principle of Gating
	General Gate Architecture
	GRU
	LSTM

