Applied Deep Learning

Chapter 6: Recurrent NNs
Ali Bereyhi
ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Fall 2025

Applied Deep Learning Chapter 6: RNNs

mailto:ali.bereyhi@utoronto.ca

Training RNNs

Training our Shallow RNN

We now want to train this basic RNN

(v) (5] (e-u) (su) (vm)

]
h(0] [n[1]] [n[2]] @IE [hTt]] [h[TT]]

A A

D GD- @) GG

Let’s consider training for only one sample

'

We assume that we have a sequence of labels v[1],...,v|[T]
@ We know some v|t| could be empty, e.g., in many-to-one scenario

@ So could be some of x[t]’s, e.g., in one-to-many scenario

We however have no problem with that!

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 2/19

Training our Shallow RNN

We now want to train this basic RNN

(v) (v] ylt— 1] (v) (v

(x) (=20])- [(xit-1] (xm) xi71]

Let’s consider training for only one sample

The loss in general can be written as

R=CL(y[1:T],v[1:T])

where we use shorten notation y[1 : T'| = y[1],...,y[T]

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 3/19

Training our Shallow RNN

We can think of such a diagram

vl 7] —>(£(,-) =

G J[[/J/ \£) i)
h(0] [th]] [hTQ Elj hTt]] [h[TT]]

(=01) (=2) [(xt-1 EEE

+ It seems to be hard to get back from R to each y[t]

- Well! That's true, but we have some remedy for it

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 4/19

Training our Shallow RNN

We can think of such a diagram

v[1:T] —>[

For the moment, we assume that we can

compute the Vy[t]f% for all t = move backward from R to any y[t]

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 5/19

Backward Pass Through Time

Starting from R, say we want to find V., R
e Since R is a function of y[1 : T'], we should write a vectorized chain rule

Vi, R=VyRoVw y[l]+...4+ VyRo Vi, y[T]

T
= Z Vy[t]R oV y[t]
t=1

® Since we assumed that we have Vy[t] R, our main task is to find

V., yl[t]

for all t: we could hence compute it for a general ¢
L, This is a tensor-like gradient, i.e., [V v1[t], ...,V ya[t]]

e Apparently, we should apply chain rule for several times!

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025

6/19

Backward Pass Through Time

+ But, this is going to be exhausting?

- Well, we could again follow Albert Einstein advice!

“Everything should be made as simple as
possible, but not simpler!”

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025

7/19

raining RNNs Back Propagation Through Time

Backward Pass Through Time: Simple Example

Let’s consider a dummy RNN with all variables being scalar
@ We have y[t] = f(w:h][t])
® We have h|t] = f(wz[t] + v, k[t —1])
© We start with hidden state h[0]

So the diagram gets simplified as below

(v) (v21) @ (v) (wm)

h[0] [h[1]] [h[2]] K[t — 1] [h[t]] [h[T]]

T T
[m[l]] [x[Q]]--« o[t — 1] [m[t]]---[m[T]]

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 8/19

Training RNNs Back Propagation Through Time

Backward Pass Through Time: Simple Example

Starting from R, say we want to find V., R: our main task is to find

dy[t]

0

Let’s start the computation: say we have passed forward through the RNN
* we now have y|(t|, h[t] and x[t] for all t
To go backward, we note that y[t| = f(w2h[t])

e y|t]is a function of h[t]: so we write the chain rule as

aylt] _ aylt] on]

g, oh[t]

L, we can compute the first term as dy[t]/h[t] = wa f (wah[t])
L, we should compute the second term by further chain rule

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 9/19

Training RNNs Back Propagation Through Time

Backward Pass Through Time: Simple Example

L~ s (o) 1
We keep going backward, by noting that h[t] = f(wyz[t] + v, h[t —1])
* h[t]is a function of .., and h[t — 1]:
L let’s write h[t] = g (w,,, h[t — 1])
® So we write the chain rule as

On[t] dg 0 L% oh[t — 1]
Own Own, 0 oh[t—1] 0
1
0g 0g Oh[t—1]

o tan-1 o

'We ignore w1 and x[t], as they are obviously not functions of

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 10/19

Backward Pass Through Time: Simple Example

ay[t] ohlt]
s 0
We keep going backward, by noting that h[t] = f(z[t])
e let’s define z[t] = wix[t] + . h[t — 1]
* hlt] = g (., hlt=1])

= wa f (wah[t])

L, we can compute 0g/dw,,, = h[t — 1]f(z[t])
L. we can compute 0g/0h[t — 1] = w,, f(=[t])
® So we can simplify the chain rule as
Oh|t] Oh[t — 1]

S = Bl = 10F Gl e Gl

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 11/19

Training RNNs Back Propagation Through Time

Backward Pass Through Time: Simple Example

dylt] ohft — 1]
e 243)

~ wafCwahle) Gl (4l - 10+ 0 2
We keep going backward: h[t — 1] = f(z[t — 1])
L, Recall that z[t — 1] = wyx[t — 1] + v, h[t — 2]

® We just need to replace t with t — 1 in the last derivation

% = f (=t —1]) (h[t_Q] + w)

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025

12/19

Backward Pass Through Time: Simple Example

Backpropagation at time t is hence described by a pair of recursive equations
e At time t, we compute

oy[t]
0

® Foreachi =t,t—1,...,1, weuse

A onli — 1]
et (- 1+ 0,)

= wa f(wzh[t]) 5——

ohlt]
2

e We stop at i = 1, where we get

oh[1]

= = f (=[1]) | hl0] +

- — f G[1]) h[o]

oh[0]
0
—
0

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 13/19

(v) (w2 ylt =11 (vt) (wim))
“ |)

h[0] [h[1]] [h[2]] K[t — 1] [h[t]] [h[T]]
~_ T ~ ey T T
[2[1]] [2[2]] o[t — 1] [2[t]] [m[T]]
Key Point

Propagating back in time is described via a recursive equation

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 14/19

Backward Pass Through Time: Simple Example

Recursive equation has an interesting feature
e Say we have backpropagated from time t

oyt . oh[t
W _ o 2P
0 0
L, We hence have 0h[t]/0w,,, Oh[t — 1]/0w,,,...,0h[1]/0
¢ Now, if we want to backpropagate fromt — 1
L, We already have oh[t — 1]/0w,,,, Oh[t — 2]/01w,.., ..., 0R[1]/0

L, We do not need to backpropagate through time anymore

Moral of Story

Pass forward till end of sequence and backpropagate to the beginning just once

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 15/19

Back Propagation Through Time
Backpropagation Through Time (BPTT)

BPTT():
@ Start at t with Vo, y[t] = Wa o f(W2h[t]) o Vi h[t]
@ Go back in time as V- h[i] = f (z[i]) o (h[i — 1] + oV, hl[i—1])
® Stopati = 1with V. h[1] = f (2[1]) o h[0]

+

It looks very similar to backpropagation in deep NNs!
Exactly! Even simple RNN is very deep through time

+ Don’t we experience vanishing or exploding gradient then!
Yes! Let’s check it out

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 16/19

Training RNNs Vanishing Gradient Through Time

BPTT: Vanishing Gradient

Let’s expand the gradient in our example

gy_m = waf (wah[t]) f (2[t]) h[t — 1]

+ waf (wah[t]) o f (2[1]) f ([t — 1]) [t — 2]

+waf (wah[t]) o f (=[t]) f ([t = 1]) f (=]t — 2]) hlt = 3]

N

i—1
+ wa f(wahlt]) (flt - j])) hlt — 1]

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 17/19

BPTT: Vanishing Gradient
This says that gradient of hidden state in i steps back in time is multiplied by

Wy wgh[t (Hf t—y)

Recall deep NNs: we could see two cases

e If f(-) > 1 most of the time

L, very old hidden states can explode the gradient

L, this usually does not happen, because most activations are not like that
e If f(-) < 1 most of the time

L, very old hidden states have pretty much no impact on the gradient

L, this means that the RNN can train only up to a finite memory
L, this typically happens and we call it vanishing gradient through time

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 18/19

Handling Vanishing Gradient Through Time

+ Cant we use the same remedy as in deep NNs?
- Yes and No!

It is important to note that vanishing gradient through time is a bit differ-
ent: we are still updating weights with large enough gradients, but these
gradients have no information of long-term memory

Solutions to vanishing gradient through time are mainly
e Use tanh (-) activation
L. tanh (-) is able to keep memory for a longer period
e Use truncated BPTT
L, Repeat short-term BPTTs every couple of time intervals
® |nvoke gating approach

L, This is the most sophisticated approach
L, It was known for a long time, but received attention much later!

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 19/19

	Training RNNs
	Back Propagation Through Time
	Vanishing Gradient Through Time

