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Learning from Sequence Data

In many applications, we have sequence data, e.g.,
® speech data which is usually a long time series
e text data which is sequence of words and letters
® financial data that is typically a time-dependent sequence of values

Learning from such data can be inefficient via FNNSs, i.e., MLPs and CNNs
® On one hand, we have long sequence
L, This can easily make the NN size infeasible
® On another hand, we do not have so much features
L, Just think of a long text, where we need to predict the next word in it

We need to develop some techniques to handle such data

First, let’s see some examples!
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Learning from Sequence Data: Example |

Assume we listen to a 15-minute talk: we want to find out whether it is about
sport or science
e This is a classification problem
L, The data-point, i.e., talk is classified either as sport or science
e What about the data?

L, We sample the audio signal at rate 44.1 kHz and quantize the samples
L, We put every N successive samples in a frames = vector of samples
L, We store the 15-minute talk as a sequence of time frames

L, We may also store frequency frames from the Fourier transform

x[t] x[t+1]
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Sequence Data

Learning from Sequence Data: Example |

Assume we listen to a 15-minute talk: we want to find out whether it is about
sport or science

e This is a binary classification problem
e What about the data? each data-point is a sequence of vectors
Say we make frames of 512 samples; then, we roughly have

77,587 frames = 39,690,000 samples

But do we need to pass them all together through an NN?
® |t does not seem to be!

L, We can classify based of simple words and expressions in the talk
L, Processing all samples together seems to be an unnecessary hardness
® |t does not generalize well

L, We want to classify shorter and longer talks as well
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Learning from Sequence Data: Example Il

Now let’s consider another example: we have a long text and want to learn
what is the next word in the sentence
e This is a prediction task
L, Given previous text we predict the next outcome
e What about the data?

L, We parse the text into a sequence of words
L, We represent the letters of each word with their numeric, e.g., ASCII
L, We save each word into an N-dimensional frame

...therapy. UofT undergraduate students explore the use of AI to treat speech
x[1] x[2] x][3] ceeox[e] x[E+1] 0 - x[T] y="
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Sequence Data

Learning from Sequence Data: Example Il

Another example: we have a sequence of stock prices and are interested in the
future price

e This is again a prediction task

L, Given previous prices we predict the future price
® What about the data?

L, We put daily prices in form of a sequence
L, We collect every couple of prices along with other indicators into a vector

In all these problems: we have a sequence of data and we intend to learn from
them in a generalizable way

L, We clearly need a memory component that can potentially be infinite
L, We should keep track of this infinitely large memory via limited storage
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Predicting Next Word

Let's start with a simple example: we want to train a neural network that gets
a sentence and complete the next word

x[t—6] x[t—5] x[t—4] =x[t—-3] x[t—2] x[t—1] x[t] y =x[t+1]

Julia has been nominated to receive Alexander von Humboldt Prize for her

+ How does the training dataset look like?

- We are given with several long texts in the same context: at each entry
of sequence in each of these texts the whole sequence is the data-point
and the next word is label
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Predicting Next Word

Let's make some specification to clarify the problem
* Each entry is a vector of dimension N, i.e., x[t] € RY

e We have an NN with some hidden layers to train

We show our NN compactly with the following diagram

In this diagram
® Green box shows the input layer

° includes hidden layers
L, It could be several layers

® Red box is the output layer
® Arrows refer to all links between the layers
L, They could be learnable

L
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Sequence Data Motivational Example

Predicting Next Word

For instance, we could think of following equivalence

U0
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Sequence Data Motivational Example

Predicting Next Word: MLP
Let’s try solving this problem with a simple MLP

We have a fully-connected FNN that

e takes N inputs, i.e., single entry

e returns N outputs, i.e., predicted next word
We train this MLP

® we go over all text

==
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x[t—6] x[t—5] x[t—4] x[t—3] x[t—-2] x[t—1] x[t] x[t + 1]

. Julia has been nominated to receive Alexander von Humboldt Prize for her

Does FNN predict “her”? No! How can it remember we are talking about Julia?!
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Predicting Next Word: MLP

x[t—6] x[t—5] x[t—4] x[t—3] x[t—-2] x[t—1] x[t] x[t + 1]

Julia has been nominated to receive Alexander von Humboldt Prize for her

Each time the FNN gets trained with a new sample, it forgets previous text

e At the end, it has a set of weights that are average over all predictions
L, many of these predictions are irrelevant, e.g.,
L, “nominated to”is followed by “receive”: has nothing to say about “her”

* By the time we get to x[t], the FNN gets no input that connects it to Julia

This indicates that we need to make a memory component for our NN
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Predicting Next Word: Large MLP

Maybe we could give more inputs to the FNN!
y

i

[ )

x[t—6] x[t—5] x[t—4] =x[t—-3] x[t—2] x[t—1] x[t] x[t + 1]

Julia has been nominated to receive Alexander von Humboldt Prize for her

But, what if Julia has been mentioned 10 pages ago? Forget about large MLPs!



Sequence Data Motivational Example

Predicting Next Word: CNN
Let’s now think about CNNs

y We have a fully-connected FNN that
e takes NN inputs, i.e., single entry
e returns N outputs, i.e., predicted next word

A We use convolution to

@ ® |ook into a larger input by a filter of size N

e extract features from a larger part of text
and pass it to hidden layers

4
anlenian)
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x[t—6] x[t—5] x[t—4] x[t—3] x[t—-2] x[t—1] x[t] x[t + 1]

—
—
—

. Julia has been nominated to receive Alexander von Humboldt Prize for her

Yet, it doesn’t seem to remember Julia! Unless we slide over the whole text!
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Predicting Next Word: Large CNN

)
/
OO0 o

x[t—6] x[t—5] x[t—4] x[t—3] x[t—-2] x[t—1] x[t] x[t + 1]

Julia has been nominated to receive Alexander von Humboldt Prize for her

Though better than MLP, it is still infeasible to track the whole text

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 16/42



Sequence Data Motivational Example

Finite Memory: Root Problem

x[t—6] x[t—5] x[t—4] x[t—3] x[t—-2] x[t—1] x[t] x[t + 1]

Julia has been nominated to receive Alexander von Humboldt Prize for her

The problem with all architectures we know is that they have finite memory
® They can only remember from their input
L, we always give them independent inputs with similar features
L, they gradually learn to connect any of such inputs to their label
® |f we need to remember for long time we have to give them huge inputs
e But the memory component does not seem to be so huge

L, We may only remember that Julia is a “single person” and “female”
L, If text now switches to Theodore we should refresh our memory that we are
talking about a “single person” and “male”
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Finite Memory Component with Infinite Response

Component We Miss

We need to extract a memory component from our data that is finite in size but
has been influenced (at least theoretically) infinitely

State-space model can help us building such memory component: it is
widely used in control theory to describe evolution of a system over time

Assume x[t] is an input to a system at time t: the system returns an output
y|[t] to this input and a state variable s|t]. The output in the next time,
i.e., t + 1, depends on the new input and current state, i.e.,

ylt + 1],s[t + 1] = f (x[t + 1],s[t])

In the above representation: the state is a finite-size variable that carries
information for infinitely long time
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Sequence Data State-Space Model

State-Space Model for NNs

We can look at a NN as a state-dependent system

In this architecture, the NN
e takes x[t] and previous state s[t — 1] as inputs

ylt]
® returns y|[t| and new state s|t| as outputs
s[t] This NN captures temporal behavior of data: starting
fromt = 1, the NN
® initiates some s[0]
e computes y[1] and s[1] from time sample x[1]

and s[0]

>
S
\Y)
S
A
® computes y|2]| and s[2] from x[2] and s[1]
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Sequence Data State-Space Model

State-Space Model for NNs

Theoretically, this NN has infinite time response

Say NN initiates with some s[0]. It takes only sample
x[1] and no other time samples is given to it. At time t,

ylt]
® y|t] dependson st — 1]
s[t ® st — 1] depends on s[t — 2]

—_

2 e s[1] depends on x[1]
S This means that y|[t] still remembers x|[1]
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State-Dependent NNs

It seems that for our purpose state-space model helps extracting a good
memory component. The challenge is to design a good state-dependent NN

+ Why is it a challenge? We make an NN with input (x, s) and output (y,s’)
and then train it!

- That sounds easy, but have some challenges

Design of state-dependent NNs has two main challenges
@ Defining the state variable
L, how should we specify the state as we do not have a clear clue about it

@® Training the NN over time: say we get a time sequence data and compute
the empirical risk by averaging over time samples up to time t
L, empirical risk depends on weights in the NN
L, it also depends previous memory components which can be learnable

L, if we want to train the model efficiently, we need to get back over time and
update all those memory components!
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State-Dependent NNs

Several attempts have been done: we look briefly into two of them
e Jordan Network

L, proposed by Michael Jordan' in 1986
L, it computes the state variable to be a simple moving average

® Fiman Network

L, proposed by Jeffrey ElIman? in 1990
L, it learns the state variable but does not track back completely over time

These models are simple forms of what we nowadays know as

Recurrent NNs = RNNs

RNN

RNN is an NN with state-variable: the term recurrent refers to the connection
between former state and new output

IProfessor at CS Department of University of Berkeley; check his page
2Late Professor at UCSD ('48 - '18); check his page


https://people.eecs.berkeley.edu/~jordan/
https://crl.ucsd.edu/elman/

Sequence Data Early Models

Jordan Model

Jordan Network uses a simple moving average of output as the state

delay
ylt] ——— The proposal was a shallow NN
e |t starts with some initial state s[1]
* Intime t, it updates the state s[t]| with fixed p as
T s[t] = ps[t — 1] + y[t — 1]
h[¢]
T ® The hidden layer then computes
S[t] Y
()« context) h[t] = f (Wix[t] + Wis[t])
A
® The output is
x[t]

y[t] = f (W2hlt])
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Sequence Data Early Models

Jordan Network

Jordan Network has a memory component with infinte response: say we set
initial state to zero, give x[1], and keep the input zero for the rest of time; then,

y[1] = f (Waf (Wix[1]))
y[2] = f(Waf (Wny[l])) = f (Waf (Wnf (Waf (Wix[1]))))

But, the network does not learn how to remember

e |t takes a fixed moving average as memory component
e [t only learns how to use this pre-defined memory for prediction
L, We could say that it implicitly learns to remember by learning W ,,

Applied Deep Learning Chapter 6: RNNs
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Sequence Data Early Models

Elman Network

Elman Network uses output of hidden layer as state: also called hidden state

The proposal was a shallow NN
é * |t starts with some initial hidden state h[0]

* Intime t, it updates the state s[t¢| as

I
n[r] 24 s[t] = h[t — 1]
T sl v ® The hidden layer then computes
<—| text
[ {emted] ht] = f (Wix[t] + Wislt])
<[] ® The output is

y[t] = f (W2hlt])
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Sequence Data Early Models

Elman Network

Similar to Jordan Network, ElIman Network has a memory component with
infinte response: with zero initial hidden state, we have

<

—
—_

[
I

f(Waf (Wix[1]))
y[2] = f (Waf (Wnh[1])) = f (Waf (Wnf (Wix[1])))

Elman network also learns how to remember only implicitly
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Sequence Data Early Models

Challenge of Learning Through Time

Though Jordan and Elman Networks had memory, they did not get trained

accurately over time, i.e., they simplified the solution to the second challenge
+ What is really this challenge?

- We are going to deal with it in next sections, but let’s see it on these
simple networks first

Let's assume a simple setting: we are to train our NN on single data sequence

* We have the sequence x[1], ..., x[T] as the data-point

® for each entry of this sequence we have the true label

L, We have sequence v[1],...,v[T] with v[t] being label of x[t]

e We are able to compute the loss between outputs and true labels as®

T
R= YL (y[t],v[t])
t=1

3We will see that this is not always this easy!
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Sequence Data Early Models

Recap: Basic FNN

For sake if comparison, let’s first train a basic FNN on this data sequence

|

<
=S

We have a shallow FNN
® The hidden layer computes

h[t] = f (Wix[t])

-~

=
—
~+
| —

® The output is

&] y[t] = f (W2hlt])

x[t]
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Sequence Data Early Models

Recap: Basic FNN

For sake if comparison, let’s first train a basic FNN on this data sequence

How do we train this FNN?
* We compute the gradients Vv, Rand VWZR
L, We do it via backpropagation

° We apply gradient descent

X = <
= = =
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Learning Through Time: FNNs
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Learning Through Time: FNNs

Let's learn W and to ease computation we use our cheating notation, i.e.,
use o to show any product: to compute the gradient we start with the output

Vw, R[t] = Vw, £ (y[t], v[])
= Vy[t]R[t] o Vw,ylt]
We know that y[t| = f (W3h[t]), so we can write
Vw,y[t] = Viylt] o Vw, h[t]
= (7 (Wah[t]) e Wy ) o Ty, h1]

What about V-, h[t]? We keep on backward!

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 31/42



Learning Through Time: FNNs

Up to now, we have

A~ ~

Vw, R[t] = V[ R[t] o Vi y[t] o Vw, ht]
We use the fact that h|t] = f (W1x[t])

VW1h[t] = VWlf (Wlx[t]) + Vx[t]h[ﬂ © VWIX[t]
= f(Wix[t]) o x[1] + ( F(Wix[t]) o W1> o 0

x[t] is not 8 function of W,

Therefore, we end chain rule here

Vw, R[t] = Vi R[t] © Viy[t] o Vw, h[t]
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Sequence Data

Learning Through Time: FNNs

ylt] 3 R|[t]

stop

Bl

x[1] x[2] e x[t —1] x[t] e x[T—1] x[T]

Vw, R[t] = V1 R[t] © Viyy[t] o Vw, h[t]
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Sequence Data Early Models

Learning Through Time: FNNs

Applied Deep Learning

t_l < y[t—1]

\/7

T
Vw,R =) Vw,R[t

t=1

Chapter 6: RNNs

]

decoupled Branches oOf Backprop

>

<l

!
~
e

x[T—1] x[T]
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Sequence Data Early Models

Training a Basic RNN

Now, let’s train Elman network on this sequence
The proposal was a shallow NN
é * |t starts with some initial hidden state h[0]
T ® The hidden layer then computes
h[] 24 h[t] = f (Wix[t] + W[t — 1))

T v ® The output is

y[t] = f (W2hlt])

Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025

35/42



Applied Deep Learning Chapter 6: RNNs © A. Bereyhi 2024 - 2025 36/42



Learning Through Time: EIman Network

Let's again try to learn W: we start with the output

~ A~

VW1R[t] = vy[ﬂR[t] © VWIY[t]
We know that y|[t] = f (W2h(t]), so we can write
ley[t] = vh[t]y[t] © leh[t]
— f(W3ht]) o Wy 0 Vw, h[{]
Next, we note that h[t]| = f (W1ix[t] + Wph[t — 1])
leh[t] = lef (Wlx[t] + Wmh[t - 1])
+ Vx[t]h[t] o Vw, x[t]
0
+ Vh[t_l]h[t] o Vw, h[t — 1]
—

?
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Sequence Data Early Models

Learning Through Time: EIman Network
Well! We know that h[t — 1] = f (Wix[t — 1] + Wh[t — 2])
Vw, h[t — 1] = Vw, f (Wix[t — 1] + W,h[t — 2])
+ Vypi—1jhlt — 1] o Vw, x[t — 1]
0
+ Vh[t_g]h[t — 1] o Vw, h[t — 2]
?
We are not still done! We know h[t — 2| = f (W1ix[t — 2] + Wh[t — 3])
leh[t — 2] = lef (Wlx[t — 2] + Wmh[t — 3])
+ Vx[t,Q]h[t — 2] ] VWIX[t - 2]
0
+ Vh[t_g]h[t — 2] o Vw, h[t — 3]
—_—

?
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Learning Through Time: EIman Network

We should in fact pass all the way back to the initial time interval time!

[IJ [IJ 53 E%
o~ 3 ) )
FoRr=)

x[1] x[2] - x[t—1] x[T]

Note that all blue edges are representing W
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Learning Through Time

Moral of Story

To learn how to remember, we need to train our RNN through time: at each time
interval, we should move all the way back to origin to find out how exactly we
should change the weights!

+ Did Elman did so?
- Not really!

For training Elman treated the hidden state h[t — 1] as a fixed variable, i.e., he
assumed Vw, h(t — 1] ~ Vw,_ h[t — 1] = 0! So, he did not need to move
backward in time!

This means that Elman did not really addressed the second challenge!
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Learning Through Time: Elman’s Approximation

Elman treated it as a simple FNN with only one extra input!

Training W is exactly as FNN. We just have one extra W, here!
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RNNs: Need to Learn Memory

Though appreciated, EIman and Jordan Networks did not do the job
@ Their memory component is rather simple
L, We should use deeper models that enable advanced memory components
@ They do not really learn how to remember
L, We should train the memory component over time

These led us to development of RNNs!

RNN: Less Generic Definition

An RNN can be designed with any known architecture by letting NN also learn
from its past features and outputs. This new enabling is called recurrence
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